
Cortex™-A Series
Version: 3.0

Programmer’s Guide
Copyright © 2011, 2012 ARM. All rights reserved.
ARM DEN0013C (ID071612)



 

Cortex-A Series 
Programmer’s Guide

Copyright © 2011, 2012 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This Cortex-A Series Programmer’s Guide is protected by copyright and the practice or implementation of the 
information herein may be protected by one or more patents or pending applications. No part of this Cortex-A Series 
Programmer’s Guide may be reproduced in any form by any means without the express prior written permission of 
ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by 
this Cortex-A Series Programmer’s Guide.

Your access to the information in this Cortex-A Series Programmer’s Guide is conditional upon your acceptance that 
you will not use or permit others to use the information for the purposes of determining whether implementations of the 
information herein infringe any third party patents. 

This Cortex-A Series Programmer’s Guide is provided “as is”. ARM makes no representations or warranties, either 
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or 
non-infringement, that the content of this Cortex-A Series Programmer’s Guide is suitable for any particular purpose or 
that any practice or implementation of the contents of the Cortex-A Series Programmer’s Guide will not infringe any 
third party patents, copyrights, trade secrets, or other rights.

This Cortex-A Series Programmer’s Guide may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any 
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however 
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any 
use of this Programmer’s Guide, even if ARM has been advised of the possibility of such damages. The information 
provided herein is subject to U.S. export control laws, including the U.S. Export Administration Act and its associated 
regulations, and may be subject to export or import regulations in other countries. You agree to comply fully with all 
laws and regulations of the United States and other countries (“Export Laws”) to assure that neither the information 
herein, nor any direct products thereof are; (i) exported, directly or indirectly, in violation of Export Laws, either to any 
countries that are subject to U.S. export restrictions or to any end user who has been prohibited from participating in the 
U.S. export transactions by any federal agency of the U.S. government; or (ii) intended to be used for any purpose 
prohibited by Export Laws, including, without limitation, nuclear, chemical, or biological weapons proliferation.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited, except as otherwise 
stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their 
respective owners.

Copyright © 2011, 2012 ARM Limited, 110 Fulbourn Road Cambridge, CB1 9NJ, England 

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the 
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as 
appropriate”.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

25 March 2011 A Non-Confidential First release

10 August 2011 B Non-Confidential Second release. Virtualization chapter added. Updated to include 
Cortex-A15 processor, and LPAE. Corrected and revised throughout

25 June 2012 C Non-Confidential Updated for third release. Updated to include Cortex-A7 processor, and 
big.LITTLE. Index added. Corrected and revised throughout.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. ii
ID071612 Non-Confidential



Contents
Cortex-A Series Programmer’s Guide

Preface
References ....................................................................................................................... x
Typographical conventions ..............................................................................................  xi
Feedback on this book ....................................................................................................  xii
Glossary .........................................................................................................................  xiii

Chapter 1 Introduction
1.1 History ...........................................................................................................................  1-2
1.2 System-on-Chip (SoC) ..................................................................................................  1-3
1.3 Embedded systems ......................................................................................................  1-4

Chapter 2 ARM Architecture and Processors
2.1 Architecture versions ....................................................................................................  2-3
2.2 Architecture history and extensions ..............................................................................  2-4
2.3 Key architectural points of ARM Cortex-A series processors .......................................  2-8
2.4 Processors and pipelines ..............................................................................................  2-9
2.5 The Cortex-A series processors .................................................................................  2-11

Chapter 3 Tools, Operating Systems and Boards
3.1 Linux distributions .........................................................................................................  3-2
3.2 Useful tools ...................................................................................................................  3-6
3.3 Software toolchains for ARM processors ......................................................................  3-8
3.4 ARM DS-5 ...................................................................................................................  3-11
3.5 Example platforms ......................................................................................................  3-13

Chapter 4 ARM Registers, Modes and Instruction Sets
4.1 Instruction sets ..............................................................................................................  4-2
4.2 Modes ...........................................................................................................................  4-3
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. iii
ID071612 Non-Confidential



Contents
4.3 Registers .......................................................................................................................  4-4
4.4 Instruction pipelines ......................................................................................................  4-7
4.5 Branch prediction ........................................................................................................  4-10

Chapter 5 Introduction to Assembly Language
5.1 Comparison with other assembly languages ................................................................  5-2
5.2 Instruction sets ..............................................................................................................  5-4
5.3 Introduction to the GNU Assembler ..............................................................................  5-5
5.4 ARM tools assembly language .....................................................................................  5-9
5.5 Interworking ................................................................................................................  5-11
5.6 Identifying assembly code ..........................................................................................  5-12

Chapter 6 ARM/Thumb Unified Assembly Language Instructions
6.1 Instruction set basics ....................................................................................................  6-2
6.2 Data processing operations ..........................................................................................  6-6
6.3 Multiplication operations ...............................................................................................  6-9
6.4 Memory instructions ....................................................................................................  6-10
6.5 Branches .....................................................................................................................  6-13
6.6 Integer SIMD instructions ...........................................................................................  6-14
6.7 Saturating arithmetic ...................................................................................................  6-18
6.8 Miscellaneous instructions ..........................................................................................  6-19

Chapter 7 Floating-Point
7.1 Floating-point basics and the IEEE-754 standard ........................................................  7-2
7.2 VFP support in GCC .....................................................................................................  7-8
7.3 VFP support in the ARM Compiler ................................................................................  7-9
7.4 VFP support in Linux ..................................................................................................  7-10
7.5 Floating-point optimization ..........................................................................................  7-11

Chapter 8 Introducing NEON
8.1 SIMD .............................................................................................................................  8-2
8.2 NEON architecture overview ........................................................................................  8-4

Chapter 9 Caches
9.1 Why do caches help? ...................................................................................................  9-3
9.2 Cache drawbacks .........................................................................................................  9-4
9.3 Memory hierarchy .........................................................................................................  9-5
9.4 Cache architecture ........................................................................................................  9-6
9.5 Cache policies ............................................................................................................  9-12
9.6 Write and Fetch buffers ..............................................................................................  9-14
9.7 Cache performance and hit rate .................................................................................  9-15
9.8 Invalidating and cleaning cache memory ....................................................................  9-16
9.9 Point of coherency and unification ..............................................................................  9-17
9.10 Level 2 cache controller ..............................................................................................  9-18
9.11 Parity and ECC in caches ...........................................................................................  9-19

Chapter 10 Memory Management Unit
10.1 Virtual memory ............................................................................................................  10-3
10.2 Level 1 page tables .....................................................................................................  10-4
10.3 Level 2 page tables .....................................................................................................  10-7
10.4 The Translation Lookaside Buffer .............................................................................  10-10
10.5 TLB coherency ..........................................................................................................  10-11
10.6 Choice of page sizes ................................................................................................  10-12
10.7 Memory attributes .....................................................................................................  10-13
10.8 Multi-tasking and OS usage of page tables ..............................................................  10-16
10.9 Large Physical Address Extensions .........................................................................  10-19
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. iv
ID071612 Non-Confidential



Contents
Chapter 11 Memory Ordering
11.1 ARM memory ordering model .....................................................................................  11-4
11.2 Memory barriers ..........................................................................................................  11-7
11.3 Cache coherency implications ..................................................................................  11-12

Chapter 12 Exception Handling
12.1 Types of exception ......................................................................................................  12-3
12.2 Exception mode summary ..........................................................................................  12-5
12.3 Entering an exception handler ....................................................................................  12-7
12.4 Exit from an exception handler ...................................................................................  12-8
12.5 Vector table .................................................................................................................  12-9
12.6 Return instruction ......................................................................................................  12-10

Chapter 13 Interrupt Handling
13.1 External interrupt requests ..........................................................................................  13-2
13.2 Generic Interrupt Controller ........................................................................................  13-4

Chapter 14 Other Exception Handlers
14.1 Abort handler ..............................................................................................................  14-2
14.2 Undefined instruction handling ...................................................................................  14-3
14.3 SVC exception handling .............................................................................................  14-4
14.4 Linux exception program flow .....................................................................................  14-5

Chapter 15 Boot Code
15.1 Booting a bare-metal system ......................................................................................  15-2
15.2 Configuration ..............................................................................................................  15-6
15.3 Booting Linux ..............................................................................................................  15-7

Chapter 16 Porting
16.1 Endianness .................................................................................................................  16-2
16.2 Alignment ....................................................................................................................  16-5
16.3 Miscellaneous C porting issues ..................................................................................  16-7
16.4 Porting ARM assembly code to ARMv7 ....................................................................  16-10
16.5 Porting ARM code to Thumb ....................................................................................  16-11

Chapter 17 Application Binary Interfaces
17.1 Procedure Call Standard ............................................................................................  17-2
17.2 Mixing C and assembly code ......................................................................................  17-7

Chapter 18 Profiling
18.1 Profiler output .............................................................................................................  18-3

Chapter 19 Optimizing Code to Run on ARM Processors
19.1 Compiler optimizations ...............................................................................................  19-3
19.2 ARM memory system optimization .............................................................................  19-8
19.3 Source code modifications ........................................................................................  19-13

Chapter 20 Writing NEON Code
20.1 NEON C Compiler and assembler ..............................................................................  20-2
20.2 Optimizing NEON assembler code .............................................................................  20-7
20.3 NEON power saving ...................................................................................................  20-9

Chapter 21 Introduction to Multi-processing
21.1 Multi-processing ARM systems ..................................................................................  21-3
21.2 Symmetric multi-processing ........................................................................................  21-5
21.3 Asymmetric multi-processing ......................................................................................  21-7
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. v
ID071612 Non-Confidential



Contents
Chapter 22 SMP Architectural Considerations
22.1 Cache coherency ........................................................................................................  22-2
22.2 TLB and cache maintenance broadcast .....................................................................  22-5
22.3 Handling interrupts in an SMP system ........................................................................  22-6
22.4 Exclusive accesses .....................................................................................................  22-7
22.5 Booting SMP systems ...............................................................................................  22-10
22.6 Private memory region ..............................................................................................  22-12

Chapter 23 Parallelizing Software
23.1 Decomposition methods .............................................................................................  23-2
23.2 Threading models .......................................................................................................  23-4
23.3 Threading libraries ......................................................................................................  23-5
23.4 Synchronization mechanisms in the Linux kernel .......................................................  23-8

Chapter 24 Issues with Parallelizing Software
24.1 Thread safety and reentrancy .....................................................................................  24-2
24.2 Performance issues ....................................................................................................  24-3
24.3 Profiling in SMP systems ............................................................................................  24-5

Chapter 25 Power Management
25.1 Power and clocking .....................................................................................................  25-2

Chapter 26 Security
26.1 TrustZone hardware architecture ................................................................................  26-2

Chapter 27 Virtualization
27.1 ARMv7-A Virtualization Extensions ............................................................................  27-3
27.2 Hypervisor exception model .......................................................................................  27-5
27.3 Relationship between virtualization and ARM Security Extensions ............................  27-6

Chapter 28 Introducing big.LITTLE
28.1 big.LITTLE configuration .............................................................................................  28-2
28.2 Structure of a big.LITTLE system ...............................................................................  28-3
28.3 Execution models in big.LITTLE .................................................................................  28-4
28.4 big.LITTLE MP operation ............................................................................................  28-9

Chapter 29 Debug
29.1 ARM debug hardware .................................................................................................  29-2
29.2 ARM trace hardware ...................................................................................................  29-4
29.3 Debug monitor ............................................................................................................  29-7
29.4 Debugging Linux applications .....................................................................................  29-8
29.5 DS-5 debug and trace .................................................................................................  29-9

Appendix A Instruction Summary
A.1 Instruction Summary .....................................................................................................  A-2

Appendix B NEON and VFP Instruction Summary
B.1 NEON general data processing instructions .................................................................  B-6
B.2 NEON shift instructions ...............................................................................................  B-13
B.3 NEON logical and compare operations ......................................................................  B-17
B.4 NEON arithmetic instructions ......................................................................................  B-23
B.5 NEON multiply instructions .........................................................................................  B-32
B.6 NEON load and store element and structure instructions ...........................................  B-35
B.7 VFP instructions ..........................................................................................................  B-41
B.8 NEON and VFP pseudo-instructions ..........................................................................  B-47
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. vi
ID071612 Non-Confidential



Contents
Appendix C Building Linux for ARM Systems
C.1 Building the Linux kernel ............................................................................................... C-2
C.2 Creating the Linux filesystem ........................................................................................ C-6
C.3 Putting it together .......................................................................................................... C-8
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. vii
ID071612 Non-Confidential



Preface

This book provides an introduction to ARM technology for programmers using ARM Cortex-A 
series processors that conform to the ARM ARMv7–A architecture. The v7 refers to version 7 of 
the architecture, while the A indicates the architecture profile that describes Application processors. 
This includes the Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9 and Cortex-A15 processors. The 
book complements rather than replaces other ARM documentation that is available for Cortex-A 
series processors, such as the ARM Technical Reference Manuals (TRMs) for the processors 
themselves, documentation for individual devices or boards and, most importantly, the ARM 
Architecture Reference Manual (or the “ARM ARM”).

The purpose of this book is to bring together information from a wide variety of sources to provide 
a single guide for programmers who want to develop applications for the latest Cortex-A series of 
processors. We will cover hardware concepts such as caches and Memory Management Units, but 
only where this is valuable to the application writer. The book is intended to provide information 
that will be useful to both assembly language and C programmers. We will look at how complex 
operating systems, such as Linux, make use of ARM features, and how to take full advantage of 
the many advanced capabilities of the ARM processor, in particular writing software for 
multi-processing and using the SIMD capabilities of the device.

Although much of the book is also applicable to other ARM processors, we do not explicitly cover 
processors that implement older versions of the Architecture. The Cortex-R series and M-series 
processors are mentioned but not described. Our intention is to provide an approachable 
introduction to the ARM architecture, covering the feature set in detail and providing practical 
advice on writing both C and assembly language programs to run efficiently on a Cortex-A series 
processor. 

This is not an introductory level book. We assume knowledge of the C programming language and 
microprocessors, but not of any ARM-specific background. In the allotted space, we cannot hope 
to cover every topic in detail. In some chapters, we suggest further reading (referring either to 
books or websites) that can give a deeper level of background to the topic in hand, but in this book 
we will focus on the ARM-specific detail. We do not assume the use of any particular tool chain. 
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Preface 
We will mention both GNU and ARM tools in the course of the book. We hope that the book 
will be well suited to programmers who have a desktop PC or x86 background and are taking 
their first steps into the ARM processor based world.

The first chapters of the book cover the basic features of the ARM Cortex-A series processors. 
An introduction to the fundamentals of the ARM architecture and some background on 
individual processors is provided in Chapter 2. In Chapter 3, we briefly consider some of the 
tools and platforms available to those getting started with ARM programming. Chapters 4, 5 and 
6 provide a brisk introduction to ARM assembly language programming, covering the various 
registers, modes and assembly language instructions. We look at floating-point and the ARM 
Advanced SIMD extensions (NEON) in Chapters 7 and 8. These chapters are only an 
introduction to the relevant topics. It would take significantly longer to cover all of the powerful 
capabilities of NEON and how to apply these to common signal processing algorithms. We then 
switch our focus to the memory system and look at Caches, Memory Management and Memory 
Ordering in Chapters 9, 10 and 11. Dealing with interrupts and other exceptions is described in 
Chapters 12 to 14.

The remaining chapters of the book provide more advanced programming information. 
Chapter 15 provides an overview of boot code. Chapter 16 looks at issues with porting C and 
assembly code to the ARMv7 architecture, from other architectures and from older versions of 
the ARM architecture. Chapter 17 covers the Application Binary Interface, knowledge of which 
is useful to both C and assembly language programmers. Profiling and optimizing of code is 
covered in Chapters 18 and 19. Many of the techniques presented are not specific to the ARM 
architecture, but we also provide some processor-specific hints.

Chapters 21-24 cover the area of multi-processing. We take a detailed look at how this is 
implemented by ARM and how you can write code to take advantage of it. Power management 
is an important part of ARM programming and is covered in Chapter 21. The final chapters of 
the book provide a brief coverage of the ARM Security Extensions (TrustZone®), the ARM 
Virtualization extensions (Chapter 27), big.LITTLE™ technology (Chapter 28), and the 
powerful hardware debug features available to programmers (Chapter 29). Appendices A and B 
give a summary of the available ARM, NEON and VFP instructions and Appendix C gives 
step-by-step instructions for configuring and building Linux for ARM systems.
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Preface 
Typographical conventions
This book uses the following typographical conventions:

italic  Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold  Used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file 
and program names, instruction names, parameters and source code.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

 < and > Enclose replaceable terms for assembler syntax where they appear in code 
or code fragments. For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>
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Preface 
Feedback on this book
We have tried to ensure that the Cortex-A Series Programmer’s Guide is both easy to read and 
still covers the material in enough depth to provide the comprehensive introduction to using the 
processors that we originally intended. 

If you have any comments on this book, don’t understand our explanations, think something is 
missing, or think that it is incorrect, send an e-mail to errata@arm.com. Give:
• The title, The Cortex-A Series Programmer’s Guide.
• The number, ARM DEN0013C.
• The page number(s) to which your comments apply.
• What you think needs to be changed.

ARM also welcomes general suggestions for additions and improvements.
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Preface 
Glossary
Abbreviations and terms used in this document are defined here.

AAPCS ARM Architecture Procedure Call Standard.

ABI Application Binary Interface.

ACP Accelerator Coherency Port.

AHB Advanced High-Performance Bus.

AMBA® Advanced Microcontroller Bus Architecture.

AMP Asymmetric Multi-Processing.

APB Advanced Peripheral Bus.

ARM ARM The ARM Architecture Reference Manual.

ASIC Application Specific Integrated Circuit.

APSR Application Program Status Register.

ASID Address Space ID.

ATPCS ARM Thumb® Procedure Call Standard.

AXI Advanced eXtensible Interface.

BE8 Byte Invariant Big-Endian Mode.

BIU Bus Interface Unit.

BSP Board Support Package.

BTAC Branch Target Address Cache.

BTB Branch Target Buffer.

CISC Complex Instruction Set Computer.

CP15 Coprocessor 15 - System control coprocessor.

CPSR Current Program Status Register.

DAP Debug Access Port.

DBX Direct Bytecode Execution.

DDR Double Data Rate (SDRAM).

DMA Direct Memory Access.

DMB Data Memory Barrier.

DPU Data Processing Unit.

DS-5™ The ARM Development Studio.

DSB Data Synchronization Barrier.

DSP Digital Signal Processing.

DSTREAM® An ARM debug and trace unit.
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DVFS Dynamic Voltage/Frequency Scaling.

EABI Embedded ABI.

ECC Error Correcting Code.

ECT Embedded Cross Trigger.

EOF End Of File.

ETB Embedded Trace Buffer™.

ETM Embedded Trace Macrocell™.

FDT Flattened Device Tree.

FIQ An interrupt type (formerly fast interrupt).

FPSCR Floating-Point Status and Control Register.

GCC GNU Compiler Collection.

GIC Generic Interrupt Controller.

GIF Graphics Interchange Format.

GPIO General Purpose Input/Output.

Gprof GNU profiler.

Harvard architecture 
Architecture with physically separate storage and signal pathways for 
instructions and data.

HCR Hyp Configuration Register.

ICU Instruction Cache Unit.

IDE Integrated development environment.

I/F Interface (abbreviation used in some diagrams).

IPA Intermediate Physical Address.

IRQ Interrupt Request (normally external interrupts).

ISA Instruction Set Architecture.

ISB Instruction Synchronization Barrier.

ISR Interrupt Service Routine.

Jazelle™ The ARM bytecode acceleration technology.

JIT Just In Time.

L1/L2 Level 1/Level 2.

LPAE Large Physical Address Extension.

LSB Least Significant Bit.

MESI A cache coherency protocol with four states; Modified, Exclusive, Shared 
and Invalid.
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MMU Memory Management Unit.

MPU Memory Protection Unit.

MSB Most Significant Bit.

NEON™ The ARM Advanced SIMD Extensions.

NMI Non-Maskable Interrupt.

Oprofile A Linux system profiler.

QEMU A processor emulator.

PCI Peripheral Component Interconnect. A computer bus standard.

PCS Procedure Call Standard.

PFU Prefetch Unit.

PIPT Physically Indexed, Physically Tagged.

PLE Preload Engine.

PLI Preload Instruction.

PMU Performance Monitor Unit.

PoC Point of Coherency.

PoU Point of Unification.

PPI Private Peripheral Input.

PSR Program Status Register.

PTE Page Table Entry.

RCT Runtime Compiler Target.

RISC Reduced Instruction Set Computer.

RVCT RealView® Compilation Tools (the “ARM Compiler”).

SBZP Should Be Preserved.

SCU Snoop Control Unit.

SGI Software Generated Interrupt.

SIMD Single Instruction, Multiple Data.

SiP System in Package.

SMP Symmetric Multi-Processing.

SoC System on Chip.

SP Stack Pointer.

SPI Shared Peripheral Interrupt.

SPSR Saved Program Status Register.

Streamline A graphical performance analysis tool.
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SVC Supervisor Call instruction. (Previously SWI)

SWI Software Interrupt instruction. (Replaced with SVC)

SYS System Mode.

TAP Test Access Port (JTAG Interface).

TCM Tightly Coupled Memory.

TDMI® Thumb, Debug, Multiplier, ICE.

TEX Type Extension.

Thumb® An instruction set extension to ARM.

Thumb-2 A technology extending the Thumb instruction set to support both 16-bit 
and 32-bit instructions.

TLB Translation Lookaside Buffer.

TLS Thread Local Storage.

TrustZone The ARM security extension.

TTB Translation Table Base.

TTBR Translation Table Base Register.

UAL Unified Assembly Language.

UART Universal Asynchronous Receiver/Transmitter.

UEFI Unified Extensible Firmware Interface.

U-Boot A Linux Bootloader.

UNK Unknown.

USR User mode, a non-privileged processor mode.

VFP The ARM floating-point instruction set. Before ARMv7, the VFP 
extension was called the Vector Floating-Point architecture, and was used 
for vector operations.

VIC Vectored Interrupt Controller.

VIPT Virtually Indexed, Physically Tagged.

VMID Virtual Machine ID.

VMSA Virtual Memory Systems Architecture.

XN Execute Never.
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Chapter 1 
Introduction

ARM processors are everywhere. More than 10 billion ARM processor based devices had been 
manufactured by the end of 2008 and at the time of writing (early 2012), it is estimated that around 
one quarter of electronic products contain one or more ARM processors. At the end of 2011, over 
25 billion ARM processors had been shipped. It is likely that readers of this book own products 
containing ARM processor based devices – a mobile phone, personal computer, television or car. 
It might come as a surprise to programmers more used to the personal computer to learn that the 
x86 architecture occupies a much smaller (but still highly lucrative) position in terms of total 
microprocessor shipments, with around three billion devices.

The ARM architecture has advanced significantly since the first ARM1 silicon in 1985. The ARM 
processor is not a single processor, but a whole family of processors which share common 
instruction sets and programmer’s models and have some degree of backward compatibility. 

Let’s begin, however, with a brief look at the history of ARM.
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Introduction 
1.1 History
The first ARM processor (ARM1) was designed within Acorn Computers Limited by a team led 
by Sophie Wilson and Steve Furber, with the first silicon (which worked first time!) produced 
in April 1985. The ARM1 was quickly replaced by the ARM2 (which added multiplier 
hardware), which was used in real systems, including Acorn’s Archimedes personal computer. 

ARM was formed in Cambridge, England in November 1990, as Advanced RISC Machines Ltd. 
It was a joint venture between Apple Computers, Acorn Computers and VLSI Technology and 
has outlived two of its parents. The original 12 employees came mainly from the team within 
Acorn Computers. One reason for spinning ARM off as a separate company was that the 
processor had been selected by Apple Computers for use in its Newton product.

The new company quickly decided that the best way forward for their technology was to license 
their Intellectual Property (IP). Instead of designing, manufacturing and selling the chips 
themselves, they would sell rights to their designs to semiconductor companies. These 
companies would design the ARM processor into their own products, in a partnership model. 
This IP licensing business is how ARM continues to operate today. ARM was quickly able to 
sign up licensees with Sharp, Texas Instruments and Samsung prominent names among early 
customers. In 1998, ARM floated on the London Stock Exchange and Nasdaq. At the time of 
writing, ARM has over 2000 employees and has expanded somewhat from its original remit of 
processor design. ARM also licenses Physical IP – libraries of cells (NAND gates, RAM and so 
forth), graphics and video accelerators and software development products such as compilers, 
debuggers and development boards.
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Introduction 
1.2 System-on-Chip (SoC)
Chip designers today can produce chips with many millions of transistors. Designing and 
verifying such complex circuits has become an extremely difficult task. It is increasingly rare 
for all of the parts of such systems to be designed by a single company. In response to this, ARM 
and other semiconductor IP companies design and verify components (so-called IP blocks or 
processors). These are licensed by semiconductor companies who use these blocks in their own 
designs and include microprocessors, DSPs, 3D graphics and video controllers, along with 
many other functions.

The semiconductor companies take these blocks and integrate many other parts of a particular 
system onto the chip, to form a System-on-Chip (SoC). The architects of such devices must 
select the appropriate processor(s), memory controllers, on-chip memory, peripherals, bus 
interconnect and other logic (perhaps including analog or radio frequency components), in order 
to produce a system. 

The term Application Specific Integrated Circuit (ASIC) is one that we will also use in the book. 
This is an Integrated Circuit design that is specific to a particular application. An individual 
ASIC might well contain an ARM processor, memory and other components. Clearly there is a 
large overlap with devices which can be termed SoCs. The term SoC usually refers to a device 
with a higher degree of integration, including many of the parts of the system in a single device, 
possibly including analog, mixed-signal or radio frequency circuits.

The large semiconductor companies investing tens of millions of dollars to create these devices 
will typically also make a large investment in software to run on their platform. It would be 
uncommon to produce a complex system with a powerful processor without at least having 
ported one or more operating systems to it and written device drivers for peripherals. 

