Using the GNU Privacy Guard

Version 2.2.27
December 2020

=FGNUPG

The GnuPG Project (https://gnupg.org)

https://gnupg.org

This is the The GNU Privacy Guard Manual (version 2.2.27, December 2020).

Published by The GnuPG Project

https://gnupg.org

(or http://ic6au7wa3fbnaxjq.onion)

(© 2002, 2004, 2005, 2006, 2007, 2010 Free Software Foundation, Inc.

(© 2013, 2014, 2015 Werner Koch.

(© 2015, 2016, 2017 g10 Code GmbH.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “Copying”.

https://gnupg.org
http://ic6au7wa3f6naxjq.onion

Short Contents

1 A short installation guide. 1
2 Invoking GPG-AGENT i 3
3 Invoking DIRMNGR. 23
4 Invoking GPG 35
5 Invoking GPGSM 97
6 Invoking the SCDAEMON 119
7 How to Specifya User Id 129
8 Trust Values 133
9 Helper Toolso e 135
10 Web Key Service. 161
11 How to do certain things 167
12 Notes pertaining to certain OSes....................... 173
13 How to solve problems 175
GNU General Public License. 181
Contributors to GnuPG 193
GlOSSATY .« v vt 195
Option Index o 197
Environment Variable and File Index 203

11

Using the GNU Privacy Guard

Table of Contents

1 A short installation guide...................... 1
2 Invoking GPG-AGENT 3
2.1 Commands.t 3
2.2 Option SUMIMATY . ..ottt e 4
2.3 Configurationt 11
2.4 Use of some signals ... 13
2.5 Examples 14
2.6 Agent’s Assuan Protocol 14
2.6.1 Decrypting a session key i 14
2.6.2 Signinga Hash....... 15
2.6.3 Generatinga Key ... 16
2.6.4 Importing a Secret Key. ..., 17
2.6.5 Export a Secret Key ... 17
2.6.6 Importing a Root Certificate 17
2.6.7 Ask for a passphrase ...t 18
2.6.8 Remove a cached passphrase............... ..., 19
2.6.9 Set a passphrase for a keygrip............ ... L 19
2.6.10 Ask for confirmation i 19
2.6.11 Check whether a key is available...................... ... 20
2.6.12 Register a smartcard o i 20
2.6.13 Change a Passphrase.............c.oiiiiiiiiiiiii. 20
2.6.14 Change the standard display 20
2.6.15 Get the Event Counters..............coooiiiiiiii .. 20
2.6.16 Return information about the process................... 21
2.6.17 Set options for the session.....................cooiii... 21

3 Invoking DIRMNGR.......................... 23
3.1 Commands.t e 23
3.2 Option SUMMATY ...ttt e 24
3.3 Configuration......... .o i 30
34 Useofsignals..... ..o 31
3.5 Examples 31
3.6 Dirmngr’s Assuan Protocol..........l 31
3.6.1 Return the certificate(s) found..................... 31
3.6.2 Validate a certificate using a CRL or OCSP 32
3.6.3 Validate a certificate using a CRL 33
3.6.4 Validate a certificate using OCSP.......... 33
3.6.5 Put a certificate into the internal cache................... 34

3.6.6 Validate a certificate for debugging 34

iii

iv Using the GNU Privacy Guard

4 Invoking GPG............... 35
4.1 CommandsS.t 35
4.1.1 Commands not specific to the function 35
4.1.2 Commands to select the type of operation................ 35
4.1.3 How to manage your keys ..., 42
4.2 Option SUMMATLY < ..ottt 50
4.2.1 How to change the configuration.......................... 50
4.2.2 Key related options ... 64
4.2.3 Input and Outpubt....... ..ot 66
4.2.4 OpenPGP protocol specific options....................... 71
4.2.5 Compliance optionsooeiiiiiiieiiiienn.. 73
4.2.6 Doing things one usually doesn’t want todo.............. 74
4.2.7 Deprecated options. ... 84
4.3 Configuration files....... ... 85
4.4 EXAMPIES . .o 87
4.5 Unattended Usage ... 90
4.5.1 Programmatic use of GnuPG.......... 91
4.5.2 Ephemeral home directories 91
4.5.3 The quick key manipulation interface..................... 91
4.5.4 Unattended key generation................... 91

5 Invoking GPGSM 97
5.1 Commands.t e 97
5.1.1 Commands not specific to the function 97
5.1.2 Commands to select the type of operation................ 97
5.1.3 How to manage the certificates and keys.................. 98
5.2 Option SUMMATYottt i 100
5.2.1 How to change the configuration......................... 100
5.2.2 Certificate related options............ ... L. 101
5.2.3 Input and OQutput..........cooiiiiiiiiii i 103
5.2.4 How to change how the CMS is created.................. 104
5.2.5 Doing things one usually do not want todo.............. 104
5.3 Configuration files 106
5.4 BEXamples.o 108
5.5 Unattended Usage ... 108
5.5.1 Automated signature checking............. 108
5.5.2 CSR and certificate creation....................., 109
5.6 The Protocol the Server Mode Uses 111
5.6.1 Encrypting a Message........ .o, 111
5.6.2 Decrypting a meSSagevvvtreeenn i, 112
5.6.3 Signing a Message.couuiiiiiiiiiiiiii i 112
5.6.4 Verifying a Messageccoeiiiiiiiiiiii.. 113
5.6.5 Generating a Key ... i 113
5.6.6 List available keys......... .o i 113
5.6.7 Export certificates 114
5.6.8 Import certificates ... 114
5.6.9 Delete certificates...........ooiiiiii i 115

5.6.10 Retrieve an audit log.......... ... o il 115

5.6.11 Return information about the process.................. 115

5.6.12 Session OpPtionS.vueet et 115

6 Invoking the SCDAEMON.................. 119
6.1 Commandsottt 119
6.2 Option SUMMATYottt e 119
6.3 Description of card applications 123
6.3.1 The OpenPGP card application “openpgp” 123
6.3.2 The Telesec NetKey card “nks” 123
6.3.3 The DINSIG card application “dinsig”................... 123
6.3.4 The PKCS#15 card application “pl5”................... 123
6.3.5 The Geldkarte card application “geldkarte” 123
6.3.6 The SmartCard-HSM card application “sc-hsm” 123
6.3.7 The Undefined card application “undefined” 123
6.4 Configuration files 124
6.5 Examples. ... 124
6.6 Scdaemon’s Assuan Protocol.......... L 124
6.6.1 Return the serial number................................ 124
6.6.2 Read all useful information from the card................ 125
6.6.3 Return a certificate 125
6.6.4 Returnapublickey......... ... o i 125
6.6.5 Signing data with a Smartcard 125
6.6.6 Decrypting data with a Smartcard....................... 125
6.6.7 Read an attribute’s value.................. o 126
6.6.8 Update an attribute’s value 126
6.6.9 Writeakeytoacard............ ... i 126
6.6.10 Generate a new key on-card................. ... 126
6.6.11 Return random bytes generated on-card................ 126
6.6.12 Change PINso 126
6.6.13 Perform a VERIFY operation.......................... 126
6.6.14 Perform a RESTART operation 127
6.6.15 Send a verbatim APDU to thecard 127

7 How to SpecifyaUser Id.................... 129

8 Trust Values....... 133

vi Using the GNU Privacy Guard

9 Helper Tools................. 135
9.1 Read logs from a socket.............. ... i 135
9.2 Verify OpenPGP signatures................ooiiiiiiii.. 136

9.2.1 Examples.......cooiiiiiiiii 137
9.2.2 Environment......... ... 137
0.2.3 FILES ... 138
9.3 Create .gnupg home directories.................cooiiiiiian. 138
9.4 Modify .gnupg home directories 138
9.4.1 Invoking gpgeonf....... .. . 138
9.4.2 Format conventions, 141
9.4.3 Listing components oo 143
9.4.4 Checking programs.oueeeiniieniieeennnnn.. 143
9.4.5 Listing options. ... 144
9.4.6 Changing optionsc.uuuiiiitii i 147
9.4.7 Listing global options il 148
9.4.8 Get and compare software versions....................... 149
9.4.9 Files used by gpgeonf 150
9.5 Run gpgconf for all users.............ccoiiiiiiiiiiii.. 150
9.6 Put a passphrase into the cache.............................. 150
9.6.1 List of all commands and options........................ 150
9.7 Communicate with a running agent 151
9.7.1 List of all options ... 151
9.7.2 Control commands ... 152
9.8 The Dirmngr Client Tool.......... i 156
9.9 Parse a mail message into an annotated format............... 157
9.10 Call a simple symmetric encryption tool..................... 157
9.10.1 List of all commands and options....................... 158
9.11 Encrypt or sign files into an archive......................... 159

10 Web Key Service.................cooiiii... 161
10.1 Send requests via WKS i 161
10.2 Provide the Web Key Service ..., 163

11 How to do certain things................... 167
11.1 Creating a TLS server certificate............. 167

12 Notes pertaining to certain OSes.......... 173
12.1 Microsoft Windows Notes 173

13 How to solve problems 175
13.1 Debugging Tools.o 175

13.1.1 Scrutinizing a keybox file......... L 175
13.2 Various hints on debugging i i 176
13.3 Commonly Seen Problems i 176
13.4 How the whole thing works internally 178

13.4.1 How the components work together 178

13.4.2 Relationship between GnuPG 1.4 and 2.x............... 178

vii

GNU General Public License 181
Preambleo e 181
TERMS AND CONDITIONS . ..o 182
How to Apply These Terms to Your New Programs................ 191

Contributors to GnuPG 193

Glossary ... 195

Option Index 197

Environment Variable and File Index 203

viii Using the GNU Privacy Guard

Chapter 1: A short installation guide 1

1 A short installation guide

Unfortunately the installation guide has not been finished in time. Instead of delaying the
release of GnuPG 2.0 even further, I decided to release without that guide. The chapter on
gpg-agent and gpgsm do include brief information on how to set up the whole thing. Please
watch the GnuPG website for updates of the documentation. In the meantime you may
search the GnuPG mailing list archives or ask on the gnupg-users mailing list for advise on
how to solve problems or how to get that whole thing up and running.

** Building the software

Building the software is described in the file ‘INSTALL’. Given that you are already
reading this documentation we can only give some extra hints.

To comply with the rules on GNU systems you should have build time configured gnupg
using;:
./configure --sysconfdir=/etc --localstatedir=/var

This is to make sure that system wide configuration files are searched in the directory
‘/etc’ and variable data below ‘/var’; the default would be to also install them below
‘/usr/local’ where the binaries get installed. If you selected to use the ‘--prefix=/’ you
obviously don’t need those option as they are the default then.

** Notes on setting a root CA key to trusted

X.509 is based on a hierarchical key infrastructure. At the root of the tree a trusted
anchor (root certificate) is required. There are usually no other means of verifying
whether this root certificate is trustworthy than looking it up in a list. GnuPG uses a file
(‘trustlist.txt’) to keep track of all root certificates it knows about. There are 3 ways
to get certificates into this list:

e Use the list which comes with GnuPG. However this list only contains a few root
certificates. Most installations will need more.

e Let gpgsm ask you whether you want to insert a new root certificate. This feature is
enabled by default; you may disable it using the option ‘no-allow-mark-trusted’ into
‘gpg-agent.conf’.

e Manually maintain the list of trusted root certificates. For a multi user installation

this can be done once for all users on a machine. Specific changes on a per-user base
are also possible.

Using the GNU Privacy Guard

Chapter 2: Invoking GPG-AGENT 3

2 Invoking GPG-AGENT

gpg-agent is a daemon to manage secret (private) keys independently from any protocol.
It is used as a backend for gpg and gpgsm as well as for a couple of other utilities.
The agent is automatically started on demand by gpg, gpgsm, gpgconf, or gpg-connect-
agent. Thus there is no reason to start it manually. In case you want to use the included
Secure Shell Agent you may start the agent using:
gpg-connect-agent /bye

If you want to manually terminate the currently-running agent, you can safely do so with:
gpgconf --kill gpg-agent

You should always add the following lines to your .bashrc or whatever initialization file is

used for all shell invocations:

GPG_TTY=$(tty)
export GPG_TTY

It is important that this environment variable always reflects the output of the tty com-
mand. For W32 systems this option is not required.

Please make sure that a proper pinentry program has been installed under the default
filename (which is system dependent) or use the option ‘pinentry-program’ to specify the
full name of that program. It is often useful to install a symbolic link from the actual used
pinentry (e.g. ‘/usr/bin/pinentry-gtk’) to the expected one (e.g. ‘/usr/bin/pinentry’).
See [Option Index], page 197, for an index to GPG-AGENT’s commands and options.

2.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

--version
Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help

-h Print a usage message summarizing the most useful command-line options.

Note that you cannot abbreviate this command.

—--dump-options
Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

—--server Run in server mode and wait for commands on the stdin. The default mode
is to create a socket and listen for commands there.

--daemon [command line]
Start the gpg-agent as a daemon; that is, detach it from the console and run it
in the background.

As an alternative you may create a new process as a child of gpg-agent: gpg-
agent --daemon /bin/sh. This way you get a new shell with the environment
setup properly; after you exit from this shell, gpg-agent terminates within a few
seconds.

Using the GNU Privacy Guard

—-—-supervised

Run in the foreground, sending logs by default to stderr, and listening on pro-
vided file descriptors, which must already be bound to listening sockets. This
command is useful when running under systemd or other similar process super-
vision schemes. This option is not supported on Windows.

In —supervised mode, different file descriptors can be provided for use as dif-
ferent socket types (e.g. ssh, extra) as long as they are identified in the envi-
ronment variable LISTEN_FDNAMES (see sd_listen_fds(3) on some Linux distri-
butions for more information on this convention).

2.2 Option Summary

Options may either be used on the command line or, after stripping off the two leading
dashes, in the configuration file.

--options file

Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘gpg-agent.conf’ and expected
in the ‘.gnupg’ directory directly below the home directory of the user. This
option is ignored if used in an options file.

—-homedir dir

-V

—--verbose

--quiet

—--batch

Set the name of the home directory to dir. If this option is not used, the
home directory defaults to ‘*/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on Windows systems) by means of the
Registry entry HKCU\Software\ GNU\ GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application.
In this case only this command line option is considered, all other ways to set
a home directory are ignored.

To install GnuPG as a portable application under Windows, create an empty
file named ‘gpgconf.ctl’ in the same directory as the tool ‘gpgconf.exe’.
The root of the installation is then that directory; or, if ‘gpgconf.exe’ has
been installed directly below a directory named ‘bin’, its parent directory. You
also need to make sure that the following directories exist and are writable:
‘RO0T/home’ for the GnuPG home and ‘RO0T/var/cache/gnupg’ for internal
cache files.

Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpg-agent, such as ‘-vv’.

Try to be as quiet as possible.

Don’t invoke a pinentry or do any other thing requiring human interaction.

Chapter 2: Invoking GPG-AGENT 5

--faked-system-time epoch
This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value
or a keyword:

none

basic

advanced

expert

guru

No debugging at all. A value of less than 1 may be used instead of
the keyword.

Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

--debug flags

This option is only useful for debugging and the behavior may change at any
time without notice. FLAGS are bit encoded and may be given in usual C-
Syntax. The currently defined bits are:

0 (1)
1(2)

2 (4)

5 (32)
6 (64)
7 (128)
9 (512)

X.509 or OpenPGP protocol related data
values of big number integers

low level crypto operations

memory allocation

caching

show memory statistics

write hashed data to files named dbgmd-000%

10 (1024) trace Assuan protocol

12 (4096) bypass all certificate validation

--debug-all

Same as --debug=0xffffffff

--debug-wait n

When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

Using the GNU Privacy Guard

--debug-quick-random

This option inhibits the use of the very secure random quality level (Libgcrypts
GCRY_VERY_STRONG_RANDOM) and degrades all request down to standard random
quality. It is only used for testing and should not be used for any production
quality keys. This option is only effective when given on the command line.

On GNU/Linux, another way to quickly generate insecure keys is to use rngd to
fill the kernel’s entropy pool with lower quality random data. rngd is typically
provided by the rng-tools package. It can be run as follows: ‘sudo rngd -f
-r /dev/urandom’.

--debug-pinentry

This option enables extra debug information pertaining to the Pinentry. As of
now it is only useful when used along with --debug 1024.

—--no-detach

—--csh

--grab
--no-grab

Don’t detach the process from the console. This is mainly useful for debugging.

Format the info output in daemon mode for use with the standard Bourne shell
or the C-shell respectively. The default is to guess it based on the environment
variable SHELL which is correct in almost all cases.

Tell the pinentry to grab the keyboard and mouse. This option should be
used on X-Servers to avoid X-sniffing attacks. Any use of the option ‘--grab’
overrides an used option ‘--no-grab’. The default is ‘-—no-grab’.

--log-file file

Append all logging output to file. This is very helpful in seeing what the
agent actually does. Use ‘socket://’ to log to socket. If neither a log file
nor a log file descriptor has been set on a Windows platform, the Registry
entry HKCU\Software\GNU\GnuPG:DefaultLogFile, if set, is used to specify
the logging output.

—--no-allow-mark-trusted

Do not allow clients to mark keys as trusted, i.e. put them into the
‘trustlist.txt’ file. This makes it harder for users to inadvertently accept
Root-CA keys.

--allow-preset-passphrase

This option allows the use of gpg-preset-passphrase to seed the internal
cache of gpg-agent with passphrases.

--no-allow-loopback-pinentry
--allow-loopback-pinentry

Disallow or allow clients to use the loopback pinentry features; see the option
‘pinentry-mode’ for details. Allow is the default.

The ‘--force’ option of the Assuan command DELETE_KEY is also controlled
by this option: The option is ignored if a loopback pinentry is disallowed.

Chapter 2: Invoking GPG-AGENT 7

-—no-allow-external-cache
Tell Pinentry not to enable features which use an external cache for passphrases.

Some desktop environments prefer to unlock all credentials with one master
password and may have installed a Pinentry which employs an additional ex-
ternal cache to implement such a policy. By using this option the Pinentry is
advised not to make use of such a cache and instead always ask the user for the
requested passphrase.

--allow-emacs-pinentry
Tell Pinentry to allow features to divert the passphrase entry to a running
Emacs instance. How this is exactly handled depends on the version of the
used Pinentry.

--ignore-cache-for-signing
This option will let gpg-agent bypass the passphrase cache for all signing op-
eration. Note that there is also a per-session option to control this behavior
but this command line option takes precedence.

-—default-cache-ttl n
Set the time a cache entry is valid to n seconds. The default is 600 seconds.
Each time a cache entry is accessed, the entry’s timer is reset. To set an entry’s
maximum lifetime, use max-cache-ttl. Note that a cached passphrase may not
be evicted immediately from memory if no client requests a cache operation.
This is due to an internal housekeeping function which is only run every few
seconds.

-—default-cache-ttl-ssh n
Set the time a cache entry used for SSH keys is valid to n seconds. The default
is 1800 seconds. Each time a cache entry is accessed, the entry’s timer is reset.
To set an entry’s maximum lifetime, use max-cache-ttl-ssh.

--max-cache-ttl n
Set the maximum time a cache entry is valid to n seconds. After this time a
cache entry will be expired even if it has been accessed recently or has been set
using gpg-preset-passphrase. The default is 2 hours (7200 seconds).

--max-cache-ttl-ssh n
Set the maximum time a cache entry used for SSH keys is valid to n seconds.
After this time a cache entry will be expired even if it has been accessed recently
or has been set using gpg-preset-passphrase. The default is 2 hours (7200
seconds).

--enforce-passphrase-constraints
Enforce the passphrase constraints by not allowing the user to bypass them
using the “Take it anyway” button.

--min-passphrase-len n
Set the minimal length of a passphrase. When entering a new passphrase shorter
than this value a warning will be displayed. Defaults to 8.

8 Using the GNU Privacy Guard

--min-passphrase-nonalpha n
Set the minimal number of digits or special characters required in a passphrase.
When entering a new passphrase with less than this number of digits or special
characters a warning will be displayed. Defaults to 1.

—--check-passphrase-pattern file
Check the passphrase against the pattern given in file. When entering a new
passphrase matching one of these pattern a warning will be displayed. file
should be an absolute filename. The default is not to use any pattern file.

Security note: It is known that checking a passphrase against a list of pattern
or even against a complete dictionary is not very effective to enforce good
passphrases. Users will soon figure up ways to bypass such a policy. A better
policy is to educate users on good security behavior and optionally to run a
passphrase cracker regularly on all users passphrases to catch the very simple
ones.