Of course, powerful operating systems like Linux require significant amounts of memory to run, 
more than is usually possible on a single silicon device. The term System-on-Chip is therefore 
not always named entirely accurately, as the device does not always contain the whole system. 
Apart from the issue of silicon area, it is also often the case that many useful parts of a system 
require specialist silicon manufacturing processes that preclude them from being placed on the 
same die. An extension of the SoC that addresses this to some extent is the concept of 
System-in-Package (SiP) that combines a number of individual chips within a single physical 
package. Also widely seen is package-on-package stacking. The package used for the SoC chip 
contains connections on both the bottom (for connection to a PCB) and top (for connection to a 
separate package that might contain a flash memory or a large SDRAM device).
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1.3 Embedded systems
An embedded system is conventionally defined as a piece of computer hardware running 
software designed to perform a specific task. Examples of such systems might be TV set-top 
boxes, smartcards, routers, disk drives, printers, automobile engine management systems, MP3 
players or photocopiers. These contrast with what is generally considered a computer system, 
that is, one that runs a wide range of general purpose software and possesses input and output 
devices such as a keyboard, and a graphical display of some kind. 

This distinction is becoming increasingly blurred. Consider the cellular or mobile phone. A 
basic model might just perform the task of making phone calls, but modern smartphones can run 
a complex operating system to which many thousands of applications are available for 
download.

Embedded systems can contain very simple 8-bit microprocessors, such as an Intel 8051 or PIC 
micro-controllers, or some of the more complex 32 or 64-bit processors, such as the ARM 
family that form the subject matter for this book. They need some RAM and some form of 
non-volatile storage to hold the program(s) to be executed by the system. Systems will almost 
always have additional peripherals, relating to the actual function of the device – typically 
including UARTs, interrupt controllers, timers, GPIO controllers, but also potentially quite 
complex blocks such as DSPs, GPUs, or DMA controllers.

Software running on such systems is typically grouped into two separate parts: the Operating 
System (OS) and applications that run on top of the OS. A wide range of operating systems are 
in use, ranging from simple kernels, through complex Real-Time Operating Systems (RTOS), to 
full-featured complex operating systems, of the kind that might be found on a desktop computer. 
Microsoft Windows or Linux are familiar examples of the latter. In this book, we will 
concentrate mainly on examples from Linux. The source code for Linux is readily available for 
inspection by the reader and is likely to be familiar to many programmers. Nevertheless, lessons 
learned from Linux are equally applicable to other operating systems.

There are many constraints on embedded systems that can make programming them more of a 
challenge than writing an application for a general-purpose PC. 

Memory Footprint 
In many systems, to minimize cost (and power), memory size can be limited. The 
programmer could be forced to consider the size of the program and how to 
reduce memory usage while it runs.

Real-time behavior 
A feature of certain systems is that there are deadlines to respond to external 
events. This might be a “hard” requirement (a car braking system must respond 
within a certain time) or “soft” requirement (audio processing must complete 
within a certain time-frame to avoid a poor user experience – but failure to do so 
under rare circumstances may not render the system worthless).

Power In many embedded systems the power source is a battery, and programmers and 
hardware designers must take great care to minimize the total energy usage of the 
system. This can be done, for example, by slowing the clock, reducing supply 
voltage or switching off the processor when there is no work to be done.

Cost Reducing the bill of materials can be a significant constraint on system design.

Time to market 
In competitive markets, the time to develop a working product can significantly 
impact the success of that product.
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Chapter 2 
ARM Architecture and Processors

As described in Chapter 1, ARM does not manufacture silicon devices. Instead, ARM creates 
microprocessor designs, which are licensed to semiconductor companies and OEMs, who integrate 
them into System-on-Chip devices.

To ensure compatibility between implementations, ARM defines architecture specifications which 
define how compliant products must behave. Processors implementing the ARM architecture 
conform to a particular version of the architecture. There might be multiple processors with 
different internal implementations and micro-architectures, different cycle timings and clock 
speeds which conform to the same version of the architecture. 

The programmer must distinguish between behaviors which are specific to the following:

Architecture This defines behavior common to a set, or family, of processor designs and is 
defined in the appropriate ARM Architecture Reference Manual (ARM 
ARM). It covers instruction sets, registers, exception handling and other 
programmer’s model features. The architecture defines behavior that is 
visible to the programmer, for example, which registers are available, and 
what individual assembly language instructions actually do.

Micro-architecture This defines how the visible behavior specified by the architecture is 
implemented. This could include the number of pipeline stages, for example. 
It can still have some programmer visible effects, such as how long a 
particular instruction takes to execute, or the number of stall cycles after 
which the result is available.

Processor A processor is an individual implementation of a micro-architecture. A 
processor might be licensed and manufactured by many companies. It might 
therefore, have been integrated into a wide range of different devices and 
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systems, with a correspondingly wide range of memory maps, peripherals, 
and other implementation specific features. Processors are documented in 
Technical Reference Manuals, available on the ARM website. 

Core We use this term to refer to a separate logical execution unit inside a 
multi-core processor.

SoC A System-on-Chip contains one or more processors and typically also 
memory and peripherals. The device could be part of a system which 
contains one or more of additional processors, memory, and peripherals. 
Documentation is available, not from ARM, but from the supplier of the 
individual SoC or platform.
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2.1 Architecture versions
Periodically, new versions of the architecture are announced by ARM. These add new features 
or make changes to existing behaviors. Such changes are typically backwards compatible, 
meaning that user code which ran on older versions of the architecture will continue to run 
correctly on new versions. Of course, code written to take advantage of new features will not 
run on older processors that lack these features.

In all versions of the architecture, some system features and behaviors are left as 
implementation-defined. For example, the architecture does not define cache sizes or cycle 
timings for individual instructions. These are determined by the individual processor and SoC.

Each architecture version can also define optional extensions. These may or may not be 
implemented in a particular implementation of a processor. For example, in the ARMv7 
architecture, the Advanced SIMD (NEON) technology is available as an optional extension, and 
we describe this at length in Chapter 8 Introducing NEON.

The ARMv7 architecture also has the concept of profiles. These are variants of the architecture 
describing processors targeting different markets and usages.

The profiles are as follows:

A The Application profile defines an architecture aimed at high performance 
processors, supporting a virtual memory system using a Memory Management 
Unit (MMU) and therefore capable of running complex operating systems. 
Support for the ARM and Thumb instruction sets is provided.

R The Real-time profile defines an architecture aimed at systems that need 
deterministic timing and low interrupt latency and which do not need support for 
a virtual memory system and MMU, but instead use a simpler memory protection 
unit (MPU). 

M The Microcontroller profile defines an architecture aimed at low cost and low 
performance systems, where low-latency interrupt processing is vital. It uses a 
different exception handling model to the other profiles and supports only a 
variant of the Thumb instruction set.

Throughout this book, our focus will be on version 7 of the architecture (ARMv7), particularly 
ARMv7-A, the Application profile. This is the most recent version of the architecture. It is 
implemented by all Cortex-A series processors, and by processors from Marvell and 
Qualcomm. We will, where appropriate, point out differences between ARMv7 and older 
versions of the architecture.
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2.2 Architecture history and extensions
In this section, we look briefly at the development of the architecture through previous versions. 
Readers unfamiliar with the ARM architecture shouldn’t worry if parts of this description use 
terms they don’t know, as we’ll describe all of these topics in the following chapters.

The ARM architecture changed relatively little between the first test silicon in the mid-1980s 
through to the first ARM6 and ARM7 devices of the early 1990s. In the first version of the 
architecture, the majority of the load, store and arithmetic operations along the exception model 
and register set was implemented by the ARM1. Version 2 added multiply and 
multiply-accumulate instructions and support for coprocessors, plus some further innovations. 
These early processors only supported 26-bits of address space. Version 3 of the architecture 
separated the program counter and program status registers and added several new modes, 
enabling support for 32-bits of address space. Version 4 adds support for halfword load and store 
operations and an additional kernel-level privilege mode.

The ARMv4T architecture, which introduced the Thumb (16-bit) instruction set, was 
implemented by the ARM7TDMI® and ARM9TDMI® processors, products which have shipped 
in their billions. The ARMv5TE architecture added improvements for DSP-type operations and 
saturated arithmetic and to ARM/Thumb interworking. ARMv6 made a number of 
enhancements, including support for unaligned memory accesses, significant changes to the 
memory architecture and for multi-processor support, plus some support for SIMD operations 
operating on bytes or halfwords within the 32-bit registers. It also provided a number of optional 
extensions, notably Thumb-2 and Security Extensions (TrustZone). Thumb-2 extends Thumb to 
be a mixed length (16-bit and 32-bit) instruction set. The ARMv7-A architecture makes the 
Thumb-2 extensions mandatory and adds the Advanced SIMD extensions (NEON), described 
in Chapter 8 and Chapter 20.

For a number of years, ARM adopted a sequential numbering system for processors with ARM9 
following ARM8, which came after ARM7. Various numbers and letters were appended to the 
base family to denote different variants. For example, the ARM7TDMI processor has T for 
Thumb, D for Debug, M for a fast multiplier and I for EmbeddedICE. 

For the ARMv7 architecture, ARM Limited adopted the brand name Cortex for many of its 
processors, with a supplementary letter indicating which of the three profiles (A, R, or M) the 
processor supports. Figure 2-1 on page 2-5 shows how different versions of the architecture 
correspond to different processor implementations. The figure is not comprehensive and does 
not include all architecture versions or processor implementations.
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Figure 2-1 Architecture and processors

In Figure 2-2, we show the development of the architecture over time, illustrating additions to 
the architecture at each new version. Almost all architecture changes are backwards-compatible, 
meaning software written for the ARMv4T architecture can still be used on ARMv7 processors.

Figure 2-2 Architecture history
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we will briefly introduce a number of architecture elements.
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2.2.1 DSP multiply-accumulate and saturated arithmetic instructions

These instructions, added in the ARMv5TE architecture, improve the capability for digital 
signal processing and multimedia software and are denoted by the letter E. The new instructions 
provide many variations of signed multiply-accumulate, saturated add and subtract, and count 
leading zeros and are present in all later versions of the architecture. In many cases, this made 
it possible to remove a simple separate DSP from the system.

2.2.2 Jazelle

Jazelle-DBX (Direct Bytecode eXecution) was introduced in ARMv5TEJ to accelerate Java 
performance while conserving power. A combination of increased memory availability and 
improvements in just-in-time (JIT) compilers have since reduced its value in application 
processors. As a result, many ARMv7-A processors do not implement this hardware 
acceleration.

Jazelle-DBX is best suited to providing high performance Java in systems with very limited 
memory (for example, feature phone or low-cost embedded use). In today’s systems, it is mainly 
used for backwards compatibility.

2.2.3 Thumb Execution Environment (ThumbEE)

Introduced and required in ARMv7-A, ThumbEE is sometimes referred to as Jazelle-RCT 
(Runtime Compilation Target). It involves small changes to the Thumb instruction set that make 
it a better target for code generated at runtime in controlled environments (for example, by 
managed languages like Java, Dalvik, C#, Python or Perl). 

ThumbEE is designed to be used by Just-In-Time (JIT) or Ahead-Of-Time (AOT) compilers, 
where it can reduce the code size of recompiled code. Compilation of managed code is outside 
the scope of this document.

2.2.4 Thumb-2

Thumb-2 technology was introduced in ARMv6T2, and is required in ARMv7. This technology 
extends the original 16-bit Thumb instruction set to include 32-bit instructions. The combined 
16-bit and 32-bit Thumb instruction set achieves similar code density to the original Thumb 
instruction set, but with performance similar to the 32-bit ARM instruction set. The resulting 
Thumb instruction set provides virtually all the features of the ARM instruction set, plus some 
additional capabilities.

2.2.5 Security Extensions (TrustZone)

The optional Security Extensions referred to as TrustZone introduced with ARMv6K have been 
implemented in all ARM Cortex-A processors. TrustZone provides a separate Secure world to 
isolate sensitive code and data from the normal world that contains the operating system and 
applications. The software in the Secure world is therefore intended to provide security services 
to the Normal (non-secure) world applications. TrustZone is described in more detail in 
Chapter 26 Security.

2.2.6 VFP

Before ARMv7, the VFP extension was called the Vector Floating-Point Architecture, and was 
used for vector operations. VFP is an extension which implements single-precision and 
optionally, double-precision floating-point arithmetic, compliant with the ANSI/IEEE Standard 
for Floating-Point Arithmetic.
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2.2.7 Advanced SIMD (NEON)

The ARM NEON technology provides an implementation of the Advanced SIMD instruction 
set, with separate register files (shared with VFP). Some implementations have a separate 
NEON pipeline back-end. It supports 8, 16, 32 and 64-bit integer, and single-precision (32-bit) 
floating-point data, which can be operated on as vectors in 64-bit and 128-bit registers.

2.2.8 Large Physical Address Extension (LPAE)

LPAE is optional in the v7-A architecture and is presently supported by the Cortex-A7 and 
Cortex-A15 processors. It allows 32-bit processors that are normally limited to addressing a 
maximum of 4GB or RAM to access up to 1TB of memory by translating 32-bit virtual memory 
addresses into 40-bit physical memory addresses. See Large Physical Address Extensions on 
page 10-19.

2.2.9 Virtualization

The ARM processor Virtualization Extensions are optional extensions to the ARMv7-A 
architecture profile. The extensions support the use of a virtual machine monitor, known as the 
hypervisor, to switch from one operating system to another. When implemented in a 
uniprocessor or in a multiprocessor system, the Virtualization Extensions support running 
multiple virtual machines on a single processor. See Chapter 27 Virtualization.

2.2.10 big.LITTLE

big.LITTLE processing was introduced in ARMv7 to address one of industry's current 
challenges, namely how to create a System on Chip (SoC) that provides both high performance 
as well as power efficiency, to extend battery life. big.LITTLE uses a high performance 
Cortex-A15 processor, coupled with an energy efficient Cortex-A7 processor. The Cortex-A15 
processor can be utilized for heavy workloads, while the Cortex-A7 processor can take over for 
the majority of mobile device workloads. big.LITTLE is described in more detail in Chapter 28 
Introducing big.LITTLE.
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2.3 Key architectural points of ARM Cortex-A series processors
A number of key points are common to the Cortex-A family of devices:

• 32-bit RISC processor, with 16 × 32-bit visible registers with mode-based register 
banking.

• Modified Harvard Architecture (separate, concurrent access to instructions and data).

• Load/Store Architecture.

• Thumb-2 technology as standard.

• VFP and NEON options which are expected to become standard features in general 
purpose applications processors.

• Backward compatibility with code from previous ARM processors.

• 4GB of virtual address space and a minimum of 4GB of physical address space.

• Hardware page table walking for virtual to physical address translation.

• Virtual page sizes of 4KB, 64KB, 1MB and 16MB. Cacheability attributes and access 
permissions can be set on a per-page basis.

• Big-endian and little-endian data access support.

• Unaligned access support for basic load/store instructions.

• SMP support on MPCore™ variants, with full data coherency from the L1 cache level. 
Automatic cache and Translation Lookaside Buffer (TLB) maintenance propagation 
provides high efficiency SMP operation.

• Physically indexed, physically tagged (PIPT) data caches. 
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2.4 Processors and pipelines
In this section, we briefly look at some ARM processors and identify which processor 
implements which architecture version. In The Cortex-A series processors on page 2-11 we take 
a slightly more detailed look at some of the individual processors which implement architecture 
version v7-A, which forms the main focus of this book. Some terminology will be used in this 
chapter which may be unfamiliar to the first-time user of ARM processors and which will not 
be explained until later in the book. 

Table 2-1 lists the architecture version implemented by a number of older ARM processors.

Table 2-2 lists the architecture version implemented by the Cortex family of processors.

Table 2-3 on page 2-10 compares the properties of Cortex-A series processors. For additional 
information on the processor cache, see Table 9-1 on page 9-11.

Table 2-1 Older ARM processors and architectures

Architecture version Applications processor Embedded processor

v4T ARM720T™

ARM920T™

ARM922T™

ARM7TDMI™

v5TE ARM946E-S™

ARM966E-S™

ARM968E-S

v5TEJ ARM926EJ-S™

v6K ARM1136J(F)-S™

ARM11™ MPCore™

v6T2 ARM1156T2-S™

v6K + security extensions ARM1176JZ(F)-S™

Table 2-2 Cortex processors and architecture versions

v7-A (Applications) v7-R (Real Time) v6-M/v7-M (Microcontroller)

Cortex-A5 (Single/MP) Cortex-R4 Cortex-M0+ (ARMv6-M)

Cortex-A7 (MP) Cortex-R5 Cortex-M0 (ARMv6-M)

Cortex-A8 (Single) Cortex-R7 Cortex-M1™ (ARMv6-M)

Cortex-A9 (Single/MP) Cortex-M3™ (ARMv7-M)

Cortex-A15 (MP) Cortex-M4(F) (ARMv7E-M)
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Table 2-3 Comparison of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

Release date Dec 2009 Oct 2011 July 2006 March 2008 April 2011

Clock speed ~1GHz ~1GHz on 28nm ~1GHz on 65nm ~2GHz on 40nm ~2.5GHz on 28nm

Execution order In-order In-order In-order Out of order Out of order

Cores (Multicore 
support)

1 to 4 1 to 4 1 1 to 4 1 to 4

Peak throughput 1.6DMIPS/MHz 1.9DMIPS/MHz 2DMIPS/MHz 2.5DMIPS/MHz 3.5DMIPS/MHz

VFP/NEON 
architecture

VFPv4/NEON VFPv4/NEON VFPv3/NEON VFPv3/NEON VFPv4/NEON

Half precision 
extension

Yes Yes No Yes Yes

FP/NEON register 
renaming

No No No No Yes

GP register renaming No No No Yes Yes

Hardware Divide No Yes No No Yes

Fused Multiply 
Accumulate

Yes Yes No No Yes

Pipeline stages 8 8 13 9 to 12 15+

Decodes 1 Partial dual 
issue

2 2 3

Return stack entries 4 8 8 8 48

Floating Point Unit Optional Optional Yes Optional Optional

AMBA interface 64-bit I/F 
AMBA 3

128-bit I/F 
AMBA 4

64 or 128-bit I/F 
AMBA 3

2× 64-bit I/F 
AMBA 3

128-bit I/F 
AMBA 4
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2.5 The Cortex-A series processors
In this section, we take a closer look at each of the processors that implement the ARMv7-A 
architecture. Only a general description is given in each case, for more specific information on 
each processor, see Table 2-3 on page 2-10 and Table 9-1 on page 9-11.

2.5.1 The Cortex-A5 processor

The Cortex-A5 processor supports all ARMv7-A architectural features, including the TrustZone 
Security Extensions and the NEON Media Processing Engine. It is extremely area and power 
efficient, but has lower maximum performance than other Cortex-A series processors. Both 
single and multi-core versions of the Cortex-A5 processor are available.

Figure 2-3 Block diagram of a single core Cortex-A5 processor

The Cortex-A5 processor shown in Figure 2-3 can dual-issue a branch instruction with a 
preceding non-branch instruction in some circumstances and contains sophisticated branch 
prediction logic to reduce penalties associated with pipeline refills. Both NEON and 
floating-point hardware support are optional. It supports the ARM and Thumb instruction sets 
plus the Jazelle-DBX and Jazelle-RCT technology. 

2.5.2 The Cortex-A7 processor

The Cortex-A7 MPCore processor is a high-performance, low-power processor fully 
compatible with other Cortex-A series processors described in this book. 
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Figure 2-4 Block diagram of single core Cortex-A7 processor

The Cortex-A7 processor incorporates all of the features of the high-performance Cortex-A15 
processor including virtualization, Large Physical Address Extensions (LPAE), NEON, and 
AMBA 4 ACE coherency.

The Cortex-A7 MPCore processor has the following features:

• Improved memory management and bus interface.

• LPAE, addressing up to 1TB of memory.

• Multiple coherent multi-core processor clusters through AMBA4 technology.

• AMBA4 Cache Coherent Interconnect (CCI) allowing full cache coherency between 
multiple Cortex-A7 MPCore processors.
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2.5.3 The Cortex-A8 processor

The Cortex-A8 processor was the first to implement the ARMv7-A architecture. It is available 
in a number of different devices, including the S5PC100 from Samsung, the OMAP3530 from 
Texas Instruments and the i.MX515 from Freescale. A wide range of device performances are 
available, with some giving clock speeds of more than 1GHz. 

The Cortex-A8 processor has a considerably more complex micro-architecture compared with 
previous ARM processors. 

Figure 2-5 is a block diagram showing the internal structure of the Cortex-A8 processor, 
including the pipelines.

Figure 2-5 Block diagram of Cortex-A8 processor

The separate instruction and data level 1 caches are 16KB or 32KB in size. They are 
supplemented by an integrated, unified level 2 cache, which can be up to 1MB in size. The level 
1 data cache and level 2 cache both have a 128-bit wide data interface to the processor. The level 
1 data cache is virtually indexed, but physically tagged, while level 2 uses physical addresses 
for both index and tags. Data used by NEON is, by default, not allocated to L1 (although NEON 
can read and write data that is already in the L1 data cache).
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2.5.4 The Cortex-A9 processor

The Cortex-A9 MPCore processor and the Cortex-A9 single processor provide higher 
performance than the Cortex-A5 or Cortex-A8 processor. ARM, Thumb, Thumb-2, TrustZone, 
both Jazelle RCT and DBX technologies are all supported.

The level 1 cache system provides hardware support for cache coherency for between one and 
four processors for multi-core software. ARM supplies an external level 2 cache controller 
(L2C-310, previously called the PL310) which supports caches of up to 8MB in size. The 
processor also contains an integrated interrupt controller, an implementation of the ARM 
Generic Interrupt Controller (GIC) architecture specification. This can be configured to provide 
support for up to 224 interrupt sources.

Figure 2-6 Block diagram of single core Cortex-A9 processor

Devices containing the Cortex-A9 processor include nVidia’s dual-core Tegra-2, the 
SPEAr1300 from ST and TI’s OMAP4 platform.

2.5.5 The Cortex-A15 processor

The Cortex-A15 MPCore processor is currently the highest performance ARM processor and is 
application compatible with the other ARM processors described in this book. The Cortex-A15 
MPCore processor introduced some new capabilities, including support for full hardware 
virtualization and Large Physical Address Extension (LPAE), which enables addressing of up to 
1TB of memory. 
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Figure 2-7 Block diagram of single core Cortex-A15 processor

The Cortex-A15 MPCore processor has the following features:

• An out-of-order superscalar pipeline.

• Tightly-coupled low-latency level-2 cache (up to 4MB in size).
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• Error correction capability for fault-tolerance and soft-fault recovery.

• Multiple coherent multi-core processor clusters through AMBA4 technology.

• AMBA4 Cache Coherent Interconnect (CCI) allowing full cache coherency between 
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2.5.6 Qualcomm Scorpion

ARM is not the only company which designs processors compliant with the ARMv7-A 
instruction set architecture. In 2005, Qualcomm Inc. announced that it was creating its own 
implementation under license from ARM, with the name Scorpion. The Scorpion processor is 
available as part of Qualcomm’s Snapdragon platform, which contains the features necessary to 
implement netbooks, smartphones or other mobile internet devices.

Relatively little information has been made publicly available by Qualcomm, although it has 
been mentioned that Scorpion has a number of similarities with the Cortex-A8 processor. It is 
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subtracts), while the other is 12 stages and can execute all data processing operations, including 
multiplies. Scorpion also has a 23-stage floating-point/SIMD pipeline, and VFPv3 operations 
are pipelined. 

We will not specifically mention Scorpion again in this book. However, as the processor 
conforms to the ARMv7-A architecture specification, most of the information presented here 
will apply also to Scorpion.
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Chapter 3 
Tools, Operating Systems and Boards

ARM processors can be found in a very wide range of devices, running a correspondingly wide 
range of software. Many readers will have ready access to appropriate hardware, tools and 
operating systems, but before we proceed to look at the underlying architecture, it might be useful 
to some readers to present an overview of some of these readily available compilation tools, ARM 
processor based hardware and Linux operating system distributions. 

In this chapter, we will provide a brief mention of a number of interesting commercially available 
development boards. We will provide some information about the Linux operating system and 
some useful associated tools. However, information about open source software and off-the-shelf 
boards is likely to change rapidly.
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3.1 Linux distributions
Linux is a UNIX-like operating system kernel, originally developed by Linus Torvalds, who 
continues to maintain the official kernel. It is open source, distributed under the GNU Public 
License, widely-used and available on a large number of different processor architectures. 

The Linux kernel is bundled with libraries and applications to make up a complete operating 
system in what is called a “Linux distribution”. A number of free Linux distributions exist for 
ARM processors, including Debian, Ubuntu, Fedora and Gentoo. 

3.1.1 Linux for ARM systems

Support for the ARM architecture has been included in the standard Linux kernel for many 
years. Development of this port is ongoing, with significant input from ARM to provide kernel 
support for new processors and architecture versions. 

You may wonder why a book about the Cortex-A series processors contains information about 
Linux. There are several reasons for this. Linux source code is available to all readers and 
represents a useful learning resource. In addition there are many useful resources with existing 
code and explanations. Many readers will be familiar with Linux, as it can be run on most 
processor architectures. By explaining how Linux features like virtual memory, multi-tasking, 
shared libraries and so forth are implemented, readers will be able to apply their understanding 
to other operating systems commonly used on ARM processors. The scalability of Linux is 
another factor – it can run on the most powerful ARM processors. and its derivative, uClinux, 
is also commonly used on much smaller processors, including the Cortex-M3 or ARM7TDMI 
processors. It can run on both the ARM and Thumb Instruction Set Architectures, using 
little-endian or big-endian data accesses and with or without a memory management unit.

One of the benefits of a modern operating system is that you do not need to know much detail 
about the underlying hardware in order to develop application software for it. This book focuses 
on the Cortex-A series of processors, and provides information about how to develop software 
that will run transparently on all of them.

In this book, we can merely scratch the surface of what there is to be said about Linux 
development. What we hope to do here is to show some ways in which programming for an 
ARM architecture based system differs from an x86 environment and to give some pointers to 
useful tools, which you might wish to investigate further.

3.1.2 Linux terminology

Here, we define some terms which we will use when describing how the Linux kernel interacts 
with the underlying ARM architecture:

Process A process is the kernel's view of an executing unprivileged application. The same 
application (for example, bin/bash) can be running in several simultaneous 
instances in the system – and each of these instances will be a separate process. 
The process has resources associated with it, such as a memory map and file 
descriptors. A process can consist of one or more threads.

Thread A thread is a context of software execution within a process. It is the entity which 
is scheduled by the kernel, and actually executes the instructions that make up the 
application. A process can consist of multiple threads, each executing with their 
own program counter, stack pointer and register set – all existing within the same 
memory map and operating on the file descriptors held by the process as a whole. 
In a multi-processor system, threads inside the same process can execute 
concurrently on separate processors. Different threads within the same process 
can be configured to have different scheduling priorities.
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There are also threads executing inside the kernel, to manage various tasks 
asynchronously, such as file cache management, or watchdog tickling (which is 
not as exciting as it sounds). 

Scheduler This is a vital part of the kernel which has a list of all the current threads. It knows 
which threads are ready to be run and which are currently not able to run. It 
dynamically calculates priority levels for each thread and schedules the highest 
priority thread to be run next. It is called after an interrupt has been handled. The 
scheduler is also explicitly called by the kernel via the schedule() function, for 
example, when an application executing a system call needs to sleep. The system 
will have a timer based interrupt which results in the scheduler being called at 
regular intervals. This enables the OS to implement time-division multiplexing, 
where many threads share the processor, each running for a certain amount of 
time, giving the user the illusion that many applications are running 
simultaneously.

System calls Linux applications run in User (unprivileged) mode. Many parts of the system are 
not directly accessible in User mode. For example, the kernel might prevent User 
mode programs from accessing peripherals, kernel memory space and the 
memory space of other User mode programs. Access to some features of the 
system control coprocessor (CP15) is not permitted in User mode. The kernel 
provides an interface (via the SVC instruction) which permits an application to call 
kernel services, this is what forms a system call. Execution is transferred to the 
kernel through the SVC exception handler, which returns to the user application 
when the system call is complete.

Libraries Linux applications are, with very few exceptions, not loaded as complete 
pre-built binaries. Instead, the application relies on external support code linked 
from files called shared libraries. This has the advantage of saving memory space, 
in that the library only needs to be loaded into RAM once and is more likely to be 
in the cache as it can be used by other applications. Also, updates to the library 
do not require every application to be rebuilt. However, this dynamic loading 
means that the library code must not rely on being in a particular location in 
memory.

Files These are essentially blocks of data which are referred to using a pathname 
attached to them. Device nodes have pathnames like files, but instead of being 
linked to blocks of data, they are linked to device drivers which handle real I/O 
devices like an LCD display, disk drive or mouse. When an application opens, 
reads from or writes to a device, control is passed to specific routines in the kernel 
that handle that device.

3.1.3 Embedded Linux

Linux-based systems cover the range from servers, via the desktop, through mobile devices, 
right down to high-performance micro-controllers in the form of uClinux for processors lacking 
an MMU. However, while the kernel source code base is the same, different priorities and 
constraints mean that there can be some fundamental differences between the Linux running on 
your desktop and the one running in your set-top box, as well as between the development 
methodologies used.

In a desktop system, a form of bootloader executes from ROM – be it BIOS or UEFI. This has 
support for mass-storage devices and can then load a second-stage loader (for example GRUB) 
from a CD, a hard drive or even a USB memory stick. From this point on, everything is loaded 
from a general-purpose mass storage device.
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In an embedded device, the initial bootloader is likely to load a kernel directly from on-board 
flash into RAM and execute it. In severely memory constrained systems, it might have a kernel 
built to execute in place (XiP), where all of the read-only portions of the kernel remain in ROM, 
and only the writable portions use RAM. Unless the system has a hard drive (or for fault 
tolerance reasons), the root filesystem on the device is likely to be located in flash. This can be 
a read-only filesystem, with portions that need to be writable overlaid by tmpfs mounts, or it can 
be a read-write filesystem. In both cases, the storage space available is likely to be significantly 
less than in a typical desktop computer. For this reason, they might use software components 
such as uClibc and BusyBox to reduce the overall storage space required for the base system. A 
general desktop Linux distribution is usually supplied preinstalled with a lot of software that you 
might find useful at some point. In a system with limited storage space, this is not really optimal. 
Instead, you want to be able to select exactly the components you need to achieve what you want 
with your system. Various specific embedded Linux distributions exist to make this easier.

In addition, embedded systems often have lower performance than general purpose computers. 
In this situation, speed of development can be significantly increased by compiling software for 
the target device on a faster desktop computer and then moving it across to the target device. 
This process is called cross-compiling.

3.1.4 Board Support Package

Getting Linux to run on a particular platform requires a Board Support Package (BSP). We can 
divide the platform-specific code into a number of areas:

• Architecture-specific code. This is found in the arch/arm/ directory of the Linux kernel 
source code and forms part of the kernel porting effort carried out by the ARM Linux 
maintainers. 

• Processor-specific code. This is found in the arch/arm/mm/ and arch/arm/include/asm/ 
directories of the Linux kernel source code. This takes care of MMU and cache functions 
(for example, page table setup, Translation Lookaside Buffer and cache invalidation and 
memory barriers). On SMP processors, spinlock code will be enabled.

• Generic device drivers are found under drivers/.

• Platform-specific code will be placed in the arch/arm/mach-*/ directory of the Linux 
kernel source code. This is code which is most likely to be altered by people porting to a 
new board containing a processor with existing Linux support. The code will define the 
physical memory map, interrupt numbers, location of devices and any initialization code 
specific to that board.

3.1.5 Linaro

Linaro is a non-profit organization which works on a range of open source software running on 
ARM processors, including kernel related tools and software and middleware. It is a 
collaborative effort between a number of technology companies to provide engineering help and 
resources to the open source community.

Linaro does not produce a Linux distribution, nor is it tied to any particular distribution or board. 
Instead, Linaro works on generic ARM technology to provide a common software platform for 
use by board support package developers. Its focus is on tools to helping developers write and 
debug code, on low-level software which interacts with the underlying hardware and on key 
pieces of middleware. Linaro's members have a reduced time to market and can deliver unique 
open source based products using ARM technology.

Linaro engineers work on the kernel and tools, graphics and multimedia and power 
management. Linaro provides patches to upstream projects and makes monthly source tree 
tarballs available, with an occasional integrated build every six months to consolidate the work. 
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In this way, code can easily be transferred to the mainline Linux kernel and other open source 
projects. Evaluation builds of Android and Ubuntu, plus generic Linux, toolchain and other 
downloads for ARMv7 processors are available from http://www.linaro.org/downloads/.

See http://www.linaro.org/ for more information about Linaro.
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3.2 Useful tools
Let’s take a brief look at some available tools which can be useful to developers of ARM 
architecture based Linux systems. These are all extensively documented elsewhere. In this 
section, we merely point out that these tools can be useful, and provide short descriptions of 
their purpose and function.

3.2.1 QEMU

QEMU is a fast, open source machine emulator. It was originally developed by Fabrice Bellard 
and is available for a number of architectures, including ARM. It can run operating systems and 
applications made for one machine (for example, an ARM processor) on a different machine, 
such as a PC or Mac. It uses dynamic translation of instructions and can achieve useful levels 
of performance, enabling it to boot complex operating systems like Linux, without the need for 
any target hardware. 

3.2.2 BusyBox

BusyBox is a piece of open source software which provides many standard Unix tools, in a very 
small executable, which is ideal for many embedded systems and could be considered to be a 
de facto standard. It includes most of the Unix tools which can be found in the GNU Core 
Utilities, and many other useful tools including init, dhclient, wget and tftp. Less commonly 
used command switches are removed. 

BusyBox calls itself the “Swiss Army Knife of Embedded Linux” – a reference to the large 
number of tools packed into a small package. BusyBox is a single binary executable which 
combines many applications. This reduces the overheads introduced by the executable file 
format and enables code to be shared between multiple applications without needing to be part 
of a library.

3.2.3 Scratchbox

The general principle of cross-compiling is to use one system (the host) to compile software 
which runs on some other system (the target). 

The target is a different architecture to the host and so the host cannot natively run the resulting 
image. For example, you might have a powerful desktop x86 machine and want to develop code 
for a small battery-powered ARM processor based device which has no keyboard. Using the 
desktop machine will make code development simpler and compilation faster. There are some 
difficulties with this process. Some build environments will try to run programs on the target 
machine during compilation, and of course this is not possible. In addition, tools which during 
the build process try to discover information about the machine (for software portability 
reasons), do not work correctly when cross-compiling.

Scratchbox is a cross-compilation toolkit which solves these problems and gives the necessary 
tools to cross-compile a complete Linux distribution. It can use either QEMU or a target board 
to execute the cross-compiled binaries it produces.

3.2.4 U-Boot

Das U-Boot (Universal Bootloader) is a universal bootloader that can easily be ported to new 
hardware processors or boards. It provides serial console output which makes it easy to debug 
and is designed to be small and reliable. In an x86 system, we have BIOS code which initializes 
the processor and system and then loads an intermediate loader such as GRUB or syslinux, 
which then in turn loads and starts the kernel. U-Boot essentially covers both functions.
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3.2.5 UEFI and Tianocore

The Unified Extensible Firmware Interface (UEFI) is the specification of a programmable 
software interface that sits on top a computer’s hardware and firmware. Rather than all of the 
boot code being stored in the motherboard’s BIOS, UEFI sits in non-volatile memory. A 
computer boots into UEFI, a set of actions are carried out, before loading an operating system, 
such as Windows or Linux. While BIOS is limited to 16-bit processes and 1MB of memory 
addressing, UEFI can function in 32-bit and 64-bit modes, allowing much more RAM to be 
addressed by more complex processes. It also can be architecture independent and provide 
drivers for components that are also independent of what kind of processor you have. The UEFI 
forum is a non-profit collaborative trade organization formed to promote and manage the UEFI 
standard.

UEFI is processor architecture independent and the Tianocore EFI Development Kit 2 (EDK2) 
is available under a BSD license. It contains UEFI support for ARM platforms, including ARM 
Versatile Express boards and the BeagleBoard (see BeagleBoard on page 3-13).

See http://www.uefi.org and http://sourceforge.net/apps/mediawiki/tianocore for more 
information. 
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3.3 Software toolchains for ARM processors
There are a wide variety of compilation and debug tools available for ARM processors. In this 
section, we will focus on two toolchains (a collection of programming tools), the GNU toolchain 
which includes the GNU Compiler (gcc), and the ARM Compiler toolchain which includes the 
armcc compiler.

Figure 3-1 shows how the various components of a software toolchain interact to produce an 
executable image.

Figure 3-1 Using a software toolchain to produce an image

3.3.1 GNU toolchain

The GNU toolchain is used both to develop the Linux kernel and to develop applications (and 
indeed other operating systems). Like Linux, the GNU tools are available on a large number of 
processor architectures and are actively developed to make use of the latest features 
incorporated in ARM processors.

The toolchain includes the following components:

• GNU make.

• GNU Compiler Collection (GCC).

• GNU binutils linker, assembler and other object/library manipulation tools.

• GNU Debugger (GDB).

• GNU build system (autotools).

• GNU C library (glibc or eglibc).
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glibc is available on all GNU Linux host systems and provides portability, wide compliance with 
standards, and is performance optimized. However, it is quite large for some embedded systems 
(approaching 2MB in size) so other libraries may be preferred in smaller systems. For example, 
uClibc provides most features and is around 400KB in size, and produces significantly smaller 
application binaries. Android does not use glibc, but instead has its own BSD-derived system C 
library called Bionic.

Prebuilt versions of GNU toolchains

If you are using a complete Linux distribution on your target platform, and you are not 
cross-compiling, you can install the toolchain packages using the standard package manager. 
For example, on a Debian-based distribution such as Ubuntu you can use the command:

sudo apt-get install gcc g++ gcc-doc

Additional required packages such as binutils will also be pulled in by this command, or you 
can add them explicitly on the command line. In fact, if g++ is specified this way, gcc is 
automatically pulled in. This toolchain will then be accessible in the way you would expect in 
any Linux system, by just calling gcc, g++, as, or similar.

If you are cross-compiling, you will need to install a suitable cross-compilation toolchain. The 
cross-compilation toolchain consists of the GNU Compiler Collection (GCC) but also the GNU 
C library (glibc) which is necessary for building applications (but not the kernel).

Ubuntu distributions from Maverick (10.10) onwards include specific packages for this. These 
can be run using the command:

sudo apt-get install gcc-arm-linux-gnueabi

The resulting toolchain will be able to build Linux kernels, applications and libraries for the 
same Ubuntu version that is used on the build platform. It will however, have a prefix added to 
all of the individual tool commands in order to avoid problems distinguishing it from the native 
tools for the workstation. For example, the cross-compiling gcc will be accessible as 
arm-linux-gnueabi-gcc.

If your workstation uses an older Ubuntu distribution or an alternative Linux distribution, 
another toolchain must be used. 

Linaro provide up-to-date source packages for ARM toolchains from 
http://www.linaro.org/downloads/. These can be used for generating both cross and native 
toolchains.

3.3.2 ARM Compiler toolchain

The ARM Compiler toolchain can be used to build programs from C, C++, or ARM assembly 
language source. It generates optimized code for the 32-bit ARM and mixed length (16-bit and 
32-bit) Thumb instruction sets, and supports full ISO standard C and C++. It also supports the 
NEON SIMD instruction set with the vectorizing (multiple operations simultaneously) NEON 
compiler.

The ARM Compiler toolchain comprises the following components:

armcc The ARM and Thumb compiler. This compiles your C and C++ code. It supports 
inline and embedded assembly code, and also includes the NEON vectorizing 
compiler, invoked using the command:
armcc --vectorize

armasm The ARM and Thumb assembler. This assembles ARM and Thumb assembly 
language sources.
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armlink The linker. This combines the contents of one or more object files with selected 
parts of one or more object libraries to produce an executable program.

armar The librarian. This enables sets of ELF format object files to be collected together 
and maintained in libraries. You can pass such a library to the linker in place of 
several ELF files. You can also use the library for distribution to a third party for 
further application development.

fromelf The image conversion utility. This can also generate textual information about the 
input image, such as disassembly and its code and data size.

C libraries The ARM C libraries provide:
• an implementation of the library features as defined in the C and C++ 

standards
• extensions specific to the ARM Compiler
• GNU extensions
• common nonstandard extensions to many C libraries
• POSIX extended functionality
• functions standardized by POSIX (See Threading libraries on page 23-5).

C++ libraries 
The ARM C++ libraries provide:
• helper functions when compiling C++
• additional C++ functions not supported by the Rogue Wave library.

Rogue Wave C++ libraries 
The Rogue Wave library provides an implementation of the standard C++ library.
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3.4 ARM DS-5
ARM DS-5 is a professional software development solution for Linux, Android and bare-metal 
embedded systems based on ARM processor based hardware platforms. DS-5 covers all the 
stages in development, from boot code and kernel porting to application debug. See 
http://www.arm.com/products/tools/software-tools/ds-5/index.php.

ARM DS-5 features an application and kernel space graphical debugger with trace, system-wide 
performance analyzer, real-time system simulator, and compiler. These features are included in 
an Eclipse-based IDE. 

Figure 3-2 DS-5 Debugger

A full list of the hardware platforms that are supported by DS-5 is available from 
http://www.arm.com/products/tools/software-tools/ds-5/supported-platforms.php.

ARM DS-5 includes the following components:

• Eclipse-based IDE combines software development with the compilation technology of 
the DS-5 tools. Tools include a powerful C/C++ editor, project manager and integrated 
productivity utilities such as the Remote System Explorer (RSE), SSH and Telnet 
terminals.

• DS-5 Compilation Tools. Both GCC and the ARM Compiler are provided. See ARM 
Compiler toolchain on page 3-9 for more information about the ARM Compiler.

• Real-time simulation models (RTSMs) of complete ARM Cortex-A8 and Cortex-A9 
MPCore processor-based devices. Typical simulation speeds are above 250 MHz.
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• The DS-5 Debugger, shown in Figure 3-2 on page 3-11, together with a supported debug 
target, enables debugging of bare-metal applications, Linux kernel, Linux applications 
and Linux kernel modules. It gives complete control over the flow of program execution 
to quickly isolate and correct errors. It provides comprehensive and intuitive views, 
including synchronized source and disassembly, call stack, memory, registers, 
expressions, variables, threads, breakpoints, and trace and a number of Example projects, 
including bare-metal startup code examples for the range of ARM processors, and Linux 
applications example projects that can run models or (via JTAG-based debug hardware) 
on real hardware.

• DS-5 Streamline, a system-wide software profiling and performance analysis tool for 
ARM processor based Linux and Android platforms. DS-5 Streamline supports SMP 
configurations, native Android applications and libraries. 
Streamline only requires a standard TCP/IP network connection to the target in order to 
acquire and analyze system-wide performance data from Linux and Android systems, 
therefore making it an affordable solution to make software optimization possible from 
the early stages of the development cycle.

See DS-5 Streamline on page 18-4 for more information.
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3.5 Example platforms
In this section we’ll mention a few widely available, off-the-shelf ARM processor based 
platforms which are suitable for use by students or hobbyists for Linux development. This list 
is likely to become outdated quickly, as newer and better boards are frequently announced. Of 
course, for mobile application development, your nearest smartphone is a good development 
platform.

3.5.1 BeagleBoard 

The BeagleBoard is a readily available, inexpensive board which provides performance levels 
similar to that of a laptop from a single fan-less board, powered through a USB connection. It 
contains an OMAP device from Texas Instruments, which includes a Cortex-A8 processor with 
a 256KB level 2 cache. It is intended for use by the Open Source community and not to form a 
part of any commercial product. It has been released in different versions with different amounts 
of RAM, and clocked at different speeds. Since the design was also freely published, several 
other cloned or derivative boards have also been produced by third parties.

3.5.2 Pandora

The Pandora device also uses OMAP3530 (a Cortex-A8 processor clocked at 600MHz). It has 
controls typically found on a gaming console and in fact, looks like a typical handheld gaming 
device, with an 800x480 LCD. 

3.5.3 ST Ericsson Snowball

The Snowball developer board was introduced to drive the software innovation for Android, 
Linux and Linaro based embedded devices on the NovaTM A9500 platform. Snowball 
combines ST-Ericsson's Nova A9500 featuring a dual-core Cortex-A9 processor at 1 GHz and 
Mali-400 MP GPU with GPS and advanced connectivity plus a complete set of 
STMicroelectronics sensors, including a 3D gyroscope, accelerometer, magnetometer, 
barometer.

3.5.4 Gumstix

This derives its name from the fact that the board is the same size as a stick of chewing gum. 
The Gumstix Overo uses the OMAP3503 device from TI, containing a Cortex-A8 processor 
clocked at 600MHz and runs Linux 2.6 with the BusyBox utilities and OpenEmbedded build 
environment.

3.5.5 PandaBoard

PandaBoard is a single-board computer based on the Texas Instruments OMAP4430 device, 
including a dual-core 1GHz ARM Cortex-A9 processor, a 3D Accelerator video processor and 
1GB of DDR2 RAM. Its features include Ethernet and Bluetooth plus DVI and HDMI 
interfaces. 
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Chapter 4 
ARM Registers, Modes and Instruction Sets

In this chapter, we introduce the fundamental features of ARM processors, including details of 
registers, modes and instruction sets. We will also touch on some details of processor 
implementation features including instruction pipelines and branch prediction.

The ARMv7 architecture is a 32-bit processor architecture. It is a load/store architecture, meaning 
that data-processing instructions operate on values in general purpose registers. Only load and store 
instructions access memory. General purpose registers are also 32 bits. Throughout the book, when 
we refer to a word, we mean 32 bits. A doubleword is therefore 64 bits and a halfword is 16 bits 
wide.

Though the ARMv7 architecture is a 32-bit architecture, individual processor implementations do 
not necessarily have 32-bit width for all blocks and interconnections. For example, it is possible to 
have 64-bit, or wider paths for instruction fetches or data accesses. 

Processors that implement the ARMv7-A architecture do not have a memory map which is fixed 
by the architecture. The processor has access to a 4GB virtual address space addressed as bytes, 
and both memory and peripherals can be mapped freely within that space. We will describe 
memory management further, in Chapter 9 and Chapter 10, where we look at the caches and the 
Memory Management Unit (MMU).
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4.1 Instruction sets
Historically, most ARM processors support more than one instruction set:

• ARM – a 32-bit instruction set.

• Thumb – a 16-bit instruction set, with better code density (but reduced performance 
compared with ARM code).

The processor can switch back and forth between these two instruction sets, under program 
control.

All Cortex-A series processors, implement Thumb-2 technology, which extends the Thumb 
instruction set. This gives a mixture of 32-bit and 16-bit instructions with approximately the 
code density of the original Thumb instruction set and the performance of the ARM instruction 
set. Since all Cortex-A series processors support this extension, software targeting them is often 
compiled to the Thumb instruction set. 
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4.2 Modes
The ARM architecture has nine processor modes, summarized in Table 4-1. There are eight 
privileged modes and a non-privileged User mode. Privilege is the ability to perform certain 
tasks that cannot be done from User (Unprivileged) mode. In User mode, there are limitations 
on certain operations, such as MMU access, for example, changing the operating mode is a 
privileged operation. Note that modes are associated with exception events, which are described 
further in Chapter 12 Exception Handling.

Table 4-1 ARM processor modes

Mode Encoding Function

User (USR) 10000 Unprivileged mode in which most applications run 

FIQ 10001 Entered on an FIQ interrupt exception

IRQ 10010 Entered on an IRQ interrupt exception

Supervisor
(SVC)

10011 Entered on reset or when a Supervisor Call instruction (SVC) is executed

Monitor 
(MON)

10110 With Security Extensions (Secure only). See Chapter 26

Abort (ABT) 10111 Entered on a memory access exception

Hyp (HYP) 11010 With Virtualization Extensions (Non-secure only). See Chapter 27

Undef (UND) 11011 Entered when an undefined instruction executed

System (SYS) 11111 Privileged mode, sharing the register view with User mode
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4.3 Registers
The ARM architecture has a number of general purpose registers, providing data storage within 
the body of the processor. In addition to general data storage, there is R15, the program counter, 
and a Program Status Register which contains ALU flags and other execution state information. 
Many of these registers are banked, that is, not accessible to the processor except in specific 
processor modes. These banked-out registers are automatically switched in and out when a 
different processor mode is entered. Each exception mode (which does not include System 
mode) additionally has a Saved Program Status Register containing a copy of the Program 
Status Register at the time the triggering exception was taken.

Figure 4-1 The ARM register set

So, for example, in Figure 4-1, if the processor is in IRQ mode, we can see R0, R1 … R12 (the 
same registers we can see in User mode), plus SP_IRQ and LR_IRQ (registers accessible only 
while we are in IRQ mode) and R15 (the program counter, PC). SP_USR and LR_USR are not 
directly accessible. We do not normally need to specify the mode in the register name in the way 
we have just done. If we (for example) refer to R13 in a line of code, the processor will access 
the SP register of the mode we are currently in. 

At any given moment, the programmer has access to 16 registers (R0-R15) and the Current 
Program Status Register (CPSR), explained further in Section 4.3.1. In User mode, a restricted 
form of the CPSR called the Application Program Status Register (APSR) is accessed instead. 
R15 is the program counter and holds the current program address (actually, it always points 
eight bytes ahead of the current instruction in ARM state and four bytes ahead of the current 
instruction in Thumb state, a legacy of the three stage pipeline of the original ARM1 processor). 
For more information on the CPSR, see Program Status Registers on page 4-5.
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Implementations which support the Virtualization Extensions have additional registers available 
in Hypervisor (Hyp) mode. Hyp mode has access to its own versions of R13 (SP) and SPSR. It 
uses the User mode link register as well as a dedicated new register (ELR). We'll discuss this in 
Chapter 27 Virtualization.

We can write to the PC to change the flow of the program. LR is the link register, which holds 
a return address for a function or exception (although it can occasionally be used as a general 
purpose register when not holding either of these values). R13, by convention is used as a stack 
pointer. R0-R12 are general purpose registers. Some 16-bit Thumb instructions have limitations 
on which registers they can access – the accessible subset is called the low registers and 
comprises R0-R7. Figure 4-2 shows the subset of registers visible to general data processing 
instructions. 

Figure 4-2 Programmer visible registers for user code

The reset values of R0-R14 are unpredictable. SP, the stack pointer, must be initialized (for each 
mode) by boot code before making use of the stack. The AAPCS or AEABI (see Chapter 17 
Application Binary Interfaces) specifies how software should use the general purpose registers 
in order to interoperate between different toolchains or programming languages.

4.3.1 Program Status Registers

The program status registers form an additional set of banked registers. Each exception mode 
has its own Saved Program Status Register (SPSR) where a copy of the pre-exception CPSR is 
stored automatically when an exception occurs. These are not accessible from User modes. 
While it could be argued that you only have indirect access to banked registers even from the 
privileged modes (including System), the “indirect” access uses the same mnemonic (though a 
different encoding) as the “direct” access.

The ARM Architecture Reference Manual describes how program status is reported in the 32-bit 
Application Program Status Register (APSR), with other status and control bits (system level 
information) remaining in the CPSR. In the ARMv7-A architecture covered in this book, the 
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APSR is in fact the same register as the CPSR, despite the fact that they have two separate 
names. The APSR must be used only to access the N, Z, C, V, Q, and GE[3:0] bits. These bits 
are not normally accessed directly, but instead set by condition code setting instructions and 
tested by instructions which are executed conditionally. The renaming is therefore an attempt to 
clean-up the mixed access CPSR of the older ARM architectures. Figure 4-3 shows the make-up 
of the CPSR.

Figure 4-3 CPSR bits

The individual bits represent the following: 

• N – Negative result from ALU.

• Z – Zero result from ALU.

• C – ALU operation Carry out.

• V – ALU operation oVerflowed.

• Q – cumulative saturation (also described as sticky).

• J – indicates whether the processor is in Jazelle state.

• GE[3:0] – used by some SIMD instructions.

• IT [7:2] – If-Then conditional execution of Thumb-2 instruction groups.

• E bit controls load/store endianness.

• A bit disables asynchronous aborts.

• I bit disables IRQ.

• F bit disables FIQ.

• T bit – indicates whether the processor is in Thumb state.

• M[4:0] – specifies the processor mode (FIQ, IRQ, etc. as described in Table 4-1 on 
page 4-3).

The processor can change between modes using instructions which directly write to the CPSR 
mode bits (not possible when in User mode). More commonly, the processor changes mode as 
a result of exception events.

We will consider these bits in more detail in Chapter 6 and Chapter 12.