--max-passphrase-days n
Ask the user to change the passphrase if n days have passed since the last
change. With ‘--enforce-passphrase-constraints’ set the user may not
bypass this check.

--enable-passphrase-history
This option does nothing yet.

--pinentry-invisible-char char
This option asks the Pinentry to use char for displaying hidden characters. char
must be one character UTF-8 string. A Pinentry may or may not honor this
request.

--pinentry-timeout n
This option asks the Pinentry to timeout after n seconds with no user input.
The default value of 0 does not ask the pinentry to timeout, however a Pinentry
may use its own default timeout value in this case. A Pinentry may or may not
honor this request.

—--pinentry-program filename
Use program filename as the PIN entry. The default is installation dependent.
With the default configuration the name of the default pinentry is ‘pinentry’;
if that file does not exist but a ‘pinentry-basic’ exist the latter is used.

On a Windows platform the default is to use the first existing program from

this list: ‘bin\pinentry.exe’, ‘. .\Gpgdwin\bin\pinentry.exe’,
‘. .\Gpg4win\pinentry.exe’, ‘. .\GNU\GnuPG\pinentry.exe’,
‘. .\GNU\bin\pinentry.exe’, ‘bin\pinentry-basic.exe’ where the

file names are relative to the GnuPG installation directory.

--pinentry-touch-file filename
By default the filename of the socket gpg-agent is listening for requests is passed
to Pinentry, so that it can touch that file before exiting (it does this only in
curses mode). This option changes the file passed to Pinentry to filename. The
special name /dev/null may be used to completely disable this feature. Note

Chapter 2: Invoking GPG-AGENT 9

that Pinentry will not create that file, it will only change the modification and
access time.

--scdaemon-program filename
Use program filename as the Smartcard daemon. The default is installation
dependent and can be shown with the gpgconf command.

--disable-scdaemon
Do not make use of the scdaemon tool. This option has the effect of disabling
the ability to do smartcard operations. Note, that enabling this option at
runtime does not kill an already forked scdaemon.

--disable-check-own-socket
gpg-agent employs a periodic self-test to detect a stolen socket. This usually
means a second instance of gpg-agent has taken over the socket and gpg-agent
will then terminate itself. This option may be used to disable this self-test for
debugging purposes.

--use-standard-socket

--no-use-standard-socket

--use-standard-socket-p
Since GnuPG 2.1 the standard socket is always used. These options have no
more effect. The command gpg-agent --use-standard-socket-p will thus
always return success.

--display string
--ttyname string
-—ttytype string
--lc-ctype string
--lc-messages string
—--xauthority string
These options are used with the server mode to pass localization information.

--keep-tty

--keep-display
Ignore requests to change the current tty or X window system’s DISPLAY vari-
able respectively. This is useful to lock the pinentry to pop up at the tty or
display you started the agent.

--listen-backlog n
Set the size of the queue for pending connections. The default is 64.

-—extra-socket name
The extra socket is created by default, you may use this option to change
the name of the socket. To disable the creation of the socket use “none” or
“/dev/null” for name.

Also listen on native gpg-agent connections on the given socket. The intended
use for this extra socket is to setup a Unix domain socket forwarding from a
remote machine to this socket on the local machine. A gpg running on the
remote machine may then connect to the local gpg-agent and use its private
keys. This enables decrypting or signing data on a remote machine without
exposing the private keys to the remote machine.

10 Using the GNU Privacy Guard

--enable-extended-key-format

--disable-extended-key-format
Since version 2.2.22 keys are created in the extended private key format by
default. Changing the passphrase of a key will also convert the key to that new
format. This key format is supported since GnuPG version 2.1.12 and thus
there should be no need to disable it. Anyway, the disable option still allows to
revert to the old behavior for new keys; be aware that keys are never migrated
back to the old format. If the enable option has been used the disable option
won’t have an effect. The advantage of the extended private key format is that
it is text based and can carry additional meta data. In extended key format
the OCB mode is used for key protection.

--enable-ssh-support

--enable-putty-support
The OpenSSH Agent protocol is always enabled, but gpg-agent will only set
the SSH_AUTH_SOCK variable if this flag is given.

In this mode of operation, the agent does not only implement the gpg-agent
protocol, but also the agent protocol used by OpenSSH (through a separate
socket). Consequently, it should be possible to use the gpg-agent as a drop-in
replacement for the well known ssh-agent.

SSH Keys, which are to be used through the agent, need to be added to the
gpg-agent initially through the ssh-add utility. When a key is added, ssh-add
will ask for the password of the provided key file and send the unprotected key
material to the agent; this causes the gpg-agent to ask for a passphrase, which
is to be used for encrypting the newly received key and storing it in a gpg-agent
specific directory.

Once a key has been added to the gpg-agent this way, the gpg-agent will be
ready to use the key.

Note: in case the gpg-agent receives a signature request, the user might need
to be prompted for a passphrase, which is necessary for decrypting the stored
key. Since the ssh-agent protocol does not contain a mechanism for telling the
agent on which display/terminal it is running, gpg-agent’s ssh-support will use
the TTY or X display where gpg-agent has been started. To switch this display
to the current one, the following command may be used:

gpg-connect-agent updatestartuptty /bye

Although all GnuPG components try to start the gpg-agent as needed, this is
not possible for the ssh support because ssh does not know about it. Thus if
no GnuPG tool which accesses the agent has been run, there is no guarantee
that ssh is able to use gpg-agent for authentication. To fix this you may start
gpg-agent if needed using this simple command:

gpg-connect-agent /bye
Adding the ‘--verbose’ shows the progress of starting the agent.
The ‘--enable-putty-support’ is only available under Windows and allows
the use of gpg-agent with the ssh implementation putty. This is similar to the
regular ssh-agent support but makes use of Windows message queue as required
by putty.

Chapter 2: Invoking GPG-AGENT 11

--ssh-fingerprint-digest
Select the digest algorithm used to compute ssh fingerprints that are commu-
nicated to the user, e.g. in pinentry dialogs. OpenSSH has transitioned from
using MD5 to the more secure SHA256.

--auto-expand-secmem n
Allow Libgcrypt to expand its secure memory area as required. The optional
value n is a non-negative integer with a suggested size in bytes of each addi-
tionally allocated secure memory area. The value is rounded up to the next 32
KiB; usual C style prefixes are allowed. For an heavy loaded gpg-agent with
many concurrent connection this option avoids sign or decrypt errors due to
out of secure memory error returns.

--s2k-calibration milliseconds
Change the default calibration time to milliseconds. The given value is capped
at 60 seconds; a value of 0 resets to the compiled-in default. This option is
re-read on a SIGHUP (or gpgconf --reload gpg-agent) and the S2K count is
then re-calibrated.

--s2k-count n
Specify the iteration count used to protect the passphrase. This option can
be used to override the auto-calibration done by default. The auto-calibration
computes a count which requires by default 100ms to mangle a given passphrase.
See also ‘--s2k-calibration’.

To view the actually used iteration count and the milliseconds required for an
S2K operation use:

gpg-connect-agent ’GETINFO s2k_count’ /bye
gpg-connect-agent ’GETINFO s2k_time’ /bye

To view the auto-calibrated count use:

gpg-connect-agent ’GETINFO s2k_count_cal’ /bye

2.3 Configuration

There are a few configuration files needed for the operation of the agent. By default they
may all be found in the current home directory (see [option ~homedir|, page 4).

‘gpg-agent . conf’
This is the standard configuration file read by gpg-agent on startup. It may
contain any valid long option; the leading two dashes may not be entered and the
option may not be abbreviated. This file is also read after a SIGHUP however only
a few options will actually have an effect. This default name may be changed

on the command line (see [option —options|, page 4). You should backup this
file.

‘trustlist.txt’
This is the list of trusted keys. You should backup this file.
Comment lines, indicated by a leading hash mark, as well as empty lines are

ignored. To mark a key as trusted you need to enter its fingerprint followed by
a space and a capital letter S. Colons may optionally be used to separate the

12

Using the GNU Privacy Guard

bytes of a fingerprint; this enables cutting and pasting the fingerprint from a
key listing output. If the line is prefixed with a ! the key is explicitly marked
as not trusted.
Here is an example where two keys are marked as ultimately trusted and one
as not trusted:

-
CN=Wurzel ZS 3,0=Intevation GmbH,C=DE
A6935DD34EF3087973C706FC311AA2CCF733765B S

CN=PCA-1-Verwaltung-02/0=PKI-1-Verwaltung/C=DE
DC:BD:69:25:48:BD:BB:7E:31:6E:BB:80:D3:00:80:35:D4:F8:A6:CD S

CN=Root-CA/0=Schlapphuete/L=Pullach/C=DE
114:56:98:D3:FE:9C:CA:5A:31:6E:BC:81:D3:11:4E:00:90:A3:44:C2 S

.

Before entering a key into this file, you need to ensure its authenticity. How to
do this depends on your organisation; your administrator might have already
entered those keys which are deemed trustworthy enough into this file. Places
where to look for the fingerprint of a root certificate are letters received from
the CA or the website of the CA (after making 100% sure that this is indeed the
website of that CA). You may want to consider disallowing interactive updates
of this file by using the [option —no-allow-mark-trusted|, page 6. It might even
be advisable to change the permissions to read-only so that this file can’t be
changed inadvertently.

As a special feature a line include-default will include a global list of trusted
certificates (e.g. ‘/etc/gnupg/trustlist.txt’). This global list is also used if
the local list is not available.

It is possible to add further flags after the S for use by the caller:

relax Relax checking of some root certificate requirements. As of now
this flag allows the use of root certificates with a missing basic-
Constraints attribute (despite that it is a MUST for CA certificates)
and disables CRL checking for the root certificate.

cm If validation of a certificate finally issued by a CA with this flag set
fails, try again using the chain validation model.

‘sshcontrol’

This file is used when support for the secure shell agent protocol has been
enabled (see [option —enable-ssh-support|, page 10). Only keys present in this
file are used in the SSH protocol. You should backup this file.

The ssh-add tool may be used to add new entries to this file; you may also add
them manually. Comment lines, indicated by a leading hash mark, as well as
empty lines are ignored. An entry starts with optional whitespace, followed by
the keygrip of the key given as 40 hex digits, optionally followed by the caching
TTL in seconds and another optional field for arbitrary flags. A non-zero TTL
overrides the global default as set by ‘--default-cache-ttl-ssh’.