N Z C V Q IT
[1:0] J Reserved GE[3:0] IT[7:2] E A I F T M[4:0]

31 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0
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4.4 Instruction pipelines
The instruction pipeline is a technique used in the design of processors to increase the 
instruction throughput. Processing of information consists of performing a succession of 
different operations on input data. To optimize performance, processor cores are designed as 
blocks of cascaded elementary functional units, each one fed by the output of the previous unit: 
at every clock tick unit N processes the data output of unit N-1. The main reason for this choice 
is that simple processing blocks are able to run faster than complex ones, so pipelined structures 
allow the design of digital circuits working at GHz clock frequencies. Each instruction moves 
from one step to another, over a number of clock cycles. Each pipeline stage handles a part of 
the process of executing an instruction, so that on any given clock cycle, a number of different 
instructions can be in different stages of the pipeline. The total time to execute an individual 
instruction does not change much compared with a non-pipelined implementation, but the 
overall throughput is significantly raised. The overall speed of the processor is then governed 
by the speed of the slowest step, which is significantly less than the time needed to perform all 
steps. A non-pipelined architecture is less efficient because some blocks within the processor 
will be idle most of the time during the instruction execution.

Figure 4-4 Pipeline instruction flow

The classic pipeline comprises three stages – Fetch, Decode and Execute as shown in 
Figure 4-4. More generally, an instruction pipeline might be divided into the following broad 
definitions:

• Instruction prefetch (deciding from which locations in memory instructions are to be 
fetched, and performing associated bus accesses).

• Instruction fetch (reading instructions to be executed from the memory system).

• Instruction decode (working out what instruction is to be executed and generating 
appropriate control signals for the datapaths).

• Register fetch (providing the correct register values to act upon).

• Issue (issuing the instruction to the appropriate execution unit).

• Execute (the actual ALU or multiplier operation, for example).

• Memory access (performing data loads or stores).

• Register write-back (updating processor registers with the results).

In individual processor implementations, some of these steps can be combined into a single 
pipeline stage, or some steps can be spread over several cycles. A longer pipeline means fewer 
logic gates in the critical path between each pipeline stage which results in faster execution. 
However, there are typically many dependencies between instructions. If an instruction depends 
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ARM Registers, Modes and Instruction Sets 
on the result of a previous instruction, the control logic might need to insert a stall (or bubble) 
into the pipeline until the dependency is resolved. Additional logic is needed to detect and 
resolve such dependencies (for example, forwarding logic, which feeds the output of a pipeline 
stage back to earlier pipeline stages).

In general, the ARM architecture tries to hide pipeline effects from the programmer. This means 
that the programmer can determine the pipeline structure only by reading the processor manual. 
Some pipeline artifacts are still present, however. For example, the program counter register 
(R15) points two instructions ahead of the instruction that is currently executing when in ARM 
state, a legacy of the three stage pipeline of the original ARM1 processor.

A further drawback of a long pipeline is that sometimes the sequential execution of instructions 
from memory will be interrupted. This can happen as a result of execution of a branch 
instruction, or by an exception event (such as an interrupt). When this happens, the processor 
cannot determine the correct location from which the next instruction should be fetched until 
the branch is resolved. In typical code, many branch instructions are conditional as a result of 
loops or if statements. Therefore, whether or not the branch will be taken cannot be determined 
at the time the instruction is fetched. If we fetch instructions which follow a branch, and the 
branch is taken, the pipeline must be flushed and a new set of instructions from the branch 
destination must be fetched from memory instead. As pipelines get longer, the cost of this 
branch penalty becomes higher.

Cortex-A series processors have branch prediction logic which aims to reduce the effect of the 
branch penalty. In essence, the processor predicts whether a branch will be taken or not and 
fetches instructions either from the instructions immediately following the branch (if the 
prediction is that the conditional branch will not be taken), or from the target instruction of the 
branch (if the prediction is that the branch will be taken). If the prediction is correct, the branch 
does not flush the pipeline. If the prediction is wrong, the pipeline must be flushed and 
instructions from the correct location fetched to refill it. We will look at this in more detail in 
Branch prediction on page 4-10.

4.4.1 Multi-issue pipelines

A refinement of the processor pipeline is that we can have more than one hardware unit to 
handle a pipeline stage. In the ARM11 processor family, for example, there are three parallel 
back-end pipelines – an ALU pipeline, a load/store pipeline and a multiply pipeline. Instructions 
can be issued into any of these pipelines. A logical development of this idea is to have multiple 
instances of the execute hardware – for example two ALU pipelines. We can then issue more 
than one instruction per cycle into these parallel pipelines – an example of instruction level 
parallelism. Such a processor is said to be superscalar. The Cortex-A8, Cortex-A9, and 
Cortex-A15 processors are superscalar processors – they can potentially decode and issue more 
than one instruction in a single clock cycle. The Cortex-A5 and Cortex-A7 processors are more 
limited and can only dual-issue certain combinations of instructions – for example, a branch and 
a data-processing instruction can be issued in the same cycle. The instructions are still issued 
from a sequential stream of instructions in memory. Extra hardware logic is required to check 
for dependencies between instructions, as, for example, in the case where one instruction must 
wait for the result of the other.

Out-of-order execution provides scope for increasing pipeline efficiency. If instructions are 
processed sequentially, one instruction is completely retired before the next is dealt with. In 
out-of order processing, multiple memory accesses can be outstanding at once, and can 
complete in a different order from their original program order. 

Often, an instruction must be stalled due to a dependency (for example, the need to use a result 
from a previous instruction). We can execute following instructions which do not share this 
dependency, provided that logical hazards between instructions are rigorously respected. The 
Cortex-A9 and Cortex-A15 processors achieve very high levels of efficiency and instruction 
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throughput using this technique. They can be considered to have a pipeline of variable length, 
as the pipeline length depends upon which back-end execution pipeline an instruction uses. 
They can execute instructions speculatively and can decode two instructions per clock, but have 
the ability to issue up to four instructions on an individual clock cycle. This can improve 
performance if the pipeline has become unblocked having previously been stalled for some 
reason. 

4.4.2 Register renaming

The Cortex-A9 processor has an interesting micro-architectural implementation which makes 
use of a register renaming scheme. The set of registers which form a standard part of the ARM 
architecture are visible to the programmer, but the hardware implementation of the processor 
actually has a much larger pool of physical registers, with logic to dynamically map the 
programmer visible registers to the physical ones. Figure 4-5 shows the separate pools of 
architectural and physical registers.

Figure 4-5 Register renaming

Consider the case where code writes the value of a register to external memory and shortly 
thereafter reads the value of a different memory location into the same register. This might cause 
a pipeline stall in previous processors, even though in this particular case, there is no actual data 
dependency. Register renaming avoids this problem by ensuring that the two instances of R0 are 
renamed to different physical registers, removing the dependency. This permits a compiler or 
assembler programmer to reuse registers without the need to consider architectural penalties for 
reusing registers when there are no inter-instruction dependencies. Importantly, it also allows 
out-of-order execution of write-after-write and write-after-read sequences. (A write-after-write 
hazard could occur when we write values to the same register in two separate instructions. The 
processor must ensure that an instruction which comes after the two writes sees the result of the 
later instruction.) 

To avoid dependencies between instructions related to flag setting and comparisons, the APSR 
flags also use a similar technique.
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4.5 Branch prediction
As we have seen, branch prediction logic is an important factor in achieving high throughput in 
Cortex-A series processors. With no branch prediction, we would have to wait until a 
conditional branch executes before we could determine where to fetch the next instruction from. 

The first time that a conditional jump instruction is fetched, there is little information on which 
to base a prediction about the address of the next instruction. Older ARM processors used static 
branch prediction. This is the simplest branch prediction method as it needs no prior information 
about the branch. We speculate that backward branches will be taken, and forward branches will 
not. A backward branch has a target address that is lower than its own address. We can therefore 
look at a single opcode bit to determine the branch direction. This technique can give reasonable 
prediction accuracy owing to the prevalence in code of loops, which almost always contain 
backward-pointing branches and are taken more often than not taken. Due to the pipeline length 
of Cortex-A series processors, we get better performance by using more complex branch 
prediction schemes, which give better prediction accuracy. 

Dynamic prediction hardware can further reduce the average branch penalty by making use of 
historical information about whether conditional branches were taken or not taken on previous 
execution. A Branch Target Address Cache (BTAC), also called Branch Target Buffer (BTB) in 
the Cortex-A8 processor, is a cache which holds information about previous branch instruction 
execution. It enables the hardware to speculate on whether a conditional branch will or will not 
be taken. 

The processor must still evaluate the condition code attached to a branch instruction. If the 
branch prediction hardware predicts correctly, the pipeline does not need to be stalled. If the 
branch prediction hardware speculation was wrong, the processor will flush the pipeline and 
refill it.

4.5.1 Return stack

Readers who are not at all familiar with ARM assembly language may want to skip this section 
until they have read Chapter 5 and Chapter 6.

The description in Branch prediction looked at strategies the processor can use to predict 
whether branches are taken or not. For most branch instructions, the target address is fixed and 
encoded in the instruction. However, there is a class of branches where the branch target 
destination cannot be determined by looking at the instruction. For example, if we perform a 
data processing operation which modifies the PC (for example, MOV, ADD or SUB) we must wait for 
the ALU to evaluate the result before we can know the branch target. Similarly if we load the 
PC from memory, using an LDR, LDM or POP instruction, we cannot know the target address until 
the load completes.

Such branches (often called indirect branches) cannot, in general, be predicted in hardware. 
There is, however, one common case that can usefully be optimized, using a last-in-first-out 
stack in the pre-fetch hardware (the return stack). Whenever a function call (BL or BLX) 
instruction is executed, we enter the address of the following instruction into this stack. 
Whenever we encounter an instruction which can be recognized as being a function return 
instructions (BX LR, or a stack pop which contains the PC in its register list), we can speculatively 
pop an entry from the stack and start fetching instructions from that address. When the return 
instruction actually executes, the hardware compares the address generated by the instruction 
with that predicted by the stack. If there is a mismatch, the pipeline is flushed and we restart 
from the correct location.

The return stack is of a fixed size (eight entries in the Cortex-A8 or Cortex-A9 processors, for 
example). If a particular code sequence contains a large number of nested function calls, an eight 
entry return stack can predict only the first eight function returns. 
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4.5.2 Programmer’s view

For the majority of application level programmers, branch prediction is a part of the hardware 
implementation which can safely be ignored. However, knowledge of the processor behavior 
with branches can be useful when writing highly optimized code. The hardware performance 
monitor counters can generate information about the numbers of branches correctly or 
incorrectly predicted. This hardware is described further in Chapter 19.

Branch prediction logic is disabled at reset. Part of the boot code sequence will typically be to 
set the Z bit in the CP15:SCTLR, System Control Register, which enables branch prediction. 
There is one other situation where the programmer might need to take care. When moving or 
modifying code at an address from which code has already been executed in the system, it might 
be necessary (and is always prudent) to remove stale entries from the branch history logic by 
using the CP15 instruction which invalidates all entries.
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Chapter 5 
Introduction to Assembly Language

Assembly language is a human-readable representation of machine code. There is in general a 
one-to-one relationship between assembly language instructions (mnemonics) and the actual 
binary opcode executed by the processor. The purpose of this chapter is not to teach assembly 
language programming. We describe the ARM and Thumb instruction sets, highlighting features 
and idiosyncrasies that differentiate it from instruction sets used by other microprocessor families.

Many programmers writing at the application level will have little need to code in assembly 
language. However, knowledge of assembly code can be useful in cases where highly optimized 
code is required, when writing compilers, or where low level use of features not directly available 
in C is needed. It might be required for portions of boot code, device drivers or when performing 
OS development. Finally, it can be useful to be able to read assembly code when debugging C, and 
particularly, to understand the mapping between assembly instructions and C statements.

Programmers seeking a more detailed description of ARM assembly language should also refer to 
the ARM Compiler Toolchain Assembler Reference. 

The ARM architecture supports implementations across a very wide range of performance points. 
Its simplicity leads to very small implementations, and this enables very low power consumption. 
Implementation size, performance, and very low power consumption are key attributes of the ARM 
architecture.
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5.1 Comparison with other assembly languages
All processors have basic data processing instructions which permit them to perform arithmetic 
operations (such as ADD) and logical bit manipulation (for example AND). They also need to 
transfer program execution from one part of the program to another, in order to support loops 
and conditional statements. Processors always have instructions to read and write external 
memory, too.

The ARM instruction set is generally considered to be simple, logical and efficient. It has 
features not found in other processors, while at the same time lacking operations found in some 
other processors. For example, it cannot perform data processing operations directly on 
memory. To increment a value in a memory location, the value must be loaded to an ARM 
register, the register incremented and a third instruction is required to write the updated value 
back to memory. The Instruction Set Architecture (ISA) includes instructions that combine a 
shift with an arithmetic or logical operation, auto-increment and auto-decrement addressing 
modes for optimized program loops, Load, and Store Multiple instructions which allow efficient 
stack and heap operations, plus block copying capability and conditional execution of almost all 
instructions. 

As many readers will already be familiar with one or more assembly languages, it might be 
useful to compare some code sequences, showing the x86, 68K and ARM instructions to 
perform equivalent tasks.

Like the x86 (but unlike the 68K), ARM instructions typically have a two or three operand 
format, with the first operand in most cases specifying the destination for the result (LDM and 
store instructions, for example, being an exception to this rule). The 68K, by contrast, places the 
destination as the last operand. For ARM instructions, there are generally no restrictions on 
which registers can be used as operands. Example 5-1 and Example 5-2 give a flavor of the 
differences between the different assembly languages.

Example 5-1 Instructions to add 100 to a value in a register

x86:   add     eax, #100 

68K:   ADD     #100, D0 

ARM:   add     r0, r0, 100 

Example 5-2 Load a register with a 32-bit value from a register pointer

x86:   mov     eax, DWORD PTR [ebx] 

68K:   MOVE.L  (A0), D0 

ARM:   ldr     r0, [r1] 

An ARM processor is a Reduced Instruction Set Computer (RISC) processor. Complex 
Instruction Set Computer (CISC) processors, like the x86, have a rich instruction set capable of 
doing complex things with a single instruction. Such processors often have significant amounts 
of internal logic which decode machine instructions to sequences of internal operations 
(microcode). RISC architectures, in contrast, have a smaller number of more general purpose 
instructions, which might be executed with significantly fewer transistors, making the silicon 
cheaper and more power efficient. Like other RISC architectures, ARM processors have a large 
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number of general-purpose registers and many instructions execute in a single cycle. It has 
simple addressing modes, where all load/store addresses can be determined from just register 
contents and instruction fields.
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5.2 Instruction sets
As described in Chapter 4, many ARM processors are able to execute two or even three different 
instruction sets, while some (for example, the Cortex-M3 processor) do not in fact execute the 
original ARM instruction set. There are at least two instruction sets that ARM processors can 
use. 

ARM (32-bit instructions) 
This is the original ARM instruction set. 

Thumb The Thumb instruction set was first added in the ARM7TDMI processor and 
contained only 16-bit instructions, which gave much smaller programs (memory 
footprint can be a major concern in smaller embedded systems) at the cost of 
some performance. Recent processors, including those in the Cortex-A series, 
support Thumb-2 technology, which extends the Thumb instruction set to provide 
a mix of 16-bit and 32-bit instructions. This gives the best of both worlds, 
performance similar to that of ARM, with code size similar to that of Thumb. Due 
to its size and performance advantages, it is increasingly common for all code to 
be compiled or assembled to take advantage of Thumb-2 technology.

The currently used instruction set is indicated by the CPSR T bit and the processor is said to be 
in ARM state or Thumb state. Code has to be explicitly compiled or assembled to one state or 
the other. An explicit instruction is used to change between instruction sets. Calling functions 
which are compiled for a different state is known as interworking. We’ll take a more detailed 
look at this in Interworking on page 5-11.

For Thumb assembly code, there is often a choice of 16-bit and 32-bit instruction encodings, 
with the 16-bit versions being generated by default. The .W (32-bit) and .N (16-bit) width 
specifiers can be used to force a particular encoding (if such an encoding exists).
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5.3 Introduction to the GNU Assembler
The GNU Assembler, part of the GNU tools, is used to convert assembly language source code 
into binary object files. The assembler is extensively documented in the GNU Assembler 
Manual, which can be found online at http://sourceware.org/binutils/docs/as/index.html or 
(if you have GNU tools installed on your system) in the gnutools/doc sub-directory. GNU 
Assembler documentation is also available in the /gcc-doc/ package on Ubuntu.

What follows is a brief description, intended to highlight differences in syntax between the GNU 
Assembler and standard ARM assembly language, and to provide enough information to allow 
programmers to get started with the tools.

The names of GNU tool components will have prefixes indicating the target options selected, 
including operating system. An example would be arm-none-eabi-gcc, which might be used for 
bare metal systems using the ARM EABI (described in Chapter 20 Writing NEON Code).

5.3.1 Invoking the GNU Assembler

You can assemble the contents of an ARM assembly language source file by running the 
arm-none-eabi-as program. 

arm-none-eabi-as -g -o filename.o filename.s

The option -g requests the assembler to include debug information in the output file. 

When all of your source files have been assembled into binary object files (with the extension 
.o), you use the GNU Linker to create the final executable in ELF format.

This is done by executing:

arm-none-eabi-ld -o filename.elf filename.o

For more complex programs, where there are many separate source files, it is more common to 
use a utility like make to control the build process.

You can use the debugger provided by either arm-none-eabi-gdb or arm-none-eabi-insight to run 
the executable files on your host machine, as an alternative to a real target processor.

5.3.2 GNU Assembler syntax

The GNU Assembler can target many different processor architectures and is not ARM-specific. 
This means that its syntax is somewhat different from other ARM assemblers, such as the ARM 
toolchain. The GNU Assembler uses the same syntax for all of the many processor architectures 
that it supports.

Assembly language source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label: instruction @ comment

A label lets you identify the address of this instruction. This can then be used as a target for 
branch instructions or for load and store instructions. A label can be a letter followed 
(optionally) by a sequence of alphanumeric characters, followed by a colon.

The instruction can be either an ARM assembly instruction, or an assembler directive. These 
are pseudo-instructions that tell the assembler itself to do something. These are required, 
amongst other things, to control sections and alignment, or create data. 

Everything on the line after the @ symbol is treated as a comment and ignored (unless it is inside 
a string). C style comment delimiters “/*” and “*/” can also be used.
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At link time an entry point can be specified on the command line if one has not been explicitly 
provided in the source code.

5.3.3 Sections

An executable program with code will have at least one section, which by convention will be 
called .text. Data can be included in a .data section.

Directives with the same names enable you to specify which of the two sections should hold 
what follows in the source file. Executable code should appear in a .text section and read or 
write data in the .data section. Also read-only constants can appear in a .rodata section. Zero 
initialized data will appear in .bss. The Block Started by Symbol (bss) segment defines the 
space for uninitialized static data.

5.3.4 Assembler directives

This is a key area of difference between GNU tools and other assemblers.

All assembler directives begin with a period “.” A full list of these is described in the GNU 
documentation. Here, we give a subset of commonly used directives.

.align This causes the assembler to pad the binary with bytes of zero value, in data 
sections, or NOP instructions in code, ensuring the next location will be on a word 
boundary. .align n gives 2^n alignment on ARM processors.

.ascii “string” 
 Insert the string literal into the object file exactly as specified, without a NUL 
character to terminate. Multiple strings can be specified using commas as 
separators.

.asciiz  Does the same as .ascii, but this time additionally followed by a NUL character 
(a byte with the value 0 (zero)).

.byte expression, .hword expression, .word expression 
Inserts a byte, halfword, or word value into the object file. Multiple values can be 
specified using commas as separators. The synonyms .2byte and .4byte can also 
be used.

.data Causes the following statements to be placed in the data section of the final 
executable. 

.end Marks the end of this source code file. The assembler does not process anything 
in the file after this point.

.equ symbol, expression 
Sets the value of symbol to expression. The “=” symbol and .set have the same 
effect.

.extern symbol 
Indicates that symbol is defined in another source code file. 

.global symbol 
Tells the assembler that symbol is to be made globally visible to other source files 
and to the linker. 
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.include “filename” 
Inserts the contents of filename into the current source file and is typically used 
to include header files containing shared definitions.

.text This switches the destination of following statements into the text section of the 
final output object file. Assembly instructions must always be in the text section.

For reference, Table 5-1 shows common assembler directives alongside GNU and ARM tools. 
Not all directives are listed, and in some cases there is not a 100% correspondence between 
them. 

Table 5-1 Comparison of syntax

GNU 
Assembler armasm Description

@ ; Comment

#& #0x An immediate hex value

.if IFDEF, IF Conditional (not 100% equivalent)

.else ELSE

.elseif ELSEIF

.endif ENDIF

.ltorg LTORG

| :OR: OR

& :AND: AND

<< :SHL: Shift Left

>> :SHR: Shift Right

.macro MACRO Start macro definition

.endm ENDM End macro definition

.include INCLUDE GNU Assembler needs “filename”

.word DCD A data word

.short DCW

.long DCD

.byte DCB

.req RN

.global IMPORT, 
EXPORT

.equ EQU
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5.3.5 Expressions

Assembly instructions and assembler directives often require an integer operand. In the 
assembler, this is represented as an expression to be evaluated. Typically, this will be an integer 
number specified in decimal, hexadecimal (with a 0x prefix) or binary (with a 0b prefix) or as 
an ASCII character surrounded by single quotes.

In addition, standard mathematical and logical expressions can be evaluated by the assembler 
to generate a constant value. These can utilize labels and other pre-defined values. These 
expressions produce either absolute or relative values. Absolute values are 
position-independent and constant. Relative values are specified relative to some linker-defined 
address, determined when the executable image is produced – such as target addresses for 
branches.

5.3.6 GNU tools naming conventions

Registers are named in GCC as follows:

• General registers: R0 - R15.

• Stack pointer register: SP (R13).

• Frame pointer register: FP (R11).

• Link register: LR (R14).

• Program counter: PC (R15).

• Program Status Register flags: xPSR, xPSR_all, xPSR_f, xPSR_x, xPSR_ctl, xPSR_fs, 
xPSR_fx, xPSR_f, xPSR_cs, xPSR_cf, xPSR_cx (where x = C current or S saved). See 
Program Status Registers on page 4-5.

Note
 In Chapter 17 Application Binary Interfaces we will see how all of the registers are assigned a 
role within the procedure call standard and that the GNU Assembler lets us refer to the registers 
using their Procedure Call Standard (PCS) names. See Table 17-1 on page 17-2.
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5.4 ARM tools assembly language
The Unified Assembly Language (UAL) format now used by ARM tools enables the same 
canonical syntax to be used for both ARM and Thumb instruction sets. The assembler syntax of 
ARM tools is not identical to that used by the GNU Assembler, particularly for preprocessing 
and pseudo-instructions which do not map directly to opcodes. In the next chapter, we will look 
at the individual assembly language instructions in a little more detail. Before doing that, we 
take a look at the basic syntax used to specify instructions and registers. Assembly language 
examples in this book use both UAL and GNU Assembly syntax.

UAL gives the ability to write assembler code which can be assembled to run on all ARM 
processors. In the past, it was necessary to write code explicitly for ARM or Thumb state. Using 
UAL the same code can be assembled for different instruction sets at the time of assembly, not 
at the time the code is written. This can be either through the use of command line switches or 
inline directives. Legacy code will still assemble correctly. It is worth noting that GNU 
Assembler now supports UAL through use of the .syntax directive, though it might not be 
identical syntax to the ARM tools assembler.

5.4.1 ARM assembler syntax

ARM assembler source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label instruction ; comment

A label lets you identify the address of this instruction. This can then be used as a target for 
branch instructions or for load and store instructions.

The instruction can be either an assembly instruction, or an assembler directive. These are 
pseudo-instructions that tell the assembler itself to do something. These are required, amongst 
other things, to control sections and alignment, or create data. 

Everything on the line after the ; symbol is treated as a comment and ignored (unless it is inside 
a string). C style comment delimiters “/*” and “*/” can also be used.

5.4.2 Label

A label is required to start in the first character of a line. If the line does not have a label, a space 
or tab delimiter is needed to start the line. If there is a label, the assembler makes the label equal 
to the address in the object file of the corresponding instruction. Labels can then be used as the 
target for branches or for loads and stores.

Example 5-3 A simple example showing use of a label

Loop  MUL R5, R5, R1
SUBS R1, R1, #1
BNE Loop

In Example 5-3, Loop is a label and the conditional branch instruction (BNE Loop) will be 
assembled in a way which makes the offset encoded in the branch instruction point to the 
address of the MUL instruction which is associated with the label Loop.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 5-9
ID071612 Non-Confidential



Introduction to Assembly Language 
5.4.3 Directives

Most lines will normally have an assembly language instruction, to be converted by the tool into 
its binary equivalent, or a directive which tells the assembler to do something. It can also be a 
pseudo-instruction (one which will be converted into one or more real instructions by the 
assembler). We’ll look at the actual instructions available in hardware in Chapter 6 and focus 
mainly on the assembler directives here. These perform a wide range of tasks. They can be used 
to place code or data at a particular address in memory, create references to other programs and 
so forth.

The Define Constant (DCD, DCB, DCW) directives let us place data into a piece of code. This can be 
expressed numerically (in decimal, hex, binary) or as ASCII characters. It can be a single item 
or a comma separated list. DCB is for byte sized data, DCD can be used for word sized data, and 
DCW for half-word sized data items.

For example, we might have:

MESSAGE DCB “Hello World!”,0

This will produce a series of bytes corresponding to the ASCII characters in the string, with a 0 
termination. MESSAGE is a label which we can use to get the address of this data. Similarly, we 
might have data items expressed in hex:

Masks DCD 0x100, 0x80, 0x40, 0x20, 0x10

The EQU directive lets us assign names to address or data values. For example:

CtrlD EQU 4
TUBE EQU 0x30000000

We can then use these labels in other instructions, as parts of expressions to be evaluated. EQU 
does not actually cause anything to be placed in the program executable – it merely sets a name 
to a value, for use in other instructions, in the symbol table for the assembler. It is convenient to 
use such names to make code easier to read, but also so that if we change the address or value 
of something in a piece of code, we need only modify the original definition, rather than having 
to change all of the references to it individually. It is usual to group EQU definitions together, 
often at the start of a program or function, or in separate include files.

The AREA pseudo-instruction is used to tell the assembler about how to group together code or 
data into logical sections for later placement by the linker. For example, exception vectors might 
need to be placed at a fixed address. The assembler keeps track of where each instruction or 
piece of data is located in memory. The AREA directive can be used to modify that location.

The ALIGN directive lets you align the current location to a specified boundary. It usually does 
this by padding (where necessary) with zeros or NOP instructions, although it is also possible to 
specify a pad value with the directive. The default behavior is to set the current location to the 
next word (four byte) boundary, but larger boundary sizes and offsets from that boundary can 
also be specified. This can be required to meet alignment requirements of certain instructions 
(for example LDRD and STRD doubleword memory transfers), or to align with cache boundaries. 
As with the .align directive on GNU Assembler, the ALIGN n directive gives 2^n alignment on 
ARM processors.