The only flag support is confirm. If this flag is found for a key, each use of
the key will pop up a pinentry to confirm the use of that key. The flag is

Chapter 2: Invoking GPG-AGENT 13

automatically set if a new key was loaded into gpg-agent using the option ‘-c¢’
of the ssh-add command.

The keygrip may be prefixed with a ! to disable an entry.

The following example lists exactly one key. Note that keys available through
a OpenPGP smartcard in the active smartcard reader are implicitly added to
this list; i.e. there is no need to list them.

Key added on: 2011-07-20 20:38:46
Fingerprint: b5e:8d:c4:ad:e7:af:6e:27:8a:d6:13:e4:79:ad:0b:81
34B62F25E277CF13D3C6BCEBFD3F85D08F0A864B 0 confirm

‘private-keys-vi.d/’

This is the directory where gpg-agent stores the private keys. Each key is stored
in a file with the name made up of the keygrip and the suffix ‘key’. You should
backup all files in this directory and take great care to keep this backup closed
away.

Note that on larger installations, it is useful to put predefined files into the directory
‘/etc/skel/.gnupg’ so that newly created users start up with a working configuration.
For existing users the a small helper script is provided to create these files (see Section 9.3
[addgnupghome], page 138).

2.4 Use of some signals

A running gpg-agent may be controlled by signals, i.e. using the kill command to send
a signal to the process.

Here is a list of supported signals:

SIGHUP

SIGTERM

SIGINT

SIGUSR1

SIGUSR2

This signal flushes all cached passphrases and if the program has been started
with a configuration file, the configuration file is read again. Only certain
options are honored: quiet, verbose, debug, debug-all, debug-level,
debug-pinentry, no-grab, pinentry-program, pinentry-invisible-char,

default-cache-ttl, max-cache-ttl, ignore-cache-for-signing,
s2k-count, no-allow-external-cache, allow-emacs—-pinentry, no-allow-
mark-trusted, disable-scdaemon, and disable-check-own-socket.

scdaemon-progranm is also supported but due to the current implementation,
which calls the scdaemon only once, it is not of much use unless you manually
kill the scdaemon.

Shuts down the process but waits until all current requests are fulfilled. If the
process has received 3 of these signals and requests are still pending, a shutdown
is forced.

Shuts down the process immediately.
Dump internal information to the log file.

This signal is used for internal purposes.

14 Using the GNU Privacy Guard

2.5 Examples

It is important to set the environment variable GPG_TTY in your login shell, for example in
the ‘”/.bashrc’ init script:

[export GPG_TTY=$(tty) J

If you enabled the Ssh Agent Support, you also need to tell ssh about it by adding this
to your init script:

unset SSH_AGENT_PID
if ["${gnupg_SSH_AUTH_SOCK_by:-0}" -ne $$ 1; then

export SSH_AUTH_SOCK="$(gpgconf --list-dirs agent-ssh-socket)"
fi

2.6 Agent’s Assuan Protocol

Note: this section does only document the protocol, which is used by GnuPG components;
it does not deal with the ssh-agent protocol. To see the full specification of each command,
use
gpg-connect-agent ’help COMMAND’ /bye

or just ’help’ to list all available commands.
The gpg-agent daemon is started on demand by the GnuPG components.

To identify a key we use a thing called keygrip which is the SHA-1 hash of an canonical
encoded S-Expression of the public key as used in Libgcrypt. For the purpose of this
interface the keygrip is given as a hex string. The advantage of using this and not the hash

of a certificate is that it will be possible to use the same keypair for different protocols,
thereby saving space on the token used to keep the secret keys.

The gpg-agent may send status messages during a command or when returning from
a command to inform a client about the progress or result of an operation. For example,
the INQUIRE_MAXLEN status message may be sent during a server inquire to inform the
client of the maximum usable length of the inquired data (which should not be exceeded).

2.6.1 Decrypting a session key
The client asks the server to decrypt a session key. The encrypted session key should have
all information needed to select the appropriate secret key or to delegate it to a smartcard.
SETKEY <keyGrip>
Tell the server about the key to be used for decryption. If this is not used, gpg-agent
may try to figure out the key by trying to decrypt the message with each key available.
PKDECRYPT
The agent checks whether this command is allowed and then does an INQUIRY to get
the ciphertext the client should then send the cipher text.

S: INQUIRE CIPHERTEXT
C: D (xxxxxX

Chapter 2: Invoking GPG-AGENT 15

C: D xxxx)
C: END

Please note that the server may send status info lines while reading the data lines from
the client. The data send is a SPKI like S-Exp with this structure:

(enc-val
(<algo>
(<param_namel> <mpi>)

(<param_namen> <mpi>)))

Where algo is a string with the name of the algorithm; see the libgcrypt documentation
for a list of valid algorithms. The number and names of the parameters depend on the
algorithm. The agent does return an error if there is an inconsistency.

If the decryption was successful the decrypted data is returned by means of "D" lines.
Here is an example session:

()
PKDECRYPT

INQUIRE CIPHERTEXT

D (enc-val elg (a 349324324)

D (b 3F444677CA)))

END

session key follows

S PADDING O

D (value 1234567890ABCDEFO)

0K decryption successful

- J

nNnonmaoaan

The PADDING status line is only send if gpg-agent can tell what kind of padding is
used. As of now only the value 0 is used to indicate that the padding has been removed.

2.6.2 Signing a Hash

The client asks the agent to sign a given hash value. A default key will be chosen if no key
has been set. To set a key a client first uses:

SIGKEY <keyGrip>

This can be used multiple times to create multiple signature, the list of keys is reset with
the next PKSIGN command or a RESET. The server tests whether the key is a valid key
to sign something and responds with okay.

SETHASH --hash=<name>|<algo> <hexstring>

The client can use this command to tell the server about the data <hexstring> (which
usually is a hash) to be signed. <algo> is the decimal encoded hash algorithm number as
used by Libgcrypt. Either <algo> or -hash=<name> must be given. Valid names for <name>
are:

shal The SHA-1 hash algorithm

sha256 The SHA-256 hash algorithm

rmd160 The RIPE-MD160 hash algorithm

md5 The old and broken MD5 hash algorithm

16 Using the GNU Privacy Guard

tls-md5shal
A combined hash algorithm as used by the TLS protocol.
The actual signing is done using
PKSIGN <options>

Options are not yet defined, but may later be used to choose among different algorithms.
The agent does then some checks, asks for the passphrase and as a result the server returns
the signature as an SPKI like S-expression in "D" lines:

(sig-val
(<algo>
(<param_namel> <mpi>)

(<param_namen> <mpi>)))
The operation is affected by the option
OPTION use-cache-for-signing=0|1

The default of 1 uses the cache. Setting this option to 0 will lead gpg-agent to ignore
the passphrase cache. Note, that there is also a global command line option for gpg-agent
to globally disable the caching.

Here is an example session:

SIGKEY <keyGrip>

0K key available

SIGKEY <keyGrip>

0K key available

PKSIGN

I did ask the user whether he really wants to sign
I did ask the user for the passphrase
INQUIRE HASHVAL

D ABCDEF012345678901234

END

signature follows

D (sig-val rsa (s 45435453654612121212))
0K

nNMnnoaoaannomnaanQwnn Q

=

2.6.3 Generating a Key

This is used to create a new keypair and store the secret key inside the active PSE — which
is in most cases a Soft-PSE. A not-yet-defined option allows choosing the storage location.
To get the secret key out of the PSE, a special export tool has to be used.

GENKEY [--no-protection] [--preset] [<cache_nonce>]

Invokes the key generation process and the server will then inquire on the generation
parameters, like:

S: INQUIRE KEYPARM
C: D (genkey (rsa (nbits 1024)))
C: END

The format of the key parameters which depends on the algorithm is of the form:

Chapter 2: Invoking GPG-AGENT 17

(genkey
(algo
(parameter_name_1)
(parameter_name_n)))

If everything succeeds, the server returns the *public key* in a SPKI like S-Expression
like this:

(public-key
(rsa
(n <mpi>)
(e <mpi>)))
Here is an example session:

-
GENKEY

INQUIRE KEYPARM

D (genkey (rsa (mbits 1024)))

END

D (public-key

D (rsa (n 326487324683264) (e 10001)))
0K key created

nmnnaoawnmA

The ‘--no-protection’ option may be used to prevent prompting for a passphrase to
protect the secret key while leaving the secret key unprotected. The ‘--preset’ option may
be used to add the passphrase to the cache using the default cache parameters.

The ‘--ing-passwd’ option may be used to create the key with a supplied passphrase.
When used the agent does an inquiry with the keyword NEWPASSWD to retrieve that
passphrase. This option takes precedence over ‘--no-protection’; however if the client
sends a empty (zero-length) passphrase, this is identical to ‘--no-protection’.

2.6.4 Importing a Secret Key
This operation is not yet supported by GpgAgent. Specialized tools are to be used for this.

There is no actual need because we can expect that secret keys created by a 3rd party
are stored on a smartcard. If we have generated the key ourselves, we do not need to import
it.

2.6.5 Export a Secret Key

Not implemented.

Should be done by an extra tool.

2.6.6 Importing a Root Certificate

Actually we do not import a Root Cert but provide a way to validate any piece of data by
storing its Hash along with a description and an identifier in the PSE. Here is the interface
description:
ISTRUSTED <fingerprint>
Check whether the OpenPGP primary key or the X.509 certificate with the given finger-
print is an ultimately trusted key or a trusted Root CA certificate. The fingerprint should

18 Using the GNU Privacy Guard

be given as a hexstring (without any blanks or colons or whatever in between) and may be
left padded with 00 in case of an MD5 fingerprint. GPGAgent will answer with:
0K
The key is in the table of trusted keys.
ERR 304 (Not Trusted)
The key is not in this table.
Gpg needs the entire list of trusted keys to maintain the web of trust; the following
command is therefore quite helpful:
LISTTRUSTED
GpgAgent returns a list of trusted keys line by line:
S: D 000000001234454556565656677878AF2F1ECCFF P
S: D 340387563485634856435645634856438576457A P
S: D FEDC6532453745367FD83474357495743757435D S
S: 0K
The first item on a line is the hexified fingerprint where MD5 fingerprints are 00 padded
to the left and the second item is a flag to indicate the type of key (so that gpg is able to
only take care of PGP keys). P = OpenPGP, S = S/MIME. A client should ignore the rest
of the line, so that we can extend the format in the future.
Finally a client should be able to mark a key as trusted:
MARKTRUSTED fingerprint "P"|"S"
The server will then pop up a window to ask the user whether she really trusts this key.
For this it will probably ask for a text to be displayed like this:

INQUIRE TRUSTDESC

D Do you trust the key with the fingerprint QFPRQ
D bla fasel blurb.