END is used to denote the end of the assembly language source program. Failure to use the END 
directive will result in an error being returned. INCLUDE tells the assembler to include the contents 
of another file into the current file. Include files can be used as an easy mechanism for sharing 
definitions between related files.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 5-10
ID071612 Non-Confidential



Introduction to Assembly Language 
5.5 Interworking
When the processor executes ARM instructions, it is said to be operating in ARM state. When 
it is operating in Thumb state, it is executing Thumb instructions. A processor in a particular 
state can only sensibly execute instructions from that instruction set. We must make sure that 
the processor does not receive instructions of the wrong instruction set. 

Each instruction set includes instructions to change processor state. ARM and Thumb code can 
be mixed, if the code conforms to the requirements of the ARM and Thumb Procedure Call 
Standards (described in Chapter 17). Compiler generated code will always do so, but assembly 
language programmers must take care to follow the specified rules.

Selection of processor state is controlled by the T bit in the current program status register 
(CPSR). See Figure 4-3 on page 4-6. When T is 1, the processor is in Thumb state. When T is 
0, the processor is in ARM state. However, when the T bit is modified, it is also necessary to 
flush the instruction pipeline (to avoid problems with instructions being decoded in one state 
and then executed in another). Special instructions are used to accomplish this. These are BX 
(Branch with eXchange) and BLX (Branch and Link with eXchange). LDR of PC and POP/LDM of PC 
also have this behavior. In addition to changing the processor state with these instructions, 
assembly programmers must also use the appropriate directive to tell the assembler to generate 
code for the appropriate state.

The BX or BLX instruction branches to an address contained in the specified register, or an offset 
specified in the opcode. The value of bit [0] of the branch target address determines whether 
execution continues in ARM state or Thumb state. Both ARM (aligned to a word boundary) and 
Thumb (aligned to a halfword boundary) instructions do not use bit [0] to form an address. This 
bit can therefore safely be used to provide the additional information about whether the BX or 
BLX instruction should change the state to ARM (address bit [0] = 0) or Thumb (address bit [0] 
= 1). The BL label will be turned into a BLX label as appropriate at link time if the instruction set 
of the caller is different from the instruction set of label, assuming that it is unconditional.

A typical use of these instructions is when a call from one function to another is made using the 
BL or BLX instruction, and a return from that function is made using the BX LR instruction. 
Alternatively, we can have a non-leaf function, which pushes the link register onto the stack on 
entry and pops the stored link register from the stack into the program counter, on exit. Here, 
instead of using the BX LR instruction to return, we instead have a memory load. Memory load 
instructions which modify the PC might also change the processor state depending upon the 
value of bit [0] of the loaded address.
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5.6 Identifying assembly code
When faced with a piece of assembly language source code, it can be useful to be able to quickly 
determine which instruction set will be used and which kind of assembler it is targeted at. 

Older ARM Assembly language code can have three (or even four) operand instructions present 
(for example, ADD R0, R1, R2) or conditional execution of non-branch instructions (for example, 
ADDNE R0, R0, #1). Filename extensions will typically be .s or .S.

Code targeted for the newer UAL, will contain the directive .syntax unified but will otherwise 
appear similar to traditional ARM Assembly language. The pound (or hash) symbol # can be 
omitted in front of immediate operands. Conditional instruction sequences must be preceded 
immediately by the IT instruction (described in Chapter 6). Such code assembles either to 
fixed-size 32-bit (ARM) instructions, or mixed-size (16-bit and 32-bit) Thumb instructions, 
depending on the presence of the directives .thumb or .arm.

You can, on occasion, encounter code written in 16-bit Thumb assembly language. This can 
contain directives like .code 16, .thumb or .thumb_func but will not specify .syntax unified. It 
uses two operands for most instructions, although ADD and SUB can sometimes have three. Only 
branches can be executed conditionally.

All GCC inline assembler (.c, .h, .cpp, .cxx, .c++ and so on) code can be built for Thumb or 
ARM, depending on GCC configuration and command-line switches (-marm or –mthumb).
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Chapter 6 
ARM/Thumb Unified Assembly Language 
Instructions

This chapter is a general introduction to ARM/Thumb assembly language. We do not aim to 
provide detailed coverage of every instruction. Instructions can broadly be placed in one of a 
number of classes: 

• Data operations (ALU operations such as ADD).

• Memory operations (load and stores to memory).

• Branches (for loops, goto, conditional code and other program flow control).

• DSP (operations on packed data, saturated mathematics and other special 
instructions,targeting codecs).

• Miscellaneous (coprocessor, debug, mode changes and so forth). 

We’ll take a brief look at each of those in turn. Before we do that, let us examine capabilities which 
are common to different instruction classes.
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6.1 Instruction set basics
There are a number of features common to all parts of the instruction set.

6.1.1 Constant values

ARM or Thumb assembly language instructions have a length of only 16 or 32 bits. This 
presents something of a problem. It means that we cannot encode an arbitrary 32-bit value 
within the opcode.

Constant values encoded in an instruction can be one of the following in Thumb:

• a constant that can be produced by rotating an 8-bit value by any even number of bits 
within a 32-bit word

• a constant of the form 0x00XY00XY

• a constant of the form 0xXY00XY00

• a constant of the form 0xXYXYXYXY.

where XY is a hexadecimal number in the range 0x00 to 0xFF.

In the ARM instruction set, as opcode bits are used to specify condition codes, the instruction 
itself and the registers to be used, only 12 bits are available to specify an immediate value. We 
have to be somewhat creative in how these 12 bits are used. Rather than enabling a constant of 
size –2048 to +2047 to be specified, instead the 12 bits are divided into an 8-bit constant and 
4-bit rotate value. The rotate value enables the 8-bit constant value to be rotated right by a 
number of places from 0 to 30 in steps of 2 (that is, 0, 2, 4, 6, 8 and so on)

So, we can have immediate values like 0x23 or 0xFF. We can produce other useful immediate 
values (for example, addresses of peripherals or blocks of memory), for example, 0x23000000 
can be produced by expressing it as 0x23 ROR 8 (see ROR on page A-31). But many other 
constants, like 0x3FF, cannot be produced within a single instruction. For these values, you must 
either construct them in multiple instructions, or load them from memory. Programmers do not 
typically concern themselves with this, except where the assembler gives an error complaining 
about an invalid constant. Instead, we can use assembly language pseudo-instructions to do 
whatever is necessary to generate the required constant.

The MOVW instruction (move wide), will move a 16-bit constant into a register, while zeroing the 
top 16 bits of the target register. MOVT (move top) will move a 16-bit constant into the top half of 
a given register, without changing the bottom 16 bits. This permits a MOV32 pseudo-instruction 
which is able to construct any 32-bit constant. The assembler provides some further help here. 
The prefixes :upper16: and :lower16: allow you to extract the corresponding half from a 32-bit 
constant: 

MOVW R0, #:lower16:label
MOVT R0, #:upper16:label

Although this needs two instructions, it does not require any extra space to store the constant, 
and there is no need to read a data item from memory.

We can also use pseudo-instructions LDR Rn, =<constant> or LDR Rn, =label. (This was the only 
option for older processors which lacked MOVW and MOVT.) The assembler will then use the best 
sequence to generate the constant in the specified register (one of MOV, MVN or an LDR from a literal 
pool). A literal pool is an area of constant data held within the code section, typically after the 
end of a function and before the start of another. If it is necessary to manually control literal pool 
placement, this can be done with an assembler directive – LTORG for armasm, or .ltorg when 
using GNU tools. The register loaded could be the program counter, which would cause a 
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branch. This can be useful for absolute addressing or for references outside the current section; 
obviously this will result in position-dependent code. The value of the constant can be 
determined either by the assembler, or by the linker. 

ARM tools also provides the related pseudo-instruction ADR Rn, =label. This uses a PC-relative 
ADD or SUB, to place the address of the label into the specified register, using a single instruction. 
If the address is too far away to be generated this way, the ADRL pseudo-instruction is used. This 
requires two instructions, which gives a better range. This can be used to generate addresses for 
position-independent code, but only within the same code section.

6.1.2 Conditional execution

A feature of the ARM instruction set is that nearly all instructions are conditional. On most other 
architectures, only branches or jumps can be executed conditionally. This can be useful in 
avoiding conditional branches in small if/then/else constructs or for compound comparisons. 

As an example of this, consider code to find the smaller of two values, in registers R0 and R1 
and place the result in R2. This is shown in Example 6-1. The suffix LT indicates that the 
instruction should be executed only if the most recent flag-setting instruction returned less than; 
GE means greater than or equal.

Example 6-1 Example code showing branches (GNU)

@ Code using branches
CMP     R0, R1
BLT     .Lsmaller   @ if R0<R1 jump over
MOV     R2, R1      @ R1 is smaller
B       .Lend       @ finish

.Lsmaller:
MOV     R2, R0      @ R0 is smaller

.Lend:

Now look at the same code written using conditional MOV instructions, rather than branches, in 
Example 6-2

Example 6-2 Same example using conditional execution

CMP      R0, R1
MOVGE    R2, R1  @ R1 is smaller
MOVLT    R2, R0  @ R0 is smaller

The latter piece of code is both smaller and, on older ARM processors, is faster to execute. 
However, as we shall see when we look further at optimization in Chapter 19, this code can 
actually be slower on processors like the Cortex-A9, where inter-instruction dependencies could 
cause longer stalls than a branch.

As a reminder, this style of programming relies on the fact that status flags can be set optionally 
on some instructions. If the MOVGE instruction above automatically set the flags, the program 
might not work correctly. Load and Store instructions never set the flags. For data processing 
operations, however, the programmer has a choice. By default, flags will be preserved during 
such instructions. If the instruction is suffixed with an S (for example, MOVS rather than MOV), the 
instruction will set the flags. The S suffix is not required, or permitted, for the explicit 
comparison instructions. The flags can also be set manually, by using the dedicated PSR 
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manipulation instruction (MSR). Some instructions set the Carry flag (C) based on the carry from 
the ALU and others based on the barrel shifter carry (which shifts a data word by a specified 
number of bits in one clock cycle).

Thumb-2 technology also introduced an If-Then (IT) instruction, providing conditional 
execution for up to four consecutive instructions. The conditions may all be identical, or some 
may be the inverse of the others. Instructions within an IT block must also specify the condition 
code to be applied. 

IT is a 16-bit instruction that enables nearly all Thumb instructions to be conditionally executed, 
depending on the value of the ALU flags, using the condition code suffix (see IT on 
page A-12).The syntax of the instruction is IT{x{y{z}}} where x, y and z specify the condition 
switch for the optional instructions in the IT block, either Then (T) or Else (E), for example, 
ITTET.

ITT   EQ
SUBEQ r1, r1, #1
ADDEQ r0, r0, #60

Typically, IT instructions are auto-generated by the assembler, rather than being hand-coded. 
16-bit instructions which normally change the condition code flags, will not do so inside an IT 
block, except for CMP, CMN and TST whose only action is to set flags. There are some restrictions 
on which instructions can be used within an IT block. Exceptions can occur within IT blocks, 
the current if-then status is stored in the CPSR and so is copied into the SPSR upon exception 
entry, so that when the exception returns, the execution of the IT block resumes correctly.

Certain instructions always set the flags and have no other effect. These are CMP, CMN, TST and 
TEQ, which are analogous to SUBS, ADDS, ANDS and EORS but with the result of the ALU calculation 
being used only to update the flags and not being placed in a register.

Table 6-1 lists the 15 condition codes that can be attached to most instructions. 

Table 6-1 Conditional execution suffixes

Suffix Flags Description

EQ Z = 1 zero (EQual to 0)

NE Z = 0 not zero (Not Equal to 0)

CS/HS C = 1 Carry Set / unsigned Higher or Same 

CC/LO C = 0 Carry Clear / unsigned LOwer

MI N = 1 negative (MInus)

PL N = 0 positive or zero (PLus)

VS V = 1 sign overflow (oVerflow Set)

VC V = 0 no sign overflow (oVerflow Clear)

HI C = 1 AND Z = 0 unsigned HIgher

LS C = 0 OR Z = 1 unsigned Lower or Same

GE N = V signed Greater or Equal

LT N != V signed Less Than
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Thumb code has a somewhat different mechanism for conditional execution. Branches can be 
executed conditionally. Instructions can also be conditionally executed by using the Compare 
and Branch on Zero (CBZ) and Compare and Branch on Non-Zero (CBNZ) instructions. These 
compare the value of a register against zero and branch on the result. In addition, instructions 
can be conditionally executed using the If-Then construct.

6.1.3 Status flags and condition codes

When we looked at the register set in Program Status Registers on page 4-5, we stated that the 
ARM processor has a Current Program Status Register (CPSR) which contains four status flags, 
(Z)ero, (N)egative, (C)arry and o(V)erflow. Table 6-2 indicates the value of these bits for flag 
setting operations.

The operation of the negative and zero flags should be easily understood. The C flag will be set 
if the result of an unsigned operation overflows the 32-bit result register. This bit might be used 
to implement 64-bit (or longer) arithmetic using 32-bit operations, for example. 

The V flag operates in the same way as the C flag, but for signed operations. 0x7FFFFFFF is the 
largest signed positive integer that can be represented in 32 bits. If, for example, we add 2 to this 
value, we will produce 0x80000001, a large negative number. The V bit is set to indicate the 
overflow or underflow, from bit [30] to bit [31].

GT Z = 0 AND N = V signed Greater Than

LE Z = 1 OR N != V signed Less or Equal

AL - ALways (default)

Table 6-1 Conditional execution suffixes (continued)

Suffix Flags Description

Table 6-2 Summary of PSR flag bits

Flag Bit Name Description

N 31 Negative Set to the same value as bit[31] of the result. For a 32-bit signed integer, bit[31] being set indicates 
that the value is negative.

Z 30 Zero Set to 1 if the result is zero, otherwise it is set to 0.

C 29 Carry Set to the carry-out value from result, or to the value of the last bit shifted out from a shift 
operation.

V 28 Overflow Set to 1 if signed overflow or underflow occurred, otherwise it is set to 0.
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6.2 Data processing operations
These are essentially the fundamental arithmetic and logical operations of the processor. 
Multiplies can be considered a special case of these – they typically have slightly different 
format and rules and are executed in a dedicated unit of the processor.

The ARM processors can only perform data processing on registers, never directly on memory. 
Data processing instructions (for the most part) use one destination register and two source 
operands. The basic format can be considered to be the opcode, optionally followed by a 
condition code, optionally followed by S (set flags), as follows:

Operation{cond}{s} Rd, Rn, Operand2

Table 6-3 summarizes the data processing assembly language instructions, giving their 
mnemonic opcode, operands and a brief description of their function. Appendix A gives a fuller 
description of all of the available instructions.

The purpose and function of many of these instructions will be readily apparent to most 
programmers, but some require additional explanation. 

Table 6-3 Summary of data processing operations in assembly language

Opcode Operands Description Function 

Arithmetic operations

ADC Rd, Rn, Op2 Add with carry Rd = Rn + Op2 + C 

ADD Rd, Rn, Op2 Add Rd = Rn + Op2 

MOV Rd, Op2 Move Rd = Op2 

MVN Rd, Op2 Move NOT Rd = ~Op2 

RSB Rd, Rn, Op2 Reverse Subtract Rd = Op2 – Rn 

RSC Rd, Rn, Op2 Reverse Subtract with 
Carry

Rd = Op2 – Rn - !C 

SBC Rd, Rn, Op2 Subtract with carry Rd = Rn – Op2 -!C 

SUB Rd, Rn, Op2 Subtract Rd = Rn – Op2 

Logical operations

AND Rd, Rn, Op2 AND Rd = Rn & Op2 

BIC Rd, Rn, Op2 Bit Clear Rd = Rn & ~ Op2 

EOR Rd, Rn, Op2 Exclusive OR Rd = Rn ^ Op2 

ORR Rd, Rn, Op2 OR Rd = Rn | Op2 
(OR NOT)
Rd = Rn | ~Op2

Flag setting instructions

CMP Rn, Op2 Compare Rn – Op2 

CMN Rn, Op2 Compare Negative Rn + Op2 

TEQ Rn, Op2 Test EQuivalence Rn & Op2 

TST Rn, Op2 Test Rn ^ Op2 
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In the arithmetic operations, notice that the move operations MOV and MVN require only one 
operand (and this is treated as an operand 2 for maximum flexibility, as we shall see). RSB does 
a reverse subtract – that is to say it subtracts the first operand from the second operand. This 
instruction is needed because the first operand is inflexible – it can only be a register value. So 
to write R0 = 100 – R1, we must do RSB R0,R1,#100, as we cannot write SUB R0,#100,R1. The 
operations ADC and SBC perform additions and subtractions with carry. This lets the programmer 
synthesize arithmetic operations on values larger than 32 bits.

The logical operations are essentially the same as the corresponding C operators. Notice the use 
of ORR rather than OR (this is because the original ARM instruction set had three letter acronyms 
for all data-processing operations). The BIC instruction does an AND of a register with the 
inverted value of operand 2. If, for example, we wish to clear bit [11] of register R0, we can do 
this with the instruction BIC R0, R0, #0x800. 

The second operand 0x800 has only bit [11] set to one, with all other bits at zero. The BIC 
instruction inverts this operand, setting all bits except bit [11] to logical one. ANDing this value 
with the value in R0 has the effect of clearing bit [11] and this result is then written back into R0. 

The compare and test instructions modify the CPSR (and have no other effect). 

6.2.1 Operand 2 and the barrel shifter

The first operand for all data processing operations must always be a register. The second 
operand is much more flexible and can be either an immediate value (#x), a register (Rm), or a 
register shifted by an immediate value or register “Rm, shift #x” or “Rm, shift Rs”. There are 
five shift operations: left shift (LSL), logical right-shift (LSR), arithmetic right-shift (ASR), 
rotate-right (ROR) and rotate-right extended (RRX).

A right shift creates empty positions at the top of the register. In that case, we must differentiate 
between a logical shift, which inserts 0 into the most significant bit(s) and an arithmetic shift, 
which fills vacant bits with the sign bit, from bit [31] of the register. So an ASR operation might 
be used on a signed value, with LSR used on an unsigned value. No such distinction is required 
on left-shifts, which always insert 0 to the least significant position.

So, unlike many assembly languages, ARM assembly language does not require explicit shift 
instructions. Instead, the MOV instruction can be used for shifts and rotates. R0 = R1 >> 2 is done 
as MOV R0, R1, LSR #2. Equally, it is common to combine shifts with ADD, SUB or other instructions. 
For example, to multiply R0 by 5, we might write:

ADD R0, R0, R0, LSL #2 

A left shift of n places is effectively a multiply by 2 to the power of n, so this effectively makes 
R0 = R0 + (4 × R0). A right shift provides the corresponding divide operation, although ASR 
rounds negative values differently than would division in C.

Apart from multiply and divide, another common use for shifted operands is array index 
look-up. Consider the case where R1 points to the base element of an array of int (32-bit) 
values and R2 is the index which points to the nth element in that array. We can obtain the array 
value with a single load instruction which uses the calculation R1 + (R2 × 4) to get the 
appropriate address. Example 6-3 on page 6-8 provides examples of differing operand 2 types 
used in ARM instructions.
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Example 6-3 ARM instructions showing a variety of operand 2 types

add     R0, R1, #1              R0 = R2 + 1
add     R0, R1, R2              R0 = R1 + R2
add     R0, R1, R2, LSL #4      R0 = R1 + R2<<#4
add     R0, R1, R2, LSL R3      R0 = R1 + R2<<R3
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6.3 Multiplication operations
The multiply operations are readily understandable. A key limitation to note is that there is no 
scope to multiply by an immediate value. Multiplies operate only on values in registers. 
Multiplication by a constant may need that constant to be loaded into a register first. Later 
versions of the ARM processor add significantly more multiply instructions, giving a range of 
possibilities for 8, 16 and 32-bit data. We will consider these in Integer SIMD instructions on 
page 6-14 when looking at the DSP instructions.

Table 6-4 summarizes the multiplication assembly language instructions, giving their 
mnemonic opcode, operands and a brief description of their function.

6.3.1 Additional multiplies

We saw in the data-processing instructions that we have the ability to multiply one 32-bit 
register with another, to produce either a 32-bit result or a 64-bit signed or unsigned result. In 
all cases, there is the option to accumulate further a 32-bit or 64-bit value into the result. 
Additional multiply instructions have been added. There are signed most-significant word 
multiplies, SMMUL, SMMLA and SMMLS. These perform a 32 × 32-bit multiply in which the result is 
the top 32 bits of the product, with the bottom 32 bits discarded. The result may be rounded by 
applying an R suffix, otherwise it is truncated. The UMAAL (Unsigned Multiply Accumulate 
Accumulate Long) instruction performs a 32 × 32-bit multiply and adds in the contents of two 
32-bit registers.

Table 6-4 Summary of multiplication operations in assembly language

Opcode Operands Description Function 

Multiplies

MLA Rd, Rn, Rm, Ra Multiply accumulate (MAC) Rd = Ra + (Rn × Rm)

MLS Rd, Rn, Rm, Ra Multiply and Subtract Rd = Ra - (Rm × Rn)

MUL Rd, Rn, Rm Multiply Rd = Rn × Rm 

SMLAL RdLo, RdHi, Rn, Rm Signed 32-bit multiply with a 
64-bit accumulate

RdHiLo += Rn × Rm 

SMULL RdLo, RdHi, Rn, Rm Signed 64-bit multiply RdHiLo = Rn × Rm 

UMLAL RdLo, RdHi, Rn, Rm Unsigned 64-bit MAC RdHiLo += Rn × Rm

UMULL RdLo, RdHi, Rn, Rm Unsigned 64-bit multiply RdHiLo = Rn × Rm 
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6.4 Memory instructions
ARM processors perform ALU operations only on registers. The only supported memory 
operations are the load (which reads data from memory into registers) or store (which writes 
data from registers to memory). A LDR and STR can be conditionally executed, in the same fashion 
as other instructions.

The LDR (Load Register) pseudo-instruction has the following general format:

LDR Rd, [Rn, Op2]

Rn + op2 provides the memory address read (or just Rn, in some addressing modes). Rd is the 
register to write to. Rn is known as the base register with Op2 providing an offset in bytes from 
that base.

A STR (Store Register) instruction has the following general format:

STR Rd, [Rn, Op2]

Again, Rn + Op2 gives the address (or just Rn, in some addressing modes) and Rd the register to 
be stored out to memory.

As we shall see in the next section, this general format has a number of variants, which allows 
op2 to be specified in a number of different ways, providing a flexible set of memory access 
instructions.

We can specify the size of the Load or Store transfer by appending a B for Byte, H for Halfword, 
or D for doubleword (64 bits) to the instruction, for example, LDRB. For loads only, an extra S 
can be used to indicate a signed byte or halfword (SB for Signed Byte or SH for Signed 
Halfword). See STR on page A-47 for examples of this. This approach can be useful, because if 
we load an 8-bit or 16-bit quantity into a 32-bit register we must decide what to do with the most 
significant bits of the register. For an unsigned number, we zero-extend (that is, we write the 
most significant 16 or 24 bits of the register to zero), but for a signed number, it is necessary to 
copy the sign bit (bit [7] for a byte, or bit [15] for a halfword) into the top 16 (or 24) bits of the 
register. 

6.4.1 Addressing modes

There are multiple addressing modes (shown in Example 6-4 on page 6-11) which can be used 
for loads and stores:

• Register addressing– the address is in a register (1).

• Pre-indexed addressing – an offset to the base register is added before the memory access. 
The base form of this is LDR Rd, [Rn, Op2]. The offset can be positive or negative and can 
be an immediate value or another register with an optional shift applied.(2),(3).

• Pre-indexed with write-back – this is indicated with an exclamation mark (!) added after 
the instruction. After the memory access has occurred, this updates the base register by 
adding the offset value (4).

• Post-index with write-back – here, the offset value is written after the square bracket. The 
address from the base register only is used for the memory access, with the offset value 
added to the base register after the memory access (5).
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Examples of each of these are shown in Example 6-4:

Example 6-4 Examples of addressing modes

(1) LDR     R0, [R1] @ address pointed to by R1
(2) LDR     R0, [R1, R2] @ address pointed to by R1 + R2
(3) LDR     R0, [R1, R2, LSL #2] @ address is R1 + (R2*4) 
(4) LDR     R0, [R1, #32]! @ address pointed to by R1 + 32, then R1:=R1 + 32 
(5) LDR R0, [R1], #32 @ read R0 from address pointed to by R1, then R1:=R1 + 32 

6.4.2 Multiple transfers

Load and Store Multiple instructions allow successive words to be read from or written to 
memory. These are extremely useful for stack operations and for memory copying. Only word 
values can be operated on in this way and a word aligned address should be used. The ABI, for 
example, requires an 8-byte stack alignment at any external boundaries.

The operands are a base register (with an optional ! denoting write-back of the base register) 
with a list of registers between braces. The register list is comma separated, with hyphens used 
to indicate ranges. The order in which the registers are loaded or stored has nothing to do with 
the order specified in this list. Instead, the operation proceeds in a fixed fashion, with the lowest 
numbered register always mapped to the lowest address. 

For example:

LDMIA   R10!, { R0-R3, R12 } 

This instruction reads five registers from the addresses pointed to by register (R10) and because 
write-back is specified, increments R10 by 20 (5 × 4 bytes) at the end.

The instruction must also specify how to proceed from the base register Rd. The four 
possibilities are: IA/IB (Increment After/Before) and DA/DB (Decrement After/Before). These 
may also be specified using aliases (FD, FA, ED and EA) which work from a stack point of view 
and specify whether the stack pointer points to a full or empty top of the stack, and whether the 
stack ascends or descends in memory.

By convention, only the FD option is used for stacks in ARM processor based systems. This 
means that the stack pointer points to the last filled location in stack memory and will decrement 
with each new item of data pushed to the stack.

Figure 6-1 on page 6-12 shows a push of two registers to the stack. Before the STMFD (PUSH) 
instruction is executed, the stack pointer points to the last occupied word of the stack. After the 
instruction is completed, the stack pointer has been decremented by 8 (two words) and the 
contents of the two registers have been written to memory, with the lowest numbered register 
being written to the lowest memory address.
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Figure 6-1 Stack push operation
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6.5 Branches
The instruction set provides a number of different kinds of branch instruction. For simple 
relative branches (those to an offset from the current address), the B instruction is used. Calls to 
subroutines, where it is necessary for the return address to be stored in the link register, use the 
BL instruction.

If we wish to change instruction set (from ARM to Thumb or vice-versa), we use BX, or BLX. 
These latter cases may also use a value in a register, enabling a jump to anywhere within the 
32-bit address space. 

We can also specify the PC as the destination register for the result of normal data processing 
operations such as ADD or SUB, but this is generally deprecated and is unsupported in Thumb. An 
additional type of branch instruction can be implemented using either a load (LDR) with the PC 
as the target, load multiple (LDM), or stack-pop (POP) instruction with PC in the list of registers to 
be loaded.

Thumb has the compare and branch instruction, which fuses a CMP instruction and a conditional 
branch, but does not change the CPSR condition code flags. There are two opcodes, CBZ 
(compare and branch to label if Rn is zero) and CBNZ (compare and branch to label if Rn is not 
zero). These instructions can only branch forward between 4 and 130 bytes. Thumb also has the 
TBB (Table Branch Byte) and TBH (Table Branch Halfword) instructions. These instructions read 
a value from a table of offsets (either byte or halfword size) and perform a forward PC-relative 
branch of twice the value of the byte or the halfword returned from the table. These instructions 
require the base address of the table to be specified in one register, and the index in another.
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6.6 Integer SIMD instructions
This section describes the SIMD (Single Instruction, Multiple Data) operations added in v6 of 
the ARM architecture. These should not be confused with the significantly more powerful 
Advanced SIMD (NEON) operations which were introduced in the ARM-v7 architecture and 
are covered in detail in Chapter 8, Chapter 20 and Appendix B. SIMD is one of four 
classifications of computer architectures defined by Michael J. Flynn in 1966 based upon the 
number of instruction and data streams available in the architecture.

These instructions were first added in the ARMv6 architecture and provide the ability to pack, 
extract and unpack 8-bit and 16-bit quantities within 32-bit registers and to perform multiple 
arithmetic operations such as add, subtract, compare or multiply to such packed data, with a 
single instruction.

6.6.1 Integer register SIMD instructions

The v6 SIMD operations make use of the GE (greater than or equal) flags within the 
CPSR.These are distinct from the normal condition flags. There is a flag corresponding to each 
of the four byte positions within a word. Normal data processing operations produce one value 
and set the N, Z, C and V flags (as seen in Figure 4-3 on page 4-6). The SIMD operations 
produce up to four outputs and set only the GE flags, to indicate overflow. The MSR and MRS 
instructions can be used to write or read these flags directly.

The general form of the SIMD instructions are that subword quantities in each register are 
operated on in parallel (for example, four ADDs on four bytes can be performed) and the GE flags 
are set or cleared according to the results of the instruction. Different types of add and subtract 
can be specified using appropriate prefixes. For example, QADD16 performs saturating addition 
on halfwords within a register. SADD/UADD8 and SSUB/USUB8 set the GE bits individually while 
SADD/UADD16 and SSUB/USUB16 set GE bits [3:2] together based on the top halfword result, and 
[1:0] together on the bottom halfword result.

Also available are the ASX and SAX class of instructions, which reverse halfwords of one operand 
and add/subtract or subtract/add parallel pairs. Like the previously described ADD and Subtract 
instructions, these exist as unsigned (UASX/USAX), signed (SASX/SSAX) and saturated (QASX/QSAX) 
versions.

Figure 6-2 ADD v6 SIMD example

The SADD16 instruction shown in Figure 6-2 shows how two separate addition operations are 
performed by a single instruction. The top halfwords of registers R3 and R0 are added, with the 
result going into the top halfword of register R1 and the bottom halfwords of registers R3 and 

R3 R0

R1

SADD16 R1, R3, R0

GE[1:0]GE[3:2]
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R0 are added, with the result going into the bottom halfword of register R1. GE[3:2] bits in the 
CPSR are set based on the top halfword result and GE[1:0] based on the bottom halfword result. 
In each case the carry flag is duplicated in the specified pair of bits.

6.6.2 Integer register SIMD multiplies

Like the other SIMD operations, these operate in parallel, on subword quantities within 
registers. The instruction can also include an accumulate option, with add or subtract being able 
to be specified. The instructions are SMUAD (SIMD multiply and add with no accumulate), SMUSD 
(SIMD multiply and subtract with no accumulate), SMLAD (multiply and add with accumulate) 
and SMLSD (multiply and subtract with accumulate).

Adding an L (long) before D indicates 64-bit accumulation.

Using the X (eXchange) suffix indicates halfwords in Rm are swapped before calculation.

The Q flag is set if accumulation overflows.

The SMUSD instruction shown in Figure 6-3 performs two signed 16-bit multiplies (top × top and 
bottom × bottom) and then subtracts the two results. This kind of operation is useful when 
performing operations on complex numbers (with a real and imaginary component), a common 
task for filter algorithms.

Figure 6-3 v6 SIMD signed dual multiply subtract example

6.6.3 Sum of absolute differences

Calculating the sum of absolute differences is a key operation in the motion vector estimation 
component of common video codecs and is carried out over arrays of pixel data. The USADA8 Rd, 
Rn, Rm, Ra instruction is illustrated in Figure 6-4 on page 6-16. It calculates the sum of absolute 
differences of the bytes within a word in registers Rn and Rm, adds in the value stored in Ra and 
places the result in Rd.

Rn Rm

Rd

SMUSD Rd, Rn, Rm

-
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Figure 6-4 Sum of absolute differences

6.6.4 Data packing and unpacking

Packed data is common in many video and audio codecs (video data is usually expressed as 
packed arrays of 8-bit pixel data, audio data may use packed 16-bit samples), and also in 
network protocols. Before additional instructions were added in architecture v6, this data had to 
be either loaded with LDRH and LDRB instructions or loaded as words and then unpacked using 
Shift and Bit Clear operations; both are relatively inefficient. Pack (PKHBT, PKHTB) instructions 
allow 16-bit or 8-bit values to be extracted from any position in a register and packed into 
another register. Unpack instructions (UXTH, UXTB, plus many variants, including signed, with 
addition) can extract 8-bit or 16-bit values from any bit position within a register.

This enables sequences of packed data in memory to be loaded efficiently using word or 
doubleword loads, unpacked into separate register values, operated upon and then packed back 
into registers for efficient writing out to memory.

Figure 6-5 Packing and unpacking of 16-bit data in 32-bit registers

In the simple example shown in Figure 6-5, R0 contains two separate 16-bit values, denoted A 
and B. We can use the UXTH instruction to unpack the two halfwords into registers for further 
processing and we can then use the PKHBT instruction to pack halfword data from two registers 
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into one. It would be possible to replace the unpack instruction in each case with a MOV and either 
LSL or LSR instructions, but in this case we use a single instruction intended to work on parts of 
registers.

6.6.5 Byte selection

The SEL instruction enables us to select each byte of the result from the corresponding byte in 
either the first or the second operand, based on the value of the GE[3:0] bits in the CPSR. The 
packed data arithmetic operations set these bits as a result of add or subtract operations, and SEL 
can be used after these to extract parts of the data – for example, to find the smaller of the two 
bytes in each position.
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6.7 Saturating arithmetic
Saturated arithmetic is commonly used in audio and video codecs. Calculations which return a 
value higher (or lower) than the largest positive (or negative) number which can be represented 
do not overflow. Instead the result is set to the largest positive or negative value (saturated). The 
ARM instruction set includes a number of instructions which allows easy implementation of 
such algorithms. 

6.7.1 Saturated math instructions

The ARM saturated math instructions operate on either word or halfword sized values. The 8 of 
the QADD8 and QSUB8 instructions indicate that they operate on byte sized values. The result of the 
operation will be saturated to the largest possible positive or negative number. If the result 
would have overflowed and has been saturated, the overflow flag (CPSR Q bit) is set. This flag 
is said to be sticky. When set it will remain set until explicitly cleared by a write to the CPSR. 

The instruction set provides special instructions with this behavior, QSUB and QADD. Additionally, 
we have QDSUB and QDADD which are provided in support of Q15 or Q31 fixed point arithmetic. 
These instructions double and saturate their second operand before performing the specified add 
or subtract.

The Count Leading Zeros (CLZ) instruction returns the number of 0 bits before the most 
significant bit that is set. This can be useful for normalization and for certain division 
algorithms. To saturate a value to a specific bit position (effectively saturate to a power of two), 
we can use the USAT or SSAT (unsigned or signed) saturate operations. USAT16 and SSAT16 allow 
saturation of two halfword values packed within a register.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 6-18
ID071612 Non-Confidential



ARM/Thumb Unified Assembly Language Instructions 
6.8 Miscellaneous instructions
The remaining instructions cover coprocessor, supervisor call, PSR modification, byte reversal, 
cache preload, bit manipulation and a few others.

6.8.1 Coprocessor instructions

Coprocessor instructions occupy part of the ARM instruction set. Up to 16 coprocessors can be 
implemented, numbered 0 to 15 (CP0, CP1 … CP15). These can either be internal (built-in to 
the processor) or connected externally, through a dedicated interface. Use of external 
coprocessors is uncommon in older processors and is not supported at all in the Cortex-A series.

• Coprocessor 15 is a built-in coprocessor which provides control over many processor 
features, including cache and MMU.

• Coprocessor 14 is a built-in coprocessor which controls the hardware debug facilities of 
the processor, such as breakpoint units (described in Chapter 29).

• Coprocessors 10 and 11 give access to the floating-point and NEON hardware in the 
system (described in Chapter 7 and Chapter 8).

If a coprocessor instruction is executed, but the appropriate coprocessor is not present in the 
system, an undefined instruction exception occurs.

There are five classes of coprocessor instruction

• CDP – initiate a coprocessor data processing operation.

• MRC – move to ARM register from coprocessor register.

• MCR – move to coprocessor register from ARM register.

• LDC – load coprocessor register from memory.

• STC – store from coprocessor register to memory.

Multiple register and other variants of these instructions are also available, for example, MRRC, 
MCCR, LDCL, STCL.

6.8.2 Coprocessor 15 

CP15, the System Control coprocessor, is (despite the name coprocessor) an integral part of the 
processor and provides control of many features. It can contain up to 16 primary registers, each 
of size 32 bits. Note, however, that access to CP15 is privilege controlled and not all registers 
are available in User mode. The CP15 register access instructions specify the required primary 
register, with the other fields in the instruction used to define the access more precisely and 
increase the number of physical 32-bit registers in CP15. The 16 primary registers in CP15 are 
named c0 to c15, but are often referred to by a series of letters. For example, the CP15 System 
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Control Register is named CP15.SCTLR. Table 6-5 summarizes the function of some of the 
more relevant registers used in Cortex-A series processors. We will consider some of these in 
more detail when we look at the operation of the cache and MMU. 

Table 6-5 CP15 Register summary

Register Description

Main ID Register (MIDR) Gives identification information for the 
processor (including part number and 
revision). 

Multiprocessor Affinity Register (MPIDR) Provides a way to uniquely identify 
individual processors within a 
multi-processor system.

CP15 c1 System Control registers 

System Control Register (SCTLR) The main processor control register (see 
Chapter 10 Memory Management Unit).

Auxiliary Control Register (ACTLR) IMPLEMENTATION DEFINED. 
Implementation specific additional control 
and configuration options.

Coprocessor Access Control Register (CPACR) Controls access to all coprocessors except 
CP14 and CP15.

Secure Configuration Register (SCR) Used by TrustZone (Chapter 26 Security).

CP15 c2 and c3, memory protection and control registers 

Translation Table Base Register 0 (TTBR0) Base address of level 1 page table (see 
Chapter 10 Memory Management Unit).

Translation Table Base Register 1 (TTBR1) Base address of level 1 page table (see 
Chapter 10 Memory Management Unit).

Translation Table Base Control Register (TTBCR) Controls use of TTB0 and TTB1 (see 
Chapter 10 Memory Management Unit).

CP15 c5 and c6, memory system fault registers 

Data Fault Status Register (DFSR) Gives status information about the last data 
fault (see Chapter 14 Other Exception 
Handlers).

Instruction Fault Status Register (IFSR) Gives status information about the last 
instruction fault (see Chapter 14 Other 
Exception Handlers).

Data Fault Address Register (DFAR) Gives the virtual address of the access that 
caused the most recent precise data abort 
(see Chapter 14 Other Exception 
Handlers).

Instruction Fault Address Register (IFAR) Gives the virtual address of the access that 
caused the most recent precise prefetch 
abort (see Chapter 14 Other Exception 
Handlers).

CP15 c7, cache maintenance and other functions 

Cache and branch predictor maintenance functions See Chapter 9 Caches.
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All system architecture functions are controlled by reading or writing a general purpose 
processor register (Rt) from or to a set of registers (CRn) located within Coprocessor 15. The 
Op1, Op2, and CRm fields of the instruction can also be used to select registers or operations. 
The format is shown in Example 6-5.

Example 6-5 CP15 Instruction syntax

MRC p15, Op1, Rt, CRn, CRm, Op2 ; read a CP15 register into an ARM register

MCR p15, Op1, Rt, CRn, CRm, Op2 ; write a CP15 register from an ARM register

We will not go through each of the various CP15 registers in detail, as this would duplicate 
reference information which can readily be obtained from the ARM Architecture Reference 
Manual or product documentation. We will look at one example – the read-only Main ID 
Register (MIDR), the format of which is shown in Figure 6-6.

Figure 6-6 Main ID Register format

In a privileged mode, we can read this register, using the instruction

MRC p15, 0, <Rt>, c0, c0, 0

Data and instruction barrier operations See Chapter 11 Memory Ordering.

CP15 c8, TLB maintenance operations 

CP15 c9, performance monitors 

CP15 c12, Security Extensions registers 

Vector Base Address Register (VBAR) Provides the exception base address for 
exceptions that are not handled in Monitor 
mode.

Monitor Vector Base Address Register (MVBAR) Holds the exception base address for all 
exceptions that are taken to Monitor mode.

CP15 c13, process, context and thread ID registers 

Context ID Register (CONTEXTIDR) See description of ASID Chapter 10 
Memory Management Unit).

Software thread ID registers See description of ASID Chapter 10 
Memory Management Unit).

CP15 c15, IMPLEMENTATION DEFINED registers

Configuration Base Address Register (CBAR) Provides a base address for the GIC and 
Local timer type peripherals.

Table 6-5 CP15 Register summary (continued)

Register Description

31 24 23 20 19 16 15 3 0

Implementer Variant Arch Primary part number Rev

4
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The result, placed in register Rt, tells software which processor it is running on. For an ARM 
Cortex processor the interpretation of the results is as follows:

• Bits [31:24] – implementer, will be 0x41 for an ARM designed processor.

• Bits [23:20] – variant, shows the revision number of the processor.

• Bits [19:16] – architecture, will be 0xF for ARM architecture v7.

• Bits [15:4] – part number (for example 0xC08 for the Cortex-A8 processor).

• Bits [3:0] – revision, shows the patch revision number of the processor.

6.8.3 SVC

The SVC (supervisor call) instruction, when executed, causes a supervisor call exception. This is 
described further in Chapter 12 Exception Handling. The instruction includes a 24-bit (ARM) 
or 8-bit (Thumb) number value, which can be examined by the SVC handler code. Through the 
SVC mechanism, an operating system can specify a set of privileged operations which 
applications running in User mode can request. This instruction was originally called SWI 
(Software Interrupt).

6.8.4 PSR modification

Several instructions allow the PSR to be written to, or read from:

• MRS transfers the CPSR or SPSR value to a general purpose register. MSR transfers a general 
purpose register to the CPSR or SPSR. Either the whole status register, or just part of it 
can be updated. In User mode, all bits can be read, but only the condition flags (_f) are 
permitted to be modified. 

• In a privileged mode the Change Processor State (CPS) instruction can be used to directly 
modify the mode and interrupt-enable or disable (I and F) bits in the CPSR. See Figure 4-3 
on page 4-6.

• SETEND modifies a single CPSR bit, the E (Endian) bit. This can be used in systems with 
mixed endian data to temporarily switch between little- and big-endian data access.

6.8.5 Bit manipulation

There are instructions which allow bit manipulation of values in registers: 

• The Bit Field Insert (BFI) instruction allows a series of adjacent bits from the bottom of 
one register (specified by supplying a width value and LSB position) to be placed into any 
position in the destination register. 

• The Bit Field Clear (BFC) instruction allows adjacent bits within a register to be cleared. 

• The SBFX and UBFX instructions (Signed and Unsigned Bit Field Extract) copy adjacent bits 
from one register to the least significant bits of a second register, and sign extend or zero 
extend the value to 32 bits. 

• The RBIT instruction reverses the order of all bits within a register.

6.8.6 Cache preload

Cache preloading is described further in Chapter 19 Optimizing Code to Run on ARM 
Processors. Two instructions are provided, PLD (data cache preload) and PLI (instruction cache 
preload). Both instructions act as hints to the memory system that an access to the specified 
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address is likely to occur soon. Implementations that do not support these operations will treat 
a preload as a NOP, but all of the Cortex-A family processors described in this book are able to 
preload the cache. Any illegal address specified as a parameter to the PLD instruction will not 
result in a data abort exception.

6.8.7 Byte reversal

Instructions to reverse byte order can be useful for dealing with quantities of the opposite 
endianness or other data re-ordering operations. 

• The REV instruction reverses the bytes in a word

• The REV16 reverses the bytes in each halfword of a register 

• The REVSH reverses the bottom two bytes, and sign extends the result to 32 bits. 

Figure 6-7 illustrates the operation of the REV instruction, showing how four bytes within a 
register have their ordering within a word reversed.

Figure 6-7 Operation of the REV instruction

6.8.8 Other instructions

A few other instructions are available: 

• The breakpoint instruction (BKPT) will either cause a prefetch abort (see Types of exception 
on page 12-3) or cause the processor to enter debug state (depending on the whether the 
processor is configured for monitor or halt mode debug). This instruction is used by 
debuggers. See Debug events on page 29-2.

• Wait For Interrupt (WFI) puts the processor into standby mode, which is described further 
in Chapter 25 Power Management. The processor stops execution until woken by an 
interrupt or debug event. Note that if WFI is executed with interrupts disabled, an interrupt 
will still wake the processor, but no interrupt exception is taken. The processor proceeds 
to the instruction after the WFI. In older ARM processors, WFI was implemented as a CP15 
operation. WFE (Wait for Event) will also be described in Chapter 25.

• A NOP instruction (no-operation) does nothing. It may or may not take time to execute, so 
the NOP instruction should not be used to insert timing delays into code. It is intended to 
be used as padding.

Bit[31:24] Bit[23:16] Bit15:8 Bit[7:0]

07 815 1623 2431
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Chapter 7 
Floating-Point

All computer programs deal with numbers. Floating-point numbers, however, can sometimes 
appear counter-intuitive to programmers who are not familiar with their detailed implementation. 
For example, numbers which look equivalent to the human eye can return false using a C language 
== comparison. Before looking at floating-point implementation on ARM processors, a short 
overview of floating-point fundamentals is included. Programmers with prior floating-point 
experience may wish to skip the following section.
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7.1 Floating-point basics and the IEEE-754 standard
The IEEE-754 standard is the reference for almost all modern computer floating-point 
mathematics implementations, including ARM floating-point systems. The original 
IEEE-754-1985 standard was updated with the publication of IEEE-754-2008. The standard 
defines precisely what result will be produced by each of the fundamental floating-point 
operations over all of the possible input values. It describes what a compliant implementation 
should do with respect to rounding of results which cannot be expressed precisely. A simple 
example of such a calculation would be 1.0 ÷ 3.0, which would require an infinite number of 
digits to express precisely in decimal or binary notation. IEEE-754 provides a number of 
different rounding options to cope with this (round towards positive infinity, round towards 
negative infinity, round toward zero, and two forms of round to nearest, see Rounding 
algorithms on page 7-4). IEEE-754 also specifies the outcome when an exceptional operation 
occurs. This means a calculation which potentially represents a problem. These conditions can 
be tested, either by querying the FPSCR (on ARM processors) or by setting up trap handlers (on 
some systems). Examples of exceptional operations are as follows:

Overflow A result which is too large to represent. 

Underflow A result which is so small that precision is lost.

Inexact A result which cannot be represented without some loss of precision. It is clear 
that many floating-point calculations will fall into this category.

Invalid For example, attempting to calculate the square root of a negative number.

Division by zero 

The specification also describes what action should be taken when one of the above exceptional 
operations is detected. Possible outcomes include the generation of a NaN (Not a Number) result 
(for invalid operations), positive or negative infinity (for overflow or division by zero) or 
denormalized numbers in the case of underflow. The standard further defines what results 
should be produced if subsequent floating-point calculations operate on NaN or infinities.

One of the things that IEEE-754 defines is how floating-point numbers are represented within 
the hardware. Floating-point numbers are typically represented using either single precision 
(32-bit) or double-precision (64-bit). VFP (see VFP on page 2-6) supports single-precision 
(32-bit) and double-precision (64-bit) formats in hardware. In addition, VFPv3 can have 
half-precision extensions to allow 16-bit values to be used for storage.

Floating-point formats use the available space to store three pieces of information about a 
floating-point number:

• A sign bit (S) which shows whether the number is positive (0) or negative (1).

• An exponent giving its order of magnitude.

• A mantissa giving the fractional binary digits of the number.

For a single precision float, for example, bit [31] of the word is the sign bit [S], bits [30: 23] 
give the exponent and bits [22:0] give the mantissa. See Figure 7-1 on page 7-3.

The value of the number is then ±m × 2exp, where “m” is derived from the mantissa and “exp” 
is derived from the exponent.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 7-2
ID071612 Non-Confidential



Floating-Point 
Figure 7-1 Single precision floating-point format

The mantissa is not generated by directly taking the 23-bit binary value, but rather, it is 
interpreted as being to the right of the binary point, with a 1 present to the left. In other words, 
the binary mantissa must be greater than or equal to one and less than two. In the case where the 
number is zero, this is represented by setting all of the exponent and mantissa bits to 0. There 
are other special-case representations, for positive and negative infinity, and for the 
not-a-number (NaN) values. A further special case is that of denormalized values (which we 
will look at later in this section).

The sign bit lets us distinguish positive and negative infinity and NaN representations. 
Similarly, the 8-bit exponent value is used to give a value in the range +128 to –127, so there is 
an implicit offset of -127 in the encoding. Table 7-1 summarizes this.

Let’s consider an example: 

The decimal value +0.5 will be represented as a single precision float by the hexadecimal value 
0x3F000000. This has a sign value of 0 (positive). 

The value of the mantissa is 1.0, though the integral part (1) is implicit and is not stored. The 
exponent value is specified in bits [30:23] – which hold 0b11111100, or 126 – offset by 127 to 
represent an exponent of -1.

The value is therefore given by (-1)sign × mantissa × 2exponent = 1 × 1 × 2-1 = 0.5 (decimal) 

Denormal numbers are a special case. If we set the exponent bits to zero, we can represent very 
small numbers other than zero, by setting mantissa bits. Because normal values have an implied 
leading 1, the closest value to zero we can represent as a normal value is ±2-126. To get smaller 
numbers, the 1.m interpretation of the mantissa value is replaced with a 0.m interpretation. Now, 
the number's magnitude is determined only by bit positions. When using these extremely-small 
numbers, the available precision does not scale with the magnitude of the value. Without the 
implied 1 attached to the mantissa, all bits to the left of the lowest set bit are leading zeros, so 
the smallest representable number is 1.401298464e-45, represented by 0x00000001. For 
performance reasons, such denormal values are often ignored and are flushed to zero. This is 
strictly a violation of IEEE-754, but denormal values are used rarely enough in real programs 
that the performance benefit is worth more than correct handling of these extremely small 
numbers. Cortex processors with VFP allow code to select between flush-to-zero mode and full 
denormal support.

31 22 030 23

MantissaExponentS

Table 7-1 Single precision floating-point representation

Exponent Mantissa Description

–127 0 ±0

–127 !=0 Subnormal values

128 0 ±INFINITY

128 !=0 NaN values

Other Any Normal values +/-1.<mantissa> × 2<exp>
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Because a 32-bit floating-point number has a 23-bit mantissa there are many values of a 32-bit 
int that if converted to 32-bit float cannot be represented exactly. This is referred to as loss of 
precision. If you convert one of these values to float and back to int you will get a different, 
nearby value. In the case of double-precision floating-point numbers, the exponent field has 11 
bits (giving an exponent range from –1022 to +1023) and a mantissa field with 52 bits.

7.1.1 Rounding algorithms

The IEEE 754-1985 standard defines four different ways in which results can be rounded, as 
follows:

• Round to nearest (ties to even). This mode causes rounding to the nearest value. If a 
number is exactly midway between two possible values, it is rounded to the nearest value 
with a zero least significant bit.

• Round toward 0. This causes numbers to always be rounded towards zero (this can be also 
be viewed as truncation).

• Round toward +∞ .This selects rounding towards positive infinity. 

• Round toward -∞. This selects rounding towards negative infinity. 

The IEEE 754-2008 standard adds an additional rounding mode. In the case of round to nearest, 
it is now also possible to round numbers which are exactly halfway between two values, away 
from zero (in other words, upwards for positive numbers and downwards for negative numbers). 
This is in addition to the option to round to the nearest value with a zero least significant bit. At 
present VFP does not support this rounding mode.

7.1.2 ARM VFP

VFP is an optional (but rarely omitted) extension to the instruction sets in the ARMv7-A 
architecture conforming to the IEEE 754 standard. It can be implemented with either thirty-two, 
or sixteen double-word registers. The terms VFPv3-D32 and VFPv3-D16 are used to 
distinguish between these two options. If the Advanced SIMD (NEON) extension is 
implemented together with VFPv3, VFPv3-D32 is always present. VFPv3 can also be 
optionally extended by the half-precision extensions that provide conversion functions in both 
directions between half-precision floating-point (16-bit) and single-precision floating-point 
(32-bit). These operations only allow half-precision floats to be converted to and from other 
formats.

VFPv4 adds both the half-precision extensions and the Fused Multiply-Add instructions to the 
features of VFPv3. In a Fused Multiply-Add operation, only a single rounding occurs at the end. 
This is one of the new facets of the IEEE 754-2008 specification. Fused operations can improve 
the accuracy of calculations which repeatedly accumulate products, such as matrix 
multiplication or dot product calculation. The VFP version supported by Cortex-A sereies 
processors is given in Table 2-3 on page 2-10.