END

0K

Known sequences with the pattern @foo@ are replaced according to this table:

naaaawn

@FPR16@ Format the fingerprint according to gpg rules for a v3 keys.
@FPR20@ Format the fingerprint according to gpg rules for a v4 keys.
Q@FPRG@ Choose an appropriate format to format the fingerprint.

@@ Replaced by a single @.

2.6.7 Ask for a passphrase

This function is usually used to ask for a passphrase to be used for symmetric encryption, but
may also be used by programs which need special handling of passphrases. This command
uses a syntax which helps clients to use the agent with minimum effort.

GET_PASSPHRASE [--data] [--check] [--no-ask] [--repeat[=N]] \
[--qualitybar] cache_id \
lerror_message prompt description]

cache_id is expected to be a string used to identify a cached passphrase. Use a X to
bypass the cache. With no other arguments the agent returns a cached passphrase or an

Chapter 2: Invoking GPG-AGENT 19

error. By convention either the hexified fingerprint of the key shall be used for cache_id
or an arbitrary string prefixed with the name of the calling application and a colon: Like
gpg:somestring.

error_message is either a single X for no error message or a string to be shown as an
error message like (e.g. "invalid passphrase"). Blanks must be percent escaped or replaced
by +'.

prompt is either a single X for a default prompt or the text to be shown as the prompt.
Blanks must be percent escaped or replaced by +.

description is a text shown above the entry field. Blanks must be percent escaped or
replaced by +.

The agent either returns with an error or with a OK followed by the hex encoded
passphrase. Note that the length of the strings is implicitly limited by the maximum length
of a command. If the option ‘--data’ is used, the passphrase is not returned on the OK
line but by regular data lines; this is the preferred method.

If the option ‘--check’ is used, the standard passphrase constraints checks are applied.
A check is not done if the passphrase has been found in the cache.

If the option ‘--no-ask’ is used and the passphrase is not in the cache the user will not
be asked to enter a passphrase but the error code GPG_ERR_NO_DATA is returned.

If the option ‘--qualitybar’ is used and a minimum passphrase length has been con-
figured, a visual indication of the entered passphrase quality is shown.
CLEAR_PASSPHRASE cache_id

may be used to invalidate the cache entry for a passphrase. The function returns with
OK even when there is no cached passphrase.

2.6.8 Remove a cached passphrase
Use this command to remove a cached passphrase.
CLEAR_PASSPHRASE [--mode=normal] <cache_id>

The ‘--mode=normal’ option can be used to clear a cache_id that was set by gpg-agent.

2.6.9 Set a passphrase for a keygrip
This command adds a passphrase to the cache for the specified keygrip.
PRESET_PASSPHRASE [--inquire] <string_or_keygrip> <timeout> [<hexstring>]|]

The passphrase is a hexadecimal string when specified. When not specified, the
passphrase will be retrieved from the pinentry module unless the ‘--inquire’ option was
specified in which case the passphrase will be retrieved from the client.

The timeout parameter keeps the passphrase cached for the specified number of seconds.
A value of -1 means infinite while 0 means the default (currently only a timeout of -1 is
allowed, which means to never expire it).

2.6.10 Ask for confirmation

This command may be used to ask for a simple confirmation by presenting a text and 2
buttons: Okay and Cancel.

20 Using the GNU Privacy Guard

GET_CONFIRMATION description

descriptionis displayed along with a Okay and Cancel button. Blanks must be percent
escaped or replaced by +. A X may be used to display confirmation dialog with a default
text.

The agent either returns with an error or with a OK. Note, that the length of description
is implicitly limited by the maximum length of a command.

2.6.11 Check whether a key is available

This can be used to see whether a secret key is available. It does not return any information
on whether the key is somehow protected.

HAVEKEY keygrips

The agent answers either with OK or No_Secret_Key (208). The caller may want to
check for other error codes as well. More than one keygrip may be given. In this case the
command returns success if at least one of the keygrips corresponds to an available secret
key.

2.6.12 Register a smartcard
LEARN [--send]

This command is used to register a smartcard. With the ‘--send’ option given the
certificates are sent back.

2.6.13 Change a Passphrase

PASSWD [--cache-nonce=<c>] [--passwd-nonce=<s>] [--preset] keygrip

This command is used to interactively change the passphrase of the key identified by the
hex string keygrip. The ‘--preset’ option may be used to add the new passphrase to the
cache using the default cache parameters.

2.6.14 Change the standard display

UPDATESTARTUPTTY

Set the startup TTY and X-DISPLAY variables to the values of this session. This
command is useful to direct future pinentry invocations to another screen. It is only required
because there is no way in the ssh-agent protocol to convey this information.

2.6.15 Get the Event Counters
GETEVENTCOUNTER

This function return one status line with the current values of the event counters. The
event counters are useful to avoid polling by delaying a poll until something has changed.
The values are decimal numbers in the range 0 to UINT_MAX and wrapping around to 0.
The actual values should not be relied upon; they shall only be used to detect a change.

The currently defined counters are:
ANY Incremented with any change of any of the other counters.
KEY Incremented for added or removed private keys.

CARD Incremented for changes of the card readers stati.

Chapter 2: Invoking GPG-AGENT 21

2.6.16 Return information about the process
This is a multipurpose function to return a variety of information.
GETINFO what

The value of what specifies the kind of information returned:
version Return the version of the program.
pid Return the process id of the process.

socket_name
Return the name of the socket used to connect the agent.

ssh_socket_name
Return the name of the socket used for SSH connections. If SSH support has
not been enabled the error GPG_ERR_NO_DATA will be returned.

2.6.17 Set options for the session

Here is a list of session options which are not yet described with other commands. The
general syntax for an Assuan option is:
OPTION key=value

Supported keys are:

agent-awareness
This may be used to tell gpg-agent of which gpg-agent version the client is
aware of. gpg-agent uses this information to enable features which might break
older clients.

putenv Change the session’s environment to be used for the Pinentry. Valid values are:
name Delete envvar name
name= Set envvar name to the empty string

name=value
Set envvar name to the string value.

use-cache-for-signing
See Assuan command PKSIGN.
allow-pinentry-notify

This does not need any value. It is used to enable the PINENTRY_LAUNCHED
inquiry.

pinentry-mode
This option is used to change the operation mode of the pinentry. The following
values are defined:

ask This is the default mode which pops up a pinentry as needed.

cancel Instead of popping up a pinentry, return the error code GPG_ERR_
CANCELED.

error Instead of popping up a pinentry, return the error code GPG_ERR_

NO_PIN_ENTRY.

22

cache-ttl-

s2k-count

Using the GNU Privacy Guard

loopback Use a loopback pinentry. This fakes a pinentry by using inquiries
back to the caller to ask for a passphrase. This option may only be
set if the agent has been configured for that. To disable this feature
use [option —no-allow-loopback-pinentry|, page 6.

opt-preset

This option sets the cache TTL for new entries created by GENKEY and
PASSWD commands when using the ‘--preset’ option. It is not used a default
value is used.

Instead of using the standard S2K count (which is computed on the fly), the
given S2K count is used for new keys or when changing the passphrase of a key.
Values below 65536 are considered to be 0. This option is valid for the entire
session or until reset to 0. This option is useful if the key is later used on boxes
which are either much slower or faster than the actual box.

pretend-request-origin

This option switches the connection into a restricted mode which handles all
further commands in the same way as they would be handled when originating
from the extra or browser socket. Note that this option is not available in the
restricted mode. Valid values for this option are:

none
local This is a NOP and leaves the connection in the standard way.
remote Pretend to come from a remote origin in the same way as connec-

tions from the ‘—-—extra-socket’.

browser Pretend to come from a local web browser in the same way as
connections from the ‘--browser-socket’.

Chapter 3: Invoking DIRMNGR 23

3 Invoking DIRMNGR

Since version 2.1 of GnuPG, dirmngr takes care of accessing the OpenPGP keyservers. As
with previous versions it is also used as a server for managing and downloading certificate
revocation lists (CRLs) for X.509 certificates, downloading X.509 certificates, and providing
access to OCSP providers. Dirmngr is invoked internally by gpg, gpgsm, or via the gpg-
connect-agent tool.

See [Option Index|, page 197 for an index to DIRMNGR’s commands and options.

3.1 Commands

Commands are not distinguished from options except for the fact that only one command
is allowed.

--version
Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help, -h
Print a usage message summarizing the most useful command-line options.
Note that you cannot abbreviate this command.

—--dump-options
Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

--server Run in server mode and wait for commands on the stdin. The default mode is
to create a socket and listen for commands there. This is only used for testing.

--daemon Run in background daemon mode and listen for commands on a socket. This
is the way dirmngr is started on demand by the other GnuPG components. To
force starting dirmngr it is in general best to use gpgconf --launch dirmngr.

—--supervised
Run in the foreground, sending logs to stderr, and listening on file descriptor 3,
which must already be bound to a listening socket. This is useful when running
under systemd or other similar process supervision schemes. This option is not
supported on Windows.

--list-crls
List the contents of the CRL cache on stdout. This is probably only useful for
debugging purposes.

--load-crl file
This command requires a filename as additional argument, and it will make
Dirmngr try to import the CRL in file into it’s cache. Note, that this is
only possible if Dirmngr is able to retrieve the CA’s certificate directly by
its own means. In general it is better to use gpgsm’s -—call-dirmngr loadcrl
filename command so that gpgsm can help dirmngr.

--fetch-crl url
This command requires an URL as additional argument, and it will make dirm-
ngr try to retrieve and import the CRL from that url into it’s cache. This is

24 Using the GNU Privacy Guard

mainly useful for debugging purposes. The dirmngr-client provides the same
feature for a running dirmngr.

--shutdown
This commands shuts down an running instance of Dirmngr. This command
has currently no effect.

—-—flush This command removes all CRLs from Dirmngr’s cache. Client requests will
thus trigger reading of fresh CRLs.

3.2 Option Summary

Note that all long options with the exception of ‘~-options’ and ‘--homedir’ may also be
given in the configuration file after stripping off the two leading dashes.

--options file
Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘dirmngr.conf’ and expected in
the home directory.

--homedir dir
Set the name of the home directory to dir. This option is only effective when
used on the command line. The default is the directory named ‘. gnupg’ directly
below the home directory of the user unless the environment variable GNUPGHOME
has been set in which case its value will be used. Many kinds of data are stored
within this directory.

-v
--verbose
Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to DIRMNGR, such as ‘-vv’.
--log-file file
Append all logging output to file. This is very helpful in seeing what the agent
actually does. Use ‘socket://’ to log to socket.

--debug-level level
Select the debug level for investigating problems. level may be a numeric value
or by a keyword:

none No debugging at all. A value of less than 1 may be used instead of
the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used
instead of the keyword.

advanced More verbose debug messages. A value between 3 and 5 may be
used instead of the keyword.

expert Even more detailed messages. A value between 6 and 8 may be
used instead of the keyword.

guru All of the debug messages you can get. A value greater than 8 may
be used instead of the keyword. The creation of hash tracing files
is only enabled if the keyword is used.

Chapter 3: Invoking DIRMNGR 25

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releases of this program. They are however carefully
selected to best aid in debugging.

--debug flags
Set debugging flags. This option is only useful for debugging and its behavior
may change with a new release. All flags are or-ed and may be given in C
syntax (e.g. 0x0042) or as a comma separated list of flag names. To get a list
of all supported flags the single word "help" can be used.

--debug-all
Same as ——debug=0xffffffff

--tls-debug level
Enable debugging of the TLS layer at level. The details of the debug level
depend on the used TLS library and are not set in stone.

--debug-wait n
When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

--disable-check-own-socket
On some platforms dirmngr is able to detect the removal of its socket file and
shutdown itself. This option disable this self-test for debugging purposes.

--csh Format the info output in daemon mode for use with the standard Bourne shell
respective the C-shell. The default is to guess it based on the environment
variable SHELL which is in almost all cases sufficient.

--force Enabling this option forces loading of expired CRLs; this is only useful for
debugging.

--use-tor

--no-use-tor
The option ‘--—use-tor’ switches Dirmngr and thus GnuPG into “Tor mode” to
route all network access via Tor (an anonymity network). Certain other features
are disabled in this mode. The effect of ‘~—use-tor’ cannot be overridden by
any other command or even by reloading dirmngr. The use of ‘--no-use-tor’
disables the use of Tor. The default is to use Tor if it is available on startup or
after reloading dirmngr.

--standard-resolver
This option forces the use of the system’s standard DNS resolver code. This
is mainly used for debugging. Note that on Windows a standard resolver is
not used and all DNS access will return the error “Not Implemented” if this
option is used. Using this together with enabled Tor mode returns the error
“Not Enabled”.

--recursive-resolver
When possible use a recursive resolver instead of a stub resolver.

26 Using the GNU Privacy Guard

—--resolver—-timeout n
Set the timeout for the DNS resolver to N seconds. The default are 30 seconds.

—-—connect-timeout n

--connect-quick-timeout n
Set the timeout for HT'TP and generic TCP connection attempts to N seconds.
The value set with the quick variant is used when the —quick option has been
given to certain Assuan commands. The quick value is capped at the value of
the regular connect timeout. The default values are 15 and 2 seconds. Note
that the timeout values are for each connection attempt; the connection code
will attempt to connect all addresses listed for a server.

--listen-backlog n
Set the size of the queue for pending connections. The default is 64.

--allow-version-check
Allow Dirmngr to connect to https://versions.gnupg.org to get the list of
current software versions. If this option is enabled the list is retrieved in case
the local copy does not exist or is older than 5 to 7 days. See the option
‘-—query-swdb’ of the command gpgconf for more details. Note, that regard-
less of this option a version check can always be triggered using this command:

gpg-connect-agent --dirmngr ’loadswdb --force’ /bye

-—-keyserver name

Use name as your keyserver. This is the server that gpg communicates with to
receive keys, send keys, and search for keys. The format of the name is a URI:
‘scheme:[/ /]keyservername[:port]” The scheme is the type of keyserver: "hkp"
for the HTTP (or compatible) keyservers, "ldap" for the LDAP keyservers, or
"mailto" for the Graff email keyserver. Note that your particular installation
of GnuPG may have other keyserver types available as well. Keyserver schemes
are case-insensitive. After the keyserver name, optional keyserver configuration
options may be provided. These are the same as the ‘--keyserver-options’
of gpg, but apply only to this particular keyserver.

Most keyservers synchronize with each other, so there is generally no need to
send keys to more than one server. The keyserver hkp://keys.gnupg.net uses
round robin DNS to give a different keyserver each time you use it.

If exactly two keyservers are configured and only one is a Tor hidden service
(.onion), Dirmngr selects the keyserver to use depending on whether Tor is
locally running or not. The check for a running Tor is done for each new
connection.

If no keyserver is explicitly configured, dirmngr will use the built-in default of
hkps://hkps.pool.sks-keyservers.net.

Windows users with a keyserver running on their Active Directory should use
ldap:/// for name to access this directory.

For accessing anonymous LDAP keyservers name is in general just a
ldaps://1ldap.example.com. A BaseDN parameter should never be specified.
If authentication is required the value of name is for example:

Chapter 3: Invoking DIRMNGR 27

keyserver ldaps://ldap.example.com/?7?7bindname=uid=USERNAME]
%2Cou=GnuPG%20Users’2Cdc=example’%2Cdc=com, password=PASSWORD]]

Put this all on one line without any spaces and keep the '%2C’ as given. Replace
USERNAME, PASSWORD, and the ’dc’ parts according to the instructions re-
ceived from the LDAP administrator. Note that only simple authentication (i.e.
cleartext passwords) is supported and thus using ldaps is strongly suggested.

—--nameserver ipaddr
In “Tor mode” Dirmngr uses a public resolver via Tor to resolve DNS names.
If the default public resolver, which is 8.8.8.8, shall not be used a different
one can be given using this option. Note that a numerical IP address must be
given (IPv6 or IPv4) and that no error checking is done for ipaddr.

--disable-ipv4
--disable-ipv6
Disable the use of all IPv4 or IPv6 addresses.

--disable-1ldap
Entirely disables the use of LDAP.

--disable-http
Entirely disables the use of HTTP.

--ignore-http-dp
When looking for the location of a CRL, the to be tested certificate usually con-
tains so called CRL Distribution Point (DP) entries which are URLs describing
the way to access the CRL. The first found DP entry is used. With this option
all entries using the HTTP scheme are ignored when looking for a suitable DP.

--ignore-ldap-dp
This is similar to ‘--ignore-http-dp’ but ignores entries using the LDAP
scheme. Both options may be combined resulting in ignoring DPs entirely.

3

--ignore-ocsp-service-url
Ignore all OCSP URLs contained in the certificate. The effect is to force the
use of the default responder.

—-—honor-http-proxy
If the environment variable http_proxy has been set, use its value to access
HTTP servers.

—-http-proxy host [: port]
Use host and port to access HI'TP servers. The use of this option overrides the
environment variable http_proxy regardless whether ‘--honor-http-proxy’
has been set.

--1dap-proxy host [:port]
Use host and port to connect to LDAP servers. If port is omitted, port 389
(standard LDAP port) is used. This overrides any specified host and port part
in a LDAP URL and will also be used if host and port have been omitted from
the URL.

28 Using the GNU Privacy Guard

—--only-ldap-proxy
Never use anything else but the LDAP "proxy" as configured with
‘=-1dap-proxy’. Usually dirmngr tries to use other configured LDAP server if
the connection using the "proxy" failed.

--ldapserverlist-file file
Read the list of LDAP servers to consult for CRLs and certificates from file
instead of the default per-user ldap server list file. The default value for file is
‘dirmngr_ldapservers.conf’.

This server list file contains one LDAP server per line in the format
HOSTNAME:PORT:USERNAME:PASSWORD:BASE_DN
Lines starting with a ‘#’ are comments.

Note that as usual all strings entered are expected to be UTF-8 encoded. Ob-
viously this will lead to problems if the password has originally been encoded
as Latin-1. There is no other solution here than to put such a password in the
binary encoding into the file (i.e. non-ascii characters won’t show up readable).!

--ldaptimeout secs
Specify the number of seconds to wait for an LDAP query before timing out.
The default are 15 seconds. 0 will never timeout.

--add-servers
This option makes dirmngr add any servers it discovers when validating certifi-
cates against CRLs to the internal list of servers to consult for certificates and
CRLs.

This option is useful when trying to validate a certificate that has a CRL
distribution point that points to a server that is not already listed in the
ldapserverlist. Dirmngr will always go to this server and try to download the
CRL, but chances are high that the certificate used to sign the CRL is located
on the same server. So if dirmngr doesn’t add that new server to list, it will
often not be able to verify the signature of the CRL unless the --add-servers
option is used.

Note: The current version of dirmngr has this option disabled by default.

--allow-ocsp
This option enables OCSP support if requested by the client.

OCSP requests are rejected by default because they may violate the privacy of
the user; for example it is possible to track the time when a user is reading a
mail.

--ocsp-responder url
Use url as the default OCSP Responder if the certificate does not contain
information about an assigned responder. Note, that --ocsp-signer must
also be set to a valid certificate.

1 The gpgconf tool might be helpful for frontends as it enables editing this configuration file using percent-
escaped strings.

Chapter 3: Invoking DIRMNGR 29

--ocsp-signer fpr|file

Use the certificate with the fingerprint fpr to check the responses of the default
OCSP Responder. Alternatively a filename can be given in which case the
response is expected to be signed by one of the certificates described in that
file. Any argument which contains a slash, dot or tilde is considered a filename.
Usual filename expansion takes place: A tilde at the start followed by a slash is
replaced by the content of HOME, no slash at start describes a relative filename
which will be searched at the home directory. To make sure that the file is
searched in the home directory, either prepend the name with "./" or use a
name which contains a dot.

If a response has been signed by a certificate described by these fingerprints no
further check upon the validity of this certificate is done.