In addition to the registers described above, there are a number of other VFP registers. These 
are listed below.

Floating-Point System ID Register (FPSID) 
This can be read by system software to determine which floating-point features 
are supported in hardware.

Floating-Point Status and Control register (FPSCR) 
This holds comparison results and flags for exceptions. Control bits select 
rounding options and enable floating-point exception trapping. 
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Floating-Point Exception Register (FPEXC) 
The FPEXC register contains bits which allow system software that handles 
exceptions to determine what has happened. 

Media and VFP Feature registers 0 and 1 (MVFR0 and MVFR1) 
These registers allow system software to determine which Advanced SIMD and 
floating-point features are provided on the processor implementation.

User mode code can only access the FPCSR. One implication of this is that applications cannot 
read the FPSID to determine which features are supported unless the host OS provides this 
information. Linux provides this via /proc/cpuinfo, for example, but the information is not 
nearly as detailed as that provided by the VFP hardware registers.

Unlike ARM integer processor instructions, no VFP operations will affect the flags in the APSR 
directly. The flags are stored in the FPSCR. Before the result of a floating-point comparison can 
be used by the integer processor, the flags set by a floating-point comparison must be transferred 
to the APSR, using the VMRS instruction. This includes use of the flags for conditional execution, 
even of other VFP instructions. Example 7-1 shows a simple piece of code to illustrate this. The 
VCMP instruction performs a comparison the values in VFP registers d0 and d1 and sets FPSCR 
flags as a result. These flags must then be transferred to the integer processor APSR, using the 
VMRS instruction. We can then conditionally execute instructions based on this. 

Example 7-1 Example code illustrating usage of floating-point flags

VCMP d0, d1
VMRS APSR_nzcv, FPSCR
BNE  label

Flag meanings

The integer comparison flags support comparisons which are not applicable to floating-point 
numbers. For example, floating-point values are always signed, so there is no need for unsigned 
comparisons. On the other hand, floating-point comparisons can result in the unordered result 
(meaning that one or both operands was NaN, or Not a Number). IEEE-754 defines four testable 
relationships between two floating-point values, which map onto the ARM condition codes as 
follows:

Table 7-2 ARM APSR flags

IEEE-754 relationship ARM APSR flags

N Z C V

Equal 0 1 1 0

Less Than (LT) 1 0 0 0

Greater Than (GT) 0 0 1 0

Unordered (At least one argument was NaN) 0 0 1 1
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Compare with zero

Unlike the integer instructions, most VFP (and NEON) instructions can operate only on 
registers, and cannot accept immediate values encoded in the instruction stream. The VCMP 
instruction is a notable exception in that it has a special-case variant that enables quick and easy 
comparison with zero. 

Interpreting the flags

When the flags are in the APSR, they can be used almost as if an integer comparison had set the 
flags. However, floating-point comparisons support different relationships, so the integer 
condition codes do not always make sense. Table 7-3 describes floating-point comparisons 
rather than integer comparisons:

It should be obvious that the condition code is attached to the instruction reading the flags, and 
the source of the flags makes no difference to the flags that are tested. It is the meaning of the 
flags that differs when you perform a vcmp rather than a cmp. Similarly, it is clear that the opposite 
conditions still hold. (For example, HS is still the opposite of LO.) 

The flags when set by CMP generally have analogous meanings when set by VCMP. For example, 
GT still means greater than. However, the unordered condition and the removal of the signed 
conditions can confuse matters. Often, for example, it is desirable to use LO, normally an 
unsigned less than check, in place of LT, because it does not match in the unordered case.

Table 7-3 Interpreting the flags

Code Meaning (when set by vcmp) Meaning (when set by cmp) Flags tested

EQ Equal to Equal to Z =1

NE Unordered, or not equal to Not equal to. Z = 0

CS or HS Greater than, equal to, or unordered Greater than or equal to (unsigned). C = 1

CC or LO Less than. Less than (unsigned). C = 0

MI Less than Negative. N = 1

PL Greater than, equal to, or unordered Positive or zero. N = 0

VS Unordered. (At least one argument 
was NaN.) 

Signed overflow. V = 1

VC Not unordered. (No argument was 
NaN.) 

No signed overflow. V = 0

HI Greater than or unordered Greater than (unsigned). (C = 1) && (Z = 0)

LS Less than or equal to Less than or equal to (unsigned). (C = 0) || (Z = 1)

GE Greater than or equal to. Greater than or equal to (signed). N==V

LT Less than or unordered. Less than (signed). N!=V

GT Greater than. Greater than (signed). (Z==0) && (N==V)

LE Less than, equal to or unordered. Less than or equal to (signed). (Z==1) || (N!=V)

AL (or 
omitted) 

Always executed. Always executed. None tested.
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7.1.3 Instructions

VFP instructions are provided which perform arithmetic and data processing, load and stores to 
memory, and register transfers (between VFP registers and to or from ARM registers). These 
instructions are encoded with ARM coprocessor instructions, but are typically viewed as part of 
the main instruction set, rather than as coprocessor operations. VFP offers all the common 
arithmetic operations, format conversions, a few complex arithmetic operations (for example, 
Multiply accumulate, VMLA, and square root, VSQRT), along with memory access instructions. 
Appendix B of this book provides a full list of the supported instructions.

7.1.4 Enabling VFP

If an ARMv7 processor includes VFP hardware, it must be explicitly enabled before 
applications can make use of it. Several steps are required to do this:

• The EN bit in the FPEXC register must be set.

• If access to VFP is required in the Normal world, access to CP10 and CP11 must be 
enabled in the Non-Secure Access Control Register (CP15.NSACR). This would normally 
be done inside the Secure bootloader.

• Access to CP10 and CP11 must be enabled in the Coprocessor Access Control Register 
(CP15.CACR). This can be done on demand by the operating system.
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7.2 VFP support in GCC
Use of VFP is fully supported by GCC (although some builds can be configured to default to 
assume no VFP support, in which case floating-point calculations will use library code).

The main option to use for VFP support is:

• -mfpu=vfp specifies that the target has VFP hardware. (As does specifying the option 
-mfpu=neon.)

Other options can be used to specify support for a specific VFP implementation on an ARM 
Cortex-A series processor:

• -mfpu=vfpv3 or -mfpu=vfpv3-d16 (for Cortex-A8 and Cortex-A9 processors).

• -mfpu=vfpv4 or -mfpu=vfpv4-d16 (for Cortex-A5 and Cortex-A15 processors).

These options can be used for code which will run only on these VFP implementations, and do 
not require backward compatibility with older VFP implementations.

• -mfloat-abi=softfp (or hard) specify which ABI to use to enable the use of VFP.

softfp uses a Procedure Call Standard compatible with software floating-point, and so provides 
binary compatibility with legacy code. This permits running older soft float code with new 
libraries which support hardware floating-point, but still makes use of hardware floating-point 
registers between function calls. hard has floating-point values passed in floating-point 
registers. This is more efficient but is not backward compatible with the softfp ABI variant. 
Particular care is needed with libraries, including the C platform library. See VFP and NEON 
register usage on page 17-4 for more information on efficient parameter passing.

C programmers should note that there can be a significant function call overhead when using 
-mfloat-abi=softfp, if many floating-point values are being passed.
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7.3 VFP support in the ARM Compiler
Use of VFP is fully supported by the ARM Compiler (although some builds can be configured 
by default to assume no VFP support, in which case floating-point calculations will use library 
code). 

The main option to use with the ARM Compiler for VFP support is:

• --fpu=name which lets you specify the target floating-point hardware.

The options used to specify support for a specific VFP implementation on an ARM Cortex-A 
series processor are:

• --fpu=vfpv3 or --fpu=vfpv3_d16 (for the Cortex-A8 and Cortex-A9 processors).

• --fpu=vfpv4 or --fpu=vfpv4_d16 (for the Cortex-A5, Cortex-A7 and Cortex-A15 
processors).

These options can be used for code which will run only on these VFP implementations, and do 
not require backward compatibility with older VFP implementations. Use --fpu=list to see the 
full list of FPUs supported.

The following options can be used for linkage support:

• --apcs=/hardfp generates code for hardware floating-point linkage.

• --apcs=/softfp generates code for software floating-point linkage.

Hardware floating-point linkage uses the FPU registers to pass the arguments and return values. 
Software floating-point linkage means that the parameters and return value for a function are 
passed using the ARM integer registers R0 to R3 and the stack. --apcs=/hardfp and 
--apcs=/softfp interact with or override explicit or implicit use of --fpu.
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7.4 VFP support in Linux
An application which uses VFP (or calls into a library which uses VFP) places some additional 
requirements on the Linux kernel. For the application to run correctly, the kernel must save and 
restore the VFP registers during context switches. The kernel may also need to decode and 
emulate VFP instructions where the VFP hardware is not present.

7.4.1 Context switching 

In addition to saving and restoring integer registers, the kernel may also need to perform saving 
and restoring of VFP registers on a context switch. To avoid wasting cycles, this is done only 
when an application actually used VFP. As the VFP initialization code leaves VFP disabled, the 
first time a thread actually tries to access the floating-point hardware, an undefined exception 
occurs. The kernel function which handles this, sees that VFP is disabled and that a new thread 
wishes to use VFP. It saves the current VFP state and restores the state for the new thread. 

On systems with multiple processors, where threads can migrate to a different processor, this 
simple system will no longer work correctly. Instead, the kernel saves the state if the VFP was 
used by the previous thread.
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7.5 Floating-point optimization
This section contains some suggestions for developers writing FP assembly code. Some caution 
is needed when applying these points, as recommendations can be specific to a particular piece 
of hardware. A code sequence which is optimal for one processor can be sub-optimal on 
different hardware. 

• Avoid mixing of VFP and NEON instructions on the Cortex-A9 processor, as there is a 
significant overhead in switching between data engines. 
— VLDR or VSTM can be executed by both VFP and NEON, but VLD1 and VLD2 can only 

be executed by NEON. VFP Double-Precision instructions which are not NEON 
can only be executed by the VFP.

• Moves to and from VFP system control registers, such as FPSCR are not typically present 
in high-performance code, and may not be optimized. These should therefore not be 
placed in time-critical loops, if possible. For example, accesses to control registers on the 
Cortex-A9 processor are serializing, and will have a significant performance impact if 
used in tight loops or performance-critical code.

• Register transfer between the integer processor register bank and the floating-point 
register bank should similarly be avoided in time-critical loops. For the Cortex-A8 
processor, this is particularly true of register transfers from VFP registers to integer 
registers.

• Load/store multiple operations are preferred to the use of multiple, individual 
floating-point loads and stores, to make efficient use of available transfer bandwidth.
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Introducing NEON

This chapter provides an introduction to NEON technology, which can be used to accelerate the 
performance of multimedia applications running on ARM Cortex-A series processors. 

NEON technology provides Single Instruction Multiple Data (SIMD) operations in ARM 
processors implementing the Advanced SIMD architecture extensions. These operations can 
significantly accelerate repetitive operations on large data sets. This can be useful in applications 
such as media codecs.

NEON is implemented as a separate hardware unit that is available as an option on Cortex-A series 
processors. Allowing the NEON hardware to be optional enables ARM SoCs to be optimized for 
specific markets. In most general-purpose applications processor SoCs, NEON will probably be 
included. However, for an embedded application such as a network router, NEON can be omitted, 
allowing a small saving in silicon area which translates to a small cost saving.

We provide only a brief introduction to NEON technology here. A complete description could fill 
a book of its own!
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8.1 SIMD
SIMD is a computational technique for processing a number of data values (generally a power 
of two) using a single instruction, with the data for the operands packed into special wide 
registers. One instruction can therefore do the work of many separate instructions. For code 
which can be parallelized, large performance improvements can be achieved. SIMD extensions 
exist on many 32-bit architectures – PowerPC has AltiVec, while x86 has several variants of 
MMX/SSE. SIMD is described further in Integer SIMD instructions on page 6-14.

Many software programs operate on large datasets. The data items can be less than 32 bits in 
size (8-bit pixel data is common in video, graphics and image processing, 16-bit samples in 
audio codecs). In such cases, the operations to be performed are simple, repeated many times 
and have little need for control code. SIMD can offer considerable performance improvements 
for this type of data processing. It is particularly beneficial for digital signal processing or 
multimedia algorithms, such as:

• Block-based data processing.

• Audio, video, and image processing codecs.

• 2D graphics based on rectangular blocks of pixels

• 3D graphics

• Color-space conversion.

• Physics simulations.

On a 32-bit microprocessors such as the Cortex-A series processors, it is relatively inefficient 
to perform large numbers of 8-bit or 16-bit single operations. The processor ALU, registers and 
datapath are designed for the 32-bit calculations. SIMD enables a single instruction to treat a 
register value as multiple data elements (for example, as four 8-bit values in a 32-bit register) 
and to perform multiple identical operations on those elements. 

Figure 8-1 Comparing SIMD parallel add with 32-bit scalar add

To achieve four separate additions without using SIMD requires us to use four ADD instructions, 
as shown in Figure 8-1, and additional instructions to prevent one result from overflowing into 
the adjacent byte. SIMD needs only one instruction to do this.
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8.1.1 ARMv6 SIMD instructions

A set of basic 32-bit SIMD instructions was introduced in ARMv6, allowing the processor to 
operate on packed 8-bit or 16-bit values in 32-bit registers. These instructions have an 8 or 16 
as a suffix, to indicate the size of data to operate on. These were described in Integer SIMD 
instructions on page 6-14. These should not be confused with the separate NEON instructions 
described in this chapter.
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8.2 NEON architecture overview
NEON was designed as an additional load/store architecture to provide good vectorizing 
compiler support from languages such as C/C++. A rich set of NEON instructions operate on 
wide 64-bit and 128-bit vector registers, enabling a high level of parallelism. The NEON 
instructions are straightforward and easy to understand, which also makes hand-coding easy for 
applications that need the very highest performance.

A key advantage of NEON technology is that instructions form part of the normal ARM or 
Thumb code, making programming simpler than with an external hardware accelerator. There 
are NEON instructions available to read and write external memory, move data between NEON 
registers and other ARM registers and to perform SIMD operations.

The NEON architecture uses a 32 × 64-bit register file. These are actually the same registers 
used by the floating-point unit (VFPv3). It does not matter that the floating-point registers are 
re-used as NEON registers. All compiled code and subroutines will conform to the EABI, which 
specifies which registers can be corrupted and which registers must be preserved. The compiler 
is free to use any NEON or VFPv3 registers for floating-point values or NEON data at any point 
in the code.

The NEON architecture allows for 64-bit or 128-bit parallelism. This choice was made to keep 
the size of the NEON unit manageable (a vector ALU can easily become quite large), while still 
offering good performance benefits from vectorization. The NEON architecture also does not 
specify instruction timings and may require different numbers of cycles to execute the same 
instruction on different processors.

8.2.1 Commonality with VFP

NEON and Vector Floating-Point (VFP) instructions are both defined as coprocessor CP10 and 
CP15 operations (see ARM VFP on page 7-4). The ARM architecture can support a wide range 
of different NEON and VFP options, but in practice we see only the combinations:

• No NEON or VFP.

• VFP only.

• NEON and VFP.

These are vendor implementation options for the architecture, and so are fixed for a particular 
implementation of an ARM-based design. 

The key differences between NEON and VFP are that NEON only works on vectors, does not 
support double-precision floating-point (double-precision is supported by the VFP), and does 
not support certain complex operations such as square root and divide. NEON has a register 
bank of thirty-two 64-bit registers. If both NEON and VFPv3 are implemented, this register 
bank is shared between them in hardware. This means that VFPv3 must be present in its 
VFPv3-D32 form, which has 32 double-precision floating-point registers. This makes support 
for context switching simpler. Code which saves and restores VFP context also saves and 
restores NEON context.

8.2.2 Data types

NEON instructions operate on elements of the following types:

• 32-bit single precision floating-point

• 8, 16, 32 and 64-bit unsigned and signed integers

• 8 and 16-bit polynomials.
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Data type specifiers in NEON instructions comprise a letter indicating the type of data and a 
number indicating the width. They are separated from the instruction mnemonic by a point, for 
example, VMLAL.S8. So we have the following possibilities:

• unsigned integer U8 U16 U32 U64.

• signed integer S8 S16 S32 S64.

• integer of unspecified type I8 I16 I32 I64.

• floating-point number F16 F32 .

• polynomial over {0,1} P8.

Note
 F16 is not supported for data processing operations. It is only supported as a format to be 
converted to, or from.

The polynomial type is to help with anything that needs to use power-of-two finite fields or 
simple polynomials over {0,1}. Normal ARM integer code would typically use a lookup table 
for finite field arithmetic, but large lookup tables cannot be vectorized. Polynomial operations 
are hard to synthesize out of other operations, so it is useful having a basic multiply operation 
(add is EOR) out of which larger multiplies or other operations can be synthesized.

Applications of polynomial arithmetic can include error correction, such as Reed Solomon 
codes, and CRCs (the field operations typically use a polynomial multiply + mod, but this can 
be reduced to just multiplies using the Montgomery reduction method). Also elliptic curve 
cryptography often uses power-of-type fields.

NEON technology is IEEE 754-1985 compliant, but only supports round-to-nearest rounding 
mode. This is the rounding mode used by most high-level languages, such as C and Java. 
Additionally, NEON instructions always treats denormals as zero.

8.2.3 NEON registers

The register bank may be viewed as either sixteen 128-bit registers (Q0-Q15) or as thirty-two 
64-bit registers (D0-D31). Each of the Q0-Q15 registers maps to a pair of D registers, as shown 
in Figure 8-2. 

Figure 8-2 NEON register bank

The view of registers in Figure 8-3 on page 8-6 is determined by form of the instruction used. 
so that the software does not have to explicitly change state. 
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Figure 8-3 NEON registers

Individual elements can also be accessed as scalars.The advantage of the dual view is that it 
accommodates mathematical operations which widen or narrow the result. For example 
multiplying two D registers gives a Q register result. The dual-view enables the register bank to 
be used more efficiently.

NEON data processing instructions are typically available in Normal, Long, Wide, Narrow and 
Saturating variants.

• Normal instructions can operate on any vector types, and produce result vectors the same 
size, and usually the same type, as the operand vectors. 

• Long instructions operate on doubleword vector operands and produce a quadword vector 
result. The result elements are usually twice the width of the operands, and of the same 
type. Long instructions are specified using an L appended to the instruction. Figure 8-4 
shows this, with input operands being promoted before the operation.

Figure 8-4 NEON long instructions

• Wide instructions operate on a doubleword vector operand and a quadword vector 
operand, producing a quadword vector result. The result elements and the first operand 
are twice the width of the second operand elements. Wide instructions have a W appended 
to the instruction. Figure 8-5 on page 8-7 shows this, with the input doubleword operands 
being promoted before the operation.
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Figure 8-5 NEON wide instructions

• Narrow instructions operate on quadword vector operands, and produce a doubleword 
vector result. The result elements are usually half the width of the operand elements. 
Narrow instructions are specified using an N appended to the instruction. Figure 8-6 
shows this, with input operands being demoted before the operation.

Figure 8-6  NEON narrow instructions

Some NEON instructions act on scalars together with vectors. The scalars can be 8-, 16-, 32-, 
or 64-bit. Instructions which use scalars can access any element in the register bank, although 
there are differences for multiply instructions. The instruction uses an index into a doubleword 
vector to specify the scalar value. Multiply instructions only support 16-bit or 32-bit scalars, and 
can only access the first 32 scalars in the register bank (that is, D0-D7 for 16-bit scalars or 
D0-D15 for 32-bit scalars).

8.2.4 NEON instruction set

All mnemonics for NEON instructions (as with VFP) begin with the letter “V”. Instructions are 
generally able to operate on different data types, with this being specified in the instruction 
encoding. The size is indicated with a suffix to the instruction. The number of elements is 
indicated by the specified register size. 

For example, looking at the instruction
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VADD.I8 D0, D1, D2

VADD indicates a NEON ADD operation.

the I8 suffix indicates that 8-bit integers are to be added

D0, D1 and D2 specify the 64-bit registers used (D0 for the result destination, D1 and D2 for the 
operands).

So this instruction performs eight additions in parallel.

There are operations which have different size registers for input and output.

VMULL.S16 Q2, D8, D9

This instruction performs four 16-bit multiplies of data packed in D8 and D9 and produces four 
32-bit results packed into Q2.

The VCVT instruction converts elements between single-precision floating-point and 32-bit 
integer, fixed-point, and (if implemented) half-precision floating-point.

NEON includes load and store instructions which can load or store individual or multiple values 
to a register. In addition, there are instructions which can transfer blocks of data between 
multiple registers and memory. It is also possible to interleave or de-interleave data during such 
multiple transfers.

The following modifiers can be used with certain Advanced SIMD instructions (some modifiers 
can be used only with a small subset of the available instructions):

Q The instruction uses saturating arithmetic, so that the result is saturated within the 
range of the specified data type. The sticky QC bit in the FPSCR is set if 
saturation occurs in any lane. VQADD is an example of such an instruction.

H The instruction will halve the result. It does this by shifting right by one place 
(effectively a divide by two with truncation). VHADD is an example of such an 
instruction – it could be used to calculate the mean of two inputs.

D The instruction doubles the result and saturates. This is commonly required when 
multiplying numbers in Q15 format, where an additional doubling is needed to 
get the result into the correct form.

R The instruction will perform rounding on the result, equivalent to adding 0.5 to 
the result before truncating. VRHADD is an example of this. 

Instructions have the following general format:

V{<mod>}<op>{<shape>}{<cond>}{.<dt>}(<dest>}, src1, src2

where:

<mod> is one of the previously described Modifiers (Q, H, D, R)

<op> - operation (for example, ADD, SUB, MUL)

<shape> - Shape (L, W or N, as described in NEON registers on page 8-5)

<cond> - Condition, used with IT instruction

<.dt>  - Data type 

<dest> - Destination

<src1> - Source operand 1
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<src2> - Source operand 2.

The NEON instruction set includes a range of vector addition and subtraction operations, 
including pairwise adding, which adds adjacent vector elements together. 

There are a number of multiply operations, including multiply-accumulate and 
multiply-subtract and doubling and saturating options. There is no SIMD division operation, but 
such an operation can be performed using the VRECPE (Vector Reciprocal Estimate) and VCREPS 
(Vector Reciprocal Step) instructions to perform Newton-Raphson iteration. 

Similarly, there is no vector square root instruction, but VRSQRTE, VRSQRTS, and multiplies to 
compute square roots. Shift left, right and insert operations are also available, along with 
instructions which select minimum or maximum values. Common logic operations (AND, OR, EOR, 
AND NOT and OR NOT) can be performed. The instruction set also includes the ability to count 
numbers of bits set in an element or to count leading zeros or sign bits.

As SIMD instructions perform multiple operations, they cannot use the standard ALU flags for 
comparison instructions. Instead two elements can be compared, with the result of the 
comparison in the destination register. The destination element is set to all 0’s if the tested 
condition is false or all 1’s if the tested condition is true. This bit mask can then be used to 
control subsequent instructions. A number of different comparison operations are supported. 
There are bitwise select instructions which can be used in conjunction with these bit masks.

There are a number of different instructions to move data between registers, or between 
elements. It is also possible for instructions to swap or duplicate registers, to perform reversal, 
matrix transposition and extract individual vector elements.

Appendix B lists all NEON and VFP instructions and gives a brief description of their function. 
Full details for each instruction can also be found in the ARM Architecture Reference Manual.
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Chapter 9 
Caches

The word cache derives from the French verb cacher, “to hide”. A cache is a hidden storage place. 
The application of this word to a processor is obvious – a cache is a place where the processor can 
store instructions and data, hidden from the programmer and system. In many cases, it would be 
true to say that the cache is transparent to, or hidden from the programmer. But very often, as we 
shall see, it is important to understand the operation of the cache in detail.

When the ARM architecture was first developed, the clock speed of the processor and the access 
speeds of memory were broadly similar. Today’s processors are much more complicated and can 
be clocked orders of magnitude faster. However, the frequency of the external buses and of memory 
devices has not scaled to the same extent. It is possible to implement small blocks of on-chip 
SRAM which can operate at the same speeds of the processor, but such RAM is very expensive in 
comparison to standard DRAM blocks, which can have thousands of times more capacity. In many 
ARM processor based systems, access to external memory will take tens or even hundreds of 
processor cycles.

Essentially, a cache is a small, fast block of memory which (conceptually at least) sits between the 
processor core and main memory. It holds copies of items in main memory. Accesses to the cache 
memory happen significantly faster than those to main memory. As the cache holds only a subset 
of the contents of main memory, it must store both the address of the item in main memory and the 
associated data. Whenever the processor wants to read or write a particular address, it will first look 
for it in the cache. Should it find the address in the cache, it will access the data in the cache, rather 
than having to perform an access to main memory. This significantly increases the potential 
performance of the system, by reducing the effect of slow external memory access times. It also 
reduces the power consumption of the system, by avoiding the need to drive external signals. 
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Cache sizes are small relative to the overall memory used in the system. Larger caches make for 
more expensive chips. In addition, making an internal processor cache larger can potentially 
limit the maximum speed of the processor. Significant research has gone into identifying how 
hardware can determine what it should keep in the cache. Efficient use of this limited resource 
is a key part of writing efficient applications to run on a processor. 

On-chip SRAM can be used to implement caches, which hold temporary copies of instructions 
and data from main memory. Code and data have the properties of temporal and spatial locality. 
This means that programs tend to re-use the same addresses over time (temporal locality) and 
tend to use addresses which are near to each other (spatial locality). Code, for instance, can 
contain loops, meaning that the same code gets executed repeatedly or a function can be called 
multiple times. Data accesses (for example, to the stack) can be limited to small regions of 
memory. It is this fact that access to RAM by the processor exhibits such locality, and is not truly 
random, that enables caches to be successful.

Access ordering rules obey the weakly ordered model. See ARM memory ordering model on 
page 11-4.