The format of the FILE is a list of SHA-1 fingerprint, one per line with optional
colons between the bytes. Empty lines and lines prefix with a hash mark are
ignored.

--ocsp-max-clock-skew n
The number of seconds a skew between the OCSP responder and them local
clock is accepted. Default is 600 (10 minutes).

--ocsp-max-period n
Seconds a response is at maximum considered valid after the time given in the
thisUpdate field. Default is 7776000 (90 days).

—--ocsp-current-period n
The number of seconds an OCSP response is considered valid after the time
given in the NEXT_UPDATE datum. Default is 10800 (3 hours).

--max-replies n
Do not return more that n items in one query. The default is 10.

-—ignore-cert-extension oid
Add oid to the list of ignored certificate extensions. The oid is expected to be
in dotted decimal form, like 2.5.29.3. This option may be used more than
once. Critical flagged certificate extensions matching one of the OIDs in the
list are treated as if they are actually handled and thus the certificate won’t
be rejected due to an unknown critical extension. Use this option with care
because extensions are usually flagged as critical for a reason.

--hkp-cacert file
Use the root certificates in file for verification of the TLS certificates used with
hkps (keyserver access over TLS). If the file is in PEM format a suffix of .pem
is expected for file. This option may be given multiple times to add more root
certificates. Tilde expansion is supported.

If no hkp-cacert directive is present, dirmngr will make a reasonable choice: if
the keyserver in question is the special pool hkps.pool.sks-keyservers.net,
it will use the bundled root certificate for that pool. Otherwise, it will use the
system CAs.

30 Using the GNU Privacy Guard

3.3 Configuration

Dirmngr makes use of several directories when running in daemon mode: There are a few
configuration files whih control the operation of dirmngr. By default they may all be found
in the current home directory (see [option —homedir|, page 4).

‘dirmngr.conf’
This is the standard configuration file read by dirmngr on startup. It may
contain any valid long option; the leading two dashes may not be entered and
the option may not be abbreviated. This file is also read after a SIGHUP however
not all options will actually have an effect. This default name may be changed
on the command line (see [option —options]|, page 4). You should backup this
file.

‘/etc/gnupg/trusted-certs’
This directory should be filled with certificates of Root CAs you are trusting in
checking the CRLs and signing OCSP Responses.

Usually these are the same certificates you use with the applications making use
of dirmngr. It is expected that each of these certificate files contain exactly one
DER encoded certificate in a file with the suffix ‘. crt’ or ‘.der’. dirmngr reads
those certificates on startup and when given a SIGHUP. Certificates which are
not readable or do not make up a proper X.509 certificate are ignored; see the
log file for details.

Applications using dirmngr (e.g. gpgsm) can request these certificates to com-
plete a trust chain in the same way as with the extra-certs directory (see below).

Note that for OCSP responses the certificate specified using the option
‘-—ocsp-signer’ is always considered valid to sign OCSP requests.

‘/etc/gnupg/extra-certs’
This directory may contain extra certificates which are preloaded into the in-
ternal cache on startup. Applications using dirmngr (e.g. gpgsm) can request
cached certificates to complete a trust chain. This is convenient in cases you
have a couple intermediate CA certificates or certificates usually used to sign
OCSP responses. These certificates are first tried before going out to the net to
look for them. These certificates must also be DER encoded and suffixed with
‘.crt’ or ‘.der’.

‘~/.gnupg/crls.d’
This directory is used to store cached CRLs. The ‘crls.d’ part will be created
by dirmngr if it does not exists but you need to make sure that the upper
directory exists.

To be able to see what’s going on you should create the configure file
‘"/gnupg/dirmngr.conf’ with at least one line:
log-file ~/dirmngr.log
To be able to perform OCSP requests you probably want to add the line:
allow-ocsp

To make sure that new options are read and that after the installation of a new GnuPG
versions the installed dirmngr is running, you may want to kill an existing dirmngr first:

Chapter 3: Invoking DIRMNGR 31

gpgeconf --kill dirmngr

You may check the log file to see whether all desired root certificates have been loaded
correctly.

3.4 Use of signals
A running dirmngr may be controlled by signals, i.e. using the kill command to send a
signal to the process.
Here is a list of supported signals:
SIGHUP This signal flushes all internally cached CRLs as well as any cached certificates.

Then the certificate cache is reinitialized as on startup. Options are re-read
from the configuration file. Instead of sending this signal it is better to use

gpgeconf --reload dirmngr
SIGTERM Shuts down the process but waits until all current requests are fulfilled. If the

process has received 3 of these signals and requests are still pending, a shutdown
is forced. You may also use

gpgconf --kill dirmngr

instead of this signal
SIGINT Shuts down the process immediately.
SIGUSR1 This prints some caching statistics to the log file.

3.5 Examples

Here is an example on how to show dirmngr’s internal table of OpenPGP keyserver ad-

dresses. The output is intended for debugging purposes and not part of a defined API.
gpg-connect-agent --dirmngr ’keyserver --hosttable’ /bye

To inhibit the use of a particular host you have noticed in one of the keyserver pools,
you may use

gpg-connect-agent --dirmngr ’keyserver --dead pgpkeys.bnd.de’ /bye
The description of the keyserver command can be printed using

gpg-connect-agent --dirmngr ’help keyserver’ /bye

3.6 Dirmngr’s Assuan Protocol

Assuan is the ITPC protocol used to access dirmngr. This is a description of the commands
implemented by dirmngr.

3.6.1 Return the certificate(s) found

Lookup certificate. To allow multiple patterns (which are ORed) quoting is required: Spaces
are to be translated into "+" or into "%20"; obviously this requires that the usual escape
quoting rules are applied. The server responds with:

S: D <DER encoded certificate>
S: END
S: D <second DER encoded certificate>

32 Using the GNU Privacy Guard

S: END
S: 0K

In this example 2 certificates are returned. The server may return any number of certifi-
cates; OK will also be returned when no certificates were found. The dirmngr might return
a status line

S: S TRUNCATED <n>

To indicate that the output was truncated to N items due to a limitation of the server
or by an arbitrary set limit.

The option ‘=-url’ may be used if instead of a search pattern a complete URL to the

certificate is known:
C: LOOKUP --url CN%3DWerner%20Koch,o%3DIntevation%20GmbH, c%3DDE7userCertificatell

If the option ‘--cache-only’ is given, no external lookup is done so that only certificates
from the cache are returned.

With the option ‘--single’, the first and only the first match will be returned. Unless
option ‘--cache-only’ is also used, no local lookup will be done in this case.

3.6.2 Validate a certificate using a CRL or OCSP

ISVALID [--only-ocsp] [--force-default-responder] certid|certfpr

Check whether the certificate described by the certid has been revoked. Due to caching,
the Dirmngr is able to answer immediately in most cases.

The certid is a hex encoded string consisting of two parts, delimited by a single dot.
The first part is the SHA-1 hash of the issuer name and the second part the serial number.

Alternatively the certificate’s SHA-1 fingerprint certfpr may be given in which case an
OCSP request is done before consulting the CRL. If the option ‘--only-ocsp’ is given,
no fallback to a CRL check will be used. If the option ‘--force-default-responder’ is
given, only the default OCSP responder will be used and any other methods of obtaining
an OCSP responder URL won’t be used.

Common return values are:

GPG_ERR_NO_ERROR (0)
This is the positive answer: The certificate is not revoked and we have an up-
to-date revocation list for that certificate. If OCSP was used the responder
confirmed that the certificate has not been revoked.

GPG_ERR_CERT_REVOKED
This is the negative answer: The certificate has been revoked. Either it is in a
CRL and that list is up to date or an OCSP responder informed us that it has
been revoked.

GPG_ERR_NO_CRL_KNOWN
No CRL is known for this certificate or the CRL is not valid or out of date.

GPG_ERR_NO_DATA
The OCSP responder returned an “unknown” status. This means that it is not
aware of the certificate’s status.

Chapter 3: Invoking DIRMNGR 33

GPG_ERR_NOT_SUPPORTED
This is commonly seen if OCSP support has not been enabled in the configu-
ration.

If DirMngr has not enough information about the given certificate (which is the case for
not yet cached certificates), it will inquire the missing data:

S: INQUIRE SENDCERT <CertID>
C: D <DER encoded certificate>
C: END

A client should be aware that DirMngr may ask for more than one certificate.

If Dirmngr has a certificate but the signature of the certificate could not been validated
because the root certificate is not known to dirmngr as trusted, it may ask back to see
whether the client trusts this the root certificate:

S: INQUIRE ISTRUSTED <CertHexfpr>
C: D1
C: END

Only this answer will let Dirmngr consider the certificate as valid.

3.6.3 Validate a certificate using a CRL

Check whether the certificate with FINGERPRINT (SHA-1 hash of the entire X.509 cer-
tificate blob) is valid or not by consulting the CRL responsible for this certificate. If the
fingerprint has not been given or the certificate is not known, the function inquires the
certificate using:

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request (which should match

FINGERPRINT) as a binary blob. Processing then takes place without further interaction;
in particular dirmngr tries to locate other required certificate by its own mechanism which
includes a local certificate store as well as a list of trusted root certificates.
The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual
error codes from libgpg-error.

3.6.4 Validate a certificate using OCSP
CHECKOCSP [--force-default-responder] [fingerprint]

Check whether the certificate with fingerprint (the SHA-1 hash of the entire X.509
certificate blob) is valid by consulting the appropriate OCSP responder. If the fingerprint
has not been given or the certificate is not known by Dirmngr, the function inquires the
certificate using:

S: INQUIRE TARGETCERT
C: D <DER encoded certificate>
C: END

Thus the caller is expected to return the certificate for the request (which should match
fingerprint) as a binary blob. Processing then takes place without further interaction; in

34 Using the GNU Privacy Guard

particular dirmngr tries to locate other required certificates by its own mechanism which
includes a local certificate store as well as a list of trusted root certificates.

¢

If the option ‘--force-default-responder’ is given, only the default OCSP
responder is used. This option is the per-command variant of the global option
‘-—ignore-ocsp-service-url’.

The return code is 0 for success; i.e. the certificate has not been revoked or one of the usual
error codes from libgpg-error.

3.6.5 Put a certificate into the internal cache

Put a certificate into the internal cache. This command might be useful if a client knows
in advance certificates required for a test and wants to make sure they get added to the
internal cache. It is also helpful for debugging. To get the actual certificate, this command
immediately inquires it using

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request as a binary blob.