We will also look at the write buffer. This is a block which decouples writes being done by the 
processor when executing store instructions from the external memory bus. The processor 
places the address, control and data values associated with the store into a set of hardware 
buffers. This is the write buffer. Like the cache, it sits between the processor core and main 
memory. This enables the processor to move on and execute the next instructions without having 
to stop and wait for the slow main memory to actually complete the write operation.
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9.1 Why do caches help?
Caches speed things up, as we have seen, because program execution is not random. Programs 
access the same sets of data repeatedly and execute the same sets of instructions repeatedly. By 
moving code or data into faster memory when it is first accessed, following accesses to that code 
or data become much faster. The initial access which provided the data to the cache is no faster 
than normal. It is any subsequent accesses to the cached values which are faster, and it is from 
this the performance increase derives. The processor hardware will check all instruction fetches 
and data reads or writes in the cache, although obviously we need to mark some parts of memory 
(those containing peripheral devices, for example) as non-cacheable. As the cache holds only a 
subset of main memory, we need a way to determine (quickly) whether the address we are 
looking for is in the cache.
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9.2 Cache drawbacks
It may seem that caches and write buffers are automatically a benefit, as they speed up program 
execution. However, they also add some problems which are not present in an uncached 
processor. One such drawback is that program execution time can become non-deterministic.

What this means is that, because the cache is small and holds only a subset of main memory, it 
fills rapidly as a program executes. When the cache is full, existing code or data is replaced, to 
make room for new items. So, at any given time, it is not normally possible for an application 
to be certain whether or not a particular instruction or data item is to be found in the cache.

This means that the execution time of a particular piece of code can vary significantly. This can 
be something of a problem in hard real-time systems where strongly deterministic behavior is 
needed. 

Furthermore, as we shall see, we need a way to control how different parts of memory are 
accessed by the cache and write buffer. In some cases, we want the processor to read up-to-date 
data from an external device, such as a peripheral. It would not be sensible to use a cached value 
of a timer peripheral, for example. Sometimes we want the processor to stop and wait for a store 
to complete. So caches and write buffers give the programmer some extra work to do.

Occasionally data in the cache and data in external memory may not be the same. This is a 
problem with coherency. This can be a particular problem when we have multiple processors or 
memory agents like an external DMA controller. We will consider such coherency issues in 
greater detail later in the book.
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9.3 Memory hierarchy
In computer science, a memory hierarchy refers to a hierarchy of memory types, with faster and 
smaller memories closer to the processor and slower and larger memory further away. In most 
systems, we can have secondary storage, such as disk drives and primary storage such as flash, 
SRAM and DRAM. In embedded systems, we typically further sub-divide this into on-chip and 
off-chip memory. Memory which is on the same chip (or at least in the same package) as the 
processor will typically be much faster.

A cache can be included at any level in the hierarchy and should improve system performance 
where there is an access time difference between different parts of the memory system.

In ARM processor based systems, we typically have level 1 (L1) caches, which are connected 
directly to the processor logic that fetches instructions and handles load and store instructions. 
These are Harvard caches (that is, there are separate caches for instructions and for data) in all 
but the lowest performing members of the ARM processor family and effectively appear as part 
of the processor. Over the years, the size of L1 caches has increased, due to SRAM size and 
speed improvements. At the time of writing, 16KB or 32KB cache sizes are most common, as 
these are the largest RAM sizes capable of providing single cycle access at a processor speed of 
1GHz or more.

Many ARM systems have, in addition, a level 2 (L2) cache. This is larger than the L1 cache 
(typically 256KB, 512KB or 1MB), but slower and unified (holding both instructions and data). 
It can be inside the processor itself, as in the Cortex-A7, Cortex-A8 and Cortex-A15 processors, 
or be implemented as an external block, placed between the processor and the rest of the 
memory system. The ARM L2C-310 is an example of such an external L2 cache controller 
block.

In addition, we have processors that can be implemented in multi-processor clusters in which 
each processor has its own cache. Such systems require mechanisms to maintain coherency 
between caches, so that when one processor changes a memory location, that change is made 
visible to other processors which share that memory. We describe this in more detail when we 
look at multi-processing. 
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9.4 Cache architecture
In a von Neumann architecture, there is a single cache used for instruction and data (a unified 
cache). A modified Harvard architecture has separate instruction and data buses and therefore 
there are two caches, an instruction cache (I-cache) and a data cache (D-cache). In many ARM 
systems, we can have distinct instruction and data level 1 caches backed by a unified level 2 
cache.

Let’s consider how a cache memory is constructed. The cache needs to hold an address, some 
data and some status information. The top bits of the 32-bit address tells the cache where the 
information came from in main memory and is known as the tag. The total cache size is a 
measure of the amount of data it can hold; the RAMs used to hold tag values are not included 
in the calculation. The tag does, however, take up physical space in the cache. 

It would be inefficient to hold one word of data for each tag address, so we typically group 
several locations together under the same tag. This logical block is commonly known as a cache 
line. The middle bits of the address, or index, identify the line. The index is used as address for 
the cache RAMs and does not need to be stored as a part of the tag. This will be covered in more 
detail later in this chapter. A cache line is said to be valid when it contains cached data or 
instructions, and invalid when it does not.

This means that the bottom few bits of the address (the offset) are not required to be stored in 
the tag – we need to record the address of a line, not of each byte within the line, so the five or 
six least significant bits will always be 0.

Associated with each line of data are one or more status bits. Typically, we will have a valid bit, 
which marks the line as containing data that can be used. (This means that the address tag 
represents some real value.) In a data cache we will also have one or more dirty bits which mark 
whether the cache line (or part of it) holds data which is not the same as (newer than) the 
contents of main memory. We will treat this in more detail later in the chapter.

9.4.1 Cache controller

This is a hardware block which has the task of managing the cache memory, in a way which is 
(largely) invisible to the program. It automatically writes code or data from main memory into 
the cache. It takes read and write memory requests from the processor and performs the 
necessary actions to the cache memory or the external memory.

When it receives a request from the processor it must check to see whether the requested address 
is to be found in the cache. This is known as a cache look-up. It does this by comparing a subset 
of the address bits of the request with tag values associated with lines in the cache. If there is a 
match (a hit) and the line is marked valid then the read or write will happen using the cache 
memory.

When the processor requests instructions or data from a particular address, but there is no match 
with the cache tags, or the tag is not valid, a cache miss results and the request must be passed 
to the next level of the memory hierarchy – an L2 cache, or external memory. It can also cause 
a cache linefill. A cache linefill causes the contents of a piece of main memory to be copied into 
the cache. At the same time, the requested data or instructions are streamed to the processor. 
This process happens transparently and is not directly visible to the programmer.

The processor need not wait for the linefill to complete before using the data. The cache 
controller will typically access the critical word within the cache line first. For example, if we 
perform a load instruction which misses in the cache and triggers a cache linefill, the first read 
to external memory will be that of the actual address supplied by the load instruction. This 
critical data is supplied to the processor pipeline, while the cache hardware and external bus 
interface then read the rest of the cache line, in the background.
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9.4.2 Direct mapped caches

We now look at various different ways of implementing caches starting with the simplest, a 
direct mapped cache.

In a direct mapped cache, each location in main memory maps to a single location in the cache. 
As main memory is many times larger than the cache, many addresses map to the same cache 
location. Figure 9-1 shows a small cache, with four words per line and four lines. This means 
that the cache controller will use two bits of the address (bits [3:2]) as the offset to select a word 
within the line and two bits of the address (bits [5:4]) as the index to select one of the four 
available lines. The remaining bits of the address (bits [31:6]) will be stored as a tag value.

Figure 9-1 Direct mapped cache operation

To look up a particular address in the cache, the hardware extracts the index bits from the 
address and reads the tag value associated with that line in the cache. If the two are the same and 
the valid bit indicates that the line contains valid data, it has a hit. It can then extract the data 
value from the relevant word of the cache line, using the offset and byte portion of the address. 
If the line contains valid data, but does not generate a hit (that is, the tag shows that the cache 
holds a different address in main memory) then the cache line is removed and is replaced by data 
from the requested address. 

It should be clear that all main memory addresses with the same value of bits [5:4] will map to 
the same line in the cache. Only one of those lines can be in the cache at any given time. This 
means that we can easily get a problem called thrashing. Consider a loop which repeatedly 
accesses address 0x00, 0x40 and 0x80, as in the code below:

 void add_array(int *data1, int *data2, int *result, int size) 
 {  

int i;

for (i=0 ; i<size ; i++) {
result[i] = data1[i] + data2[i];

}
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}

In this code example, if result, data1, and data2 are pointers to 0x00, 0x40 and 0x80 respectively 
then this loop will cause repeated accesses to memory locations that all map to the same line in 
the basic cache, as shown in.Figure 9-1 on page 9-7. 

• When we first read address 0x40, it will not be in the cache and so a linefill takes place 
putting the data from 0x40 to 0x4F into the cache. 

• When we then read address 0x80, it will not be in the cache and so a linefill takes place 
putting the data from 0x80 to 0x8F into the cache – and in the process we lose the data from 
address 0x40 to 0x4F from the cache. 

• The result is written to 0x00. Depending on the allocation policy this may cause another 
line fill. The data from 0x80 to 0x8F may be lost.

• The same thing will happen on each iteration of the loop and our software will perform 
poorly. Direct mapped caches are therefore not typically used in the main caches of ARM 
processors, but we do see them in some places – for example in the branch target address 
cache of the ARM1136 processor.

Processors can have hardware optimizations for situations where the whole cache line is being 
written to. This is a condition which can take a significant proportion of total cycle time in some 
systems. For example, this can happen when memcpy()- or memset()-like functions which 
perform block copies or zero initialization of large blocks are executed. In such cases, there is 
no benefit in first reading the data values which will be over-written. This can lead to situations 
where the performance characteristics of the cache are different to what might normally be 
expected.

Cache allocate policies act as a hint to the processor, they do not guarantee that a piece of 
memory will be read into the cache, and as a result, programmers should not rely on that.

9.4.3 Set associative caches

The main cache(s) of ARM processors are always implemented using a set associative cache. 
This significantly reduces the likelihood of the cache thrashing seen with direct mapped caches, 
thus improving program execution speed and giving more deterministic execution. It comes at 
the cost of increased hardware complexity and a slight increase in power (because multiple tags 
are compared on each cycle).

With this kind of cache organization, we divide the cache into a number of equally-sized pieces, 
called ways. The index field of the address continues to be used to select a particular line, but 
now it points to an individual line in each way. Commonly, there are 2- or 4-ways, but some 
ARM implementations have used higher numbers. Level 2 cache implementations (such as the 
ARM L2C-310) can have larger numbers of ways (higher associativity) due to their much larger 
size. The cache lines with the same index value are said to belong to a set. To check for a hit, 
we must look at each of the tags in the set. 

In Figure 9-2 on page 9-9, a cache with 2-ways is shown. Data from address 0x00 (or 0x40, or 
0x80) may be found in line 0 of either (but not both) of the two cache ways.
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Figure 9-2 A 2-way set-associative cache

Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is 
a fully associative cache, where any main memory location can map anywhere within the cache. 
However, building such a cache is impractical for anything other than very small caches (for 
example, those associated with MMU TLBs – see Chapter 10). In practice, performance 
improvements are minimal for Level 1 caches above 4-way associativity, with 8-way or 16-way 
associativity being more useful for larger level 2 caches.

9.4.4 Cache terminology

A brief summary of some of the terms used may be helpful:

Figure 9-3 Cache terminology

• A line refers to the smallest loadable unit of a cache, a block of contiguous words from 
main memory.

• The index is the part of a memory address which determines in which line(s) of the cache 
the address can be found.

• A way is a subdivision of a cache, each way being of equal size and indexed in the same 
fashion. The line associated with a particular index value from each cache way grouped 
together forms a set.
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• The tag is the part of a memory address stored within the cache which identifies the main 
memory address associated with a line of data.

9.4.5 A real-life example

Before we move on to look at write buffers, let’s consider an example which is more realistic 
than those shown in the previous two diagrams. Figure 9-4 is a 4-way set associative 32KB data 
cache, with an 8-word cache line length. This kind of cache structure might be found on the 
Cortex-A9 or Cortex-A5 processors.

The cache line length is eight words (32 bytes) and we have 4-ways. 32KB divided by 4, divided 
by 32 gives us a figure of 256 lines in each way. This means that we need the eight bits to index 
a line within a way (bits [12:5]). We need to use bits [4:2] of the address to select from the eight 
words within the line. The remaining bits [31:13] will be used as a tag.

Figure 9-4 A 32KB 4-way set associative cache

9.4.6 Virtual and physical tags and indexes

This section assumes some knowledge of the address translation process. Readers unfamiliar 
with virtual addressing may wish to revisit this section after reading Chapter 10. 

In A real-life example, we were a little imprecise about specification of exactly which address 
is used to perform cache lookups. Early ARM processors (for example, the ARM720T or 
ARM926EJ-S processors) used virtual addresses to provide both the index and tag values. This 
has the advantage that the processor can do a cache look-up without the need for a virtual to 
physical address translation. The drawback is that changing the virtual to physical mappings in 
the system means that the cache must first be cleaned and invalidated, and this can have a 
significant performance impact. We will go into more detail about these terms in Invalidating 
and cleaning cache memory on page 9-16.
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ARM11 family processors use a different cache tag scheme. Here, the cache index is still 
derived from a virtual address, but the tag is taken from the physical address. The advantage of 
a physical tagging scheme is that changes in virtual to physical mappings do not now require 
the cache to be invalidated. This can have significant benefits for complex multi-tasking 
operating systems which can frequently modify page table mappings. Using a virtual index has 
some hardware advantages. It means that the cache hardware can read the tag value from the 
appropriate line in each way in parallel without actually performing the virtual to physical 
address translation, giving a fast cache response. Such a cache is often described as Virtually 
Indexed, Physically Tagged (VIPT). Cache properties of Cortex-A series processors, including 
the use of these tagged caches are given in Table 9-1. Other properties of the Cortex-A series 
processors are listed in Table 2-3 on page 2-10.

However, there is a drawback to a VIPT implementation. For a 4-way set associative 32KB or 
64KB cache, bits [12] and [13] of the address are needed to select the index. If 4KB pages are 
used in the MMU, bits [13:12] of the virtual address may not be equal to bits [13:12] of the 
physical address. There is therefore scope for potential cache coherency problems if multiple 
virtual address mappings point to the same physical address. This is resolved by placing certain 
restrictions on such multiple mappings which kernel page table software must obey. This is 
described as a page coloring issue and exists on other processor architectures for the same 
reasons. 

This problem is avoided by using a Physically Indexed, Physically Tagged (PIPT) cache 
implementation. The Cortex-A series of processors described in this book use such a scheme for 
their data caches. It means that page coloring issues are avoided, but at the cost of hardware 
complexity.

Table 9-1 Cache features of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A15

L2 Cache External Integrated Integrated External Integrated

L2 Cache size - 128KB to 1MBa 0KB to 1MBa - 512KB to 4MBa

Cache 
Implementation 
(Data)

PIPT PIPT PIPT PIPT PIPT

Cache 
Implementation 
(Instruction)

VIPT VIPT VIPT VIPT PIPT

L1 Cache size 
(data)a

4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB

Cache size (Inst)a 4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB

L1 Cache Structure 2-way set 
associative (Inst)
4-way set 
associative (Data)

2-way set 
associative (Inst)
4-way set 
associative (Data)

4-way set 
associative

4-way set 
associative (Inst)
4-way set 
associative (Data)

2-way set 
associative (Inst)
2-way set 
associative (Data)

L2 Cache Structure - 8-way set 
associative

8-way set 
associative

- 16-way 
associative

Cache line (words) 8 8 16 8 16

a. Configurable
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9.5 Cache policies
There are a number of different choices which can be made in cache operation. We need to 
consider what causes a line from external memory to be placed into the cache (allocation 
policy). We need to look at how the controller decides which line within a set associative cache 
to use for the incoming data (replacement policy). And we need to control what happens when 
the processor performs a write which hits in the cache (write policy). 

9.5.1 Allocation policy

When the processor does a cache look-up and the address it wants is not in the cache, it must 
determine whether or not to perform a cache linefill and copy that address from memory.

• A read allocate policy allocates a cache line only on a read. If a write is performed by the 
processor which misses in the cache, the cache is not affected and the write goes to the 
next level of the hierarchy.

• A write allocate policy allocates a cache line for either a read or write which misses in the 
cache (and so might more accurately be called a read-write cache allocate policy). For 
both memory reads which miss in the cache and memory writes which miss in the cache, 
a cache linefill is performed. This is typically used in combination with a write-back write 
policy on current ARM processors, as we shall see in Write policy.

9.5.2 Replacement policy

When there is a cache miss, the cache controller must select one of the cache lines in the set for 
the incoming data. The cache line selected is called the victim. If the victim contains valid, dirty 
data, the contents of that line must be written to main memory before new data can be written 
to the victim cache line. This is called eviction.

The replacement policy is what controls the victim selection process. The index bits of the 
address are used to select the set of cache lines, and the replacement policy selects the specific 
cache line from that set which is to be replaced.

• Round-robin or cyclic replacement means that we have a counter (the victim counter) 
which cycles through the available ways and cycles back to 0 when it reaches the 
maximum number of ways.

• Pseudo-random replacement randomly selects the next cache line in a set to replace. The 
victim counter is incremented in a pseudo-random fashion and can point to any line in the 
set.

Most ARM processors support both policies.

A round-robin replacement policy is generally more predictable, but can suffer from poor 
performance in certain use cases and for this reason, the pseudo-random policy is often 
preferred.

9.5.3 Write policy

When the processor executes a store instruction, a cache lookup on the address(es) to be written 
is performed. For a cache hit on a write, there are two choices. 

• Write-through. With this policy writes are performed to both the cache and main memory. 
This means that the cache and main memory are kept coherent. As there are more writes 
to main memory, a write-through policy is slower than a write-back policy if the write 
buffer fills and therefore is less commonly used in today’s systems (although it can be 
useful for debug).
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• Write-back. In this case, writes are performed only to the cache, and not to main memory. 
This means that cache lines and main memory can contain different data. The cache line 
holds newer data, and main memory contains older data (said to be stale). To mark these 
lines, each line of the cache has an associated dirty bit (or bits). When a write happens 
which updates the cache, but not main memory, the dirty bit is set. If the cache later evicts 
a cache line whose dirty bit is set (a dirty line), it writes the line out to main memory. 
Using a write-back cache policy can significantly reduce traffic to slow external memory 
and therefore improve performance and save power. However, if there are other agents in 
the system which can access memory at the same time as the processor, we may need to 
worry about coherency issues. This is described in more detail later.
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9.6 Write and Fetch buffers
A write buffer is a hardware block inside the processor (but sometimes in other parts of the 
system as well), implemented using a number of buffers. It accepts address, data and control 
values associated with processor writes to memory. When the processor executes a store 
instruction, it may place the relevant details (the location to write to, the data to be written, the 
transaction size and so forth) into the buffer. The processor does not have to wait for the write 
to be completed to main memory. It can proceed with executing the next instructions. The write 
buffer itself will drain the writes accepted from the processor, to the memory system.

A write buffer can increase the performance of the system. It does this by freeing the processor 
from having to wait for stores to complete. In effect, provided there is space in the write buffer, 
the write buffer is a way to hide latency. If the number of writes is low or well spaced, the write 
buffer will not become full. If the processor generates writes faster than they can be drained to 
memory, the write buffer will eventually fill and there will be little performance benefit.

Some write buffers support write merging (also called write combining). They can take multiple 
writes (for example, a stream of writes to adjacent bytes) and merge them into one single burst. 
This can reduce the write traffic to external memory and therefore boost performance.

It will be obvious to the experienced programmer that sometimes the behavior of the write 
buffer is not what we want when accessing a peripheral, we might want the processor to stop 
and wait for the write to complete before proceeding to the next step. Sometimes we really want 
a stream of bytes to be written and we don’t want the stores to be combined. In ARM memory 
ordering model on page 11-4, we’ll look at memory types supported by the ARM architecture 
and how to use these to control how the caches and write buffers are used for particular devices 
or parts of the memory map.

Similar components, called fetch buffers, can be used for reads in some systems. In particular, 
processors typically contain prefetch buffers which read instructions from memory ahead of 
them actually being inserted into the pipeline. In general, such buffers are transparent to the 
programmer. We will consider some possible hazards associated with this when we look at 
memory ordering rules.
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9.7 Cache performance and hit rate
The hit rate is defined as the number of cache hits divided by the number of memory requests 
made to the cache during a specified time (normally calculated as a percentage). Similarly, the 
miss rate is the number of total cache misses divided by the total number of memory requests 
made to the cache. One may also calculate the number of hits or misses on reads or writes only. 

Clearly, a higher hit rate will generally result in higher performance. It is not really possible to 
quote example figures for typical software, the hit rate is very dependent upon the size of the 
critical parts of the code or data operated on and of course, the size of the cache. 

There are some simple rules which can be followed to give better performance. The most 
obvious of these is to enable caches and write buffers and to use them wherever possible 
(typically for all parts of the memory system which contain code and more generally for RAM 
and ROM, but not peripherals). Performance will be considerably increased in Cortex-A series 
processors if instruction memory is cached. Placing frequently accessed data together in 
memory can also be helpful. For example, a frequently accessed array will benefit from having 
a base address at the start of a cache line. 

Fetching a data value in memory involves fetching a whole cache line; if none of the other words 
in the cache line will be used, there will be little or no performance gain. Smaller code may 
cache better than larger code and this can sometimes give (seemingly) paradoxical results. For 
example, a piece of C code may fit entirely within cache when compiled for Thumb (or for the 
smallest size) but not when compiled for ARM (or for maximum performance) and as a 
consequence can actually run faster than the more optimized version. We describe cache 
considerations in much more detail in Chapter 19 Optimizing Code to Run on ARM Processors.
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9.8 Invalidating and cleaning cache memory
Cleaning and invalidation can be required when the contents of external memory have been 
changed and the programmer wishes to remove stale data from the cache. It can also be required 
after MMU related activity such as changing access permissions, cache policies, or virtual to 
physical address mappings.

The word flush is often used in descriptions of clean and invalidate operations. ARM generally 
uses only the terms clean and invalidate.

• Invalidation of a cache (or cache line) means to clear it of data. This is done by clearing 
the valid bit of one or more cache lines. The cache always needs to be invalidated after 
reset as its contents will be undefined. If the cache might contain dirty data, it is generally 
incorrect to invalidate it. Any updated data in the cache from writes to write-back 
cacheable regions would be lost by simple invalidation.

• Cleaning a cache (or cache line) means to write the contents of dirty cache lines out to 
main memory and clear the dirty bit(s) in the cache line. This makes the contents of the 
cache line and main memory coherent with each other. Clearly, this is only applicable for 
data caches in which a write-back policy is used. Cache invalidate, and clean and 
invalidate operations can be performed by cache set, or way, or by virtual address.

Copying code from one location to another (or other forms of self-modifying code) may require 
the programmer either to clean and/or to invalidate the cache. The memory copy code will use 
load and store instructions and these will operate on the data side of the processor. If the data 
cache is using a write-back policy for the area to which code is written, it will be necessary to 
clean that data from the cache before the code can be executed. This ensures that the instructions 
stored as data go out into main memory and are then available for the instruction fetch logic. In 
addition, if the area to which code is written was previously used for some other program, the 
instruction cache could contain stale code (from before main memory was re-written). 
Therefore, it may also be necessary to invalidate the instruction cache before branching to the 
newly copied code.

The commands to either clean or invalidate the cache are CP15 operations. They are available 
only to privileged code and cannot be executed in User mode. In systems where the TrustZone 
Security Extensions are in use, there can be hardware limitations applied to non-secure use of 
some of these operations.

CP15 instructions exist which will clean, invalidate, or clean and invalidate level 1 data or 
instruction caches. Invalidation without cleaning is safe only when it is known that the cache 
cannot contain dirty data – for example a Harvard instruction cache. The programmer can 
perform the operation on the entire cache, or just on individual lines. These individual lines can 
be specified either by giving a virtual address to be cleaned or to be invalidated, or by specifying 
a line number in a particular set, in cases where the hardware structure is known. The same 
operations can be performed on the L2 or outer caches and we will look at this in Level 2 cache 
controller on page 9-18.

Of course, these operations will be accessed through kernel code – in Linux, you will use the 
__clear_cache() function implemented in arch/arm/mm/cache-v7.S. Equivalent functions exist in 
other operating systems – Google Android has cacheflush(), for example.

A common situation where cleaning or invalidation can be required is DMA (Direct Memory 
Access). When it is required to make changes made by the processor visible to external memory, 
so that it can be read by a DMA controller, it might be necessary to clean the cache. When 
external memory is written by a DMA controller and it is necessary to make those changes 
visible to the processor, the affected addresses will need to be invalidated in the cache.
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9.9 Point of coherency and unification
For set/way based clean and invalidate, the operation is performed on a specific level of cache. 
For operations which use a virtual address, the architecture defines two conceptual points.

• Point of Coherency (PoC). For a particular address, the PoC is the point at which all blocks 
(for example, processors, DSPs, or DMA engines) which can access memory are 
guaranteed to see the same copy of a memory location. Typically, this will be the main 
external system memory.

• Point of Unification (PoU). The PoU for a processor is the point at which the instruction 
and data caches and the page table walks of the processor are guaranteed to see the same 
copy of a memory location. For example, a unified level 2 cache would be the point of 
unification in a system with Harvard level 1 caches and a TLB for cacheing translation 
table entries. 
Readers unfamiliar with the terms hardware page table walk or Translation Lookaside 
Buffer (TLB) will find these described in Chapter 10. If no external cache is present, main 
memory would be the PoU.

In the case of an MPCore processor, or a big.LITTLE combination (an example of a Inner 
Shareable shareability domain, using the terminology from Chapter 11 Memory Ordering), the 
PoU is where instruction and data caches and page table walks of all the processors within the 
MPCore cluster are guaranteed to see the same copy of a memory location.

Knowledge of the PoU enables self-modifying code to ensure future instruction fetches are 
correctly made from the modified version of the code. They can do this by using a two-stage 
process: 
• Clean the relevant data cache entries (by address).
• Invalidate instruction cache entries (by address).

In addition, the use of memory barriers will be required here, the ARM Architecture Reference 
Manual provides detailed examples of the necessary code sequences.

Similarly, we can use the clean data cache entry and invalidate TLB operations to ensure that all 
writes to the page tables are visible to the MMU.
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9.10 Level 2 cache controller
At the start of this chapter, we briefly described the partitioning of the memory system and 
explained how many systems have a multi-layer cache hierarchy. The Cortex-A5 and Cortex-A9 
processors do not have an integrated level 2 cache. Instead, the system designer can opt to 
connect the ARM L2 cache controller (L2C-310) outside of the processor instance.

The L2C-310 cache controller can support a cache of up 8MB in size, with a set associativity of 
between four and sixteen ways. The size and associativity are fixed by the SoC designer. The 
level 2 cache can be shared between multiple processors (or indeed between the processor and 
other agents, for