The return code is 0 for success; i.e. the certificate has not been successfully cached or one
of the usual error codes from libgpg-error.

3.6.6 Validate a certificate for debugging

Validate a certificate using the certificate validation function used internally by dirmngr.
This command is only useful for debugging. To get the actual certificate, this command
immediately inquires it using

S: INQUIRE TARGETCERT

C: D <DER encoded certificate>

C: END

Thus the caller is expected to return the certificate for the request as a binary blob.

Chapter 4: Invoking GPG 35

4 Invoking GPG

gpg?2 is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool to provide dig-
ital encryption and signing services using the OpenPGP standard. gpg2 features complete
key management and all the bells and whistles you would expect from a full OpenPGP
implementation.

There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x
supports modern encryption algorithms and thus should be preferred over GnuPG 1.x. You
only need to use GnuPG 1.x if your platform doesn’t support GnuPG 2.x, or you need

support for some features that GnuPG 2.x has deprecated, e.g., decrypting data created
with PGP-2 keys.

In contrast to the standalone command gpg from GnuPG 1.x, the 2.x version is commonly
installed under the name gpg?2.

See [Option Index], page 197, for an index to gpg2’s commands and options.

4.1 Commands

Commands are not distinguished from options except for the fact that only one command is
allowed. Generally speaking, irrelevant options are silently ignored, and may not be checked
for correctness.

gpg2 may be run with no commands. In this case it will print a warning perform a
reasonable action depending on the type of file it is given as input (an encrypted message
is decrypted, a signature is verified, a file containing keys is listed, etc.).

If you run into any problems, please add the option ‘--verbose’ to the invocation to see
more diagnostics.

4.1.1 Commands not specific to the function

--version
Print the program version and licensing information. Note that you cannot
abbreviate this command.

--help

-h Print a usage message summarizing the most useful command-line options.
Note that you cannot arbitrarily abbreviate this command (though you can use
its short form ‘-h’).

--warranty

Print warranty information.

—--dump-options
Print a list of all available options and commands. Note that you cannot ab-
breviate this command.

4.1.2 Commands to select the type of operation

--sign
-s Sign a message. This command may be combined with ‘~-encrypt’ (to sign
and encrypt a message), ‘--symmetric’ (to sign and symmetrically encrypt

36

Using the GNU Privacy Guard

a message), or both ‘--encrypt’ and ‘--symmetric’ (to sign and encrypt a
message that can be decrypted using a secret key or a passphrase). The signing
key is chosen by default or can be set explicitly using the ‘--=local-user’ and
‘-—default-key’ options.

--clear-sign
-—clearsign

Make a cleartext signature. The content in a cleartext signature is readable
without any special software. OpenPGP software is only needed to verify the
signature. cleartext signatures may modify end-of-line whitespace for platform
independence and are not intended to be reversible. The signing key is chosen by
default or can be set explicitly using the ‘-~local-user’ and ‘--default-key’
options.

--detach-sign

-b

-—encrypt
-e

Make a detached signature.

Encrypt data to one or more public keys. This command may be combined
with ‘--sign’ (to sign and encrypt a message), ‘--symmetric’ (to encrypt a
message that can be decrypted using a secret key or a passphrase), or ‘--sign’
and ‘--symmetric’ together (for a signed message that can be decrypted using
a secret key or a passphrase). ‘--recipient’ and related options specify which
public keys to use for encryption.

--symmetric

-C

--store

--decrypt
-d

--verify

Encrypt with a symmetric cipher using a passphrase. The default symmetric
cipher used is AES-128, but may be chosen with the ‘--cipher-algo’ option.
This command may be combined with ‘--sign’ (for a signed and symmetri-
cally encrypted message), ‘——encrypt’ (for a message that may be decrypted
via a secret key or a passphrase), or ‘--sign’ and ‘--encrypt’ together (for a
signed message that may be decrypted via a secret key or a passphrase). gpg2
caches the passphrase used for symmetric encryption so that a decrypt opera-
tion may not require that the user needs to enter the passphrase. The option
‘-—no-symkey-cache’ can be used to disable this feature.

Store only (make a simple literal data packet).

Decrypt the file given on the command line (or STDIN if no file is specified) and
write it to STDOUT (or the file specified with ‘--output’). If the decrypted file
is signed, the signature is also verified. This command differs from the default
operation, as it never writes to the filename which is included in the file and it
rejects files that don’t begin with an encrypted message.

Assume that the first argument is a signed file and verify it without generating
any output. With no arguments, the signature packet is read from STDIN. If
only one argument is given, the specified file is expected to include a complete
signature.

With more than one argument, the first argument should specify a file with a
detached signature and the remaining files should contain the signed data. To

Chapter 4: Invoking GPG 37

read the signed data from STDIN, use ‘-’ as the second filename. For security
reasons, a detached signature will not read the signed material from STDIN if
not explicitly specified.

Note: If the option ‘--batch’ is not used, gpg2 may assume that a single
argument is a file with a detached signature, and it will try to find a matching
data file by stripping certain suffixes. Using this historical feature to verify a
detached signature is strongly discouraged; you should always specify the data
file explicitly.

Note: When verifying a cleartext signature, gpg2 verifies only what makes
up the cleartext signed data and not any extra data outside of the cleartext
signature or the header lines directly following the dash marker line. The option
--output may be used to write out the actual signed data, but there are other
pitfalls with this format as well. It is suggested to avoid cleartext signatures in
favor of detached signatures.

Note: Sometimes the use of the gpgv tool is easier than using the full-fledged
gpg with this option. gpgv is designed to compare signed data against a list of
trusted keys and returns with success only for a good signature. It has its own
manual page.

--multifile
This modifies certain other commands to accept multiple files for processing
on the command line or read from STDIN with each filename on a separate
line. This allows for many files to be processed at once. ‘--multifile’ may
currently be used along with ‘--verify’, ‘~—encrypt’, and ‘--decrypt’. Note
that ‘--multifile --verify’ may not be used with detached signatures.

—--verify-files
Identical to ‘--multifile --verify’.

—-—encrypt—-files
Identical to ‘--multifile --encrypt’.

-—decrypt-files
Identical to ‘--multifile --decrypt’.

--list-keys

-k

--list-public-keys
List the specified keys. If no keys are specified, then all keys from the configured
public keyrings are listed.

Never use the output of this command in scripts or other programs. The
output is intended only for humans and its format is likely to change. The
‘--with-colons’ option emits the output in a stable, machine-parseable for-
mat, which is intended for use by scripts and other programs.

--list-secret-keys

-K List the specified secret keys. If no keys are specified, then all known secret
keys are listed. A # after the initial tags sec or ssb means that the secret key or
subkey is currently not usable. We also say that this key has been taken offline

38 Using the GNU Privacy Guard

(for example, a primary key can be taken offline by exporting the key using the
command ‘--export-secret-subkeys’). A > after these tags indicate that the
key is stored on a smartcard. See also ‘--1list-keys’.

--check-signatures

—--check-sigs
Same as ‘--list-keys’, but the key signatures are verified and listed too.
Note that for performance reasons the revocation status of a signing key is
not shown. This command has the same effect as using ‘--list-keys’ with
‘-—with-sig-check’.

¢

The status of the verification is indicated by a flag directly following the "sig"
tag (and thus before the flags described below. A "!" indicates that the signa-
ture has been successfully verified, a "-" denotes a bad signature and a "%" is
used if an error occurred while checking the signature (e.g. a non supported
algorithm). Signatures where the public key is not available are not listed; to
see their keyids the command ‘--list-sigs’ can be used.

For each signature listed, there are several flags in between the signature
status flag and keyid. These flags give additional information about each key
signature. From left to right, they are the numbers 1-3 for certificate check
level (see ‘--—ask-cert-level’), "L" for a local or non-exportable signature
(see ‘--1sign-key’), "R" for a nonRevocable signature (see the ‘--edit-key’
command "nrsign"), "P" for a signature that contains a policy URL (see
‘~-cert-policy-url’), "N" for a signature that contains a notation (see
‘~—cert-notation’), "X" for an eXpired signature (see ‘--ask-cert-expire’),
and the numbers 1-9 or "T" for 10 and above to indicate trust signature levels
(see the ‘--edit-key’ command "tsign").

--locate-keys

--locate-external-keys
Locate the keys given as arguments. This command basically uses the same
algorithm as used when locating keys for encryption or signing and may thus
be used to see what keys gpg2 might use. In particular external methods as
defined by ‘--auto-key-locate’ may be used to locate a key. Only public keys
are listed. The variant ‘--locate-external-keys’ does not consider a locally
existing key and can thus be used to force the refresh of a key via the defined
external methods.

--show-keys
This commands takes OpenPGP keys as input and prints information about
them in the same way the command ‘--1ist-keys’ does for locally stored key.
In addition the list options show-unusable-uids, show-unusable-subkeys,
show-notations and show-policy-urls are also enabled. As usual for
automated processing, this command should be combined with the option
‘--with-colons’.

--fingerprint
List all keys (or the specified ones) along with their fingerprints. This is the
same output as ‘--list-keys’ but with the additional output of a line with
the fingerprint. May also be combined with ‘--check-signatures’. If this

Chapter 4: Invoking GPG 39

command is given twice, the fingerprints of all secondary keys are listed too.
This command also forces pretty printing of fingerprints if the keyid format has
been set to "none".

--list-packets
List only the sequence of packets. This command is only useful for debugging.
When used with option ‘--verbose’ the actual MPI values are dumped and
not only their lengths. Note that the output of this command may change with
new releases.

--edit-card

--card-edit
Present a menu to work with a smartcard. The subcommand "help" provides
an overview on available commands. For a detailed description, please see the
Card HOWTO at https://gnupg.org/documentation/howtos.html#GnuPG-
cardHOWTO .

--card-status
Show the content of the smart card.

--change-pin
Present a menu to allow changing the PIN of a smartcard. This functionality is
also available as the subcommand "passwd" with the ‘-—edit-card’ command.

--delete-keys name
Remove key from the public keyring. In batch mode either ‘--yes’ is required or
the key must be specified by fingerprint. This is a safeguard against accidental
deletion of multiple keys. If the exclamation mark syntax is used with the
fingerprint of a subkey only that subkey is deleted; if the exclamation mark is
used with the fingerprint of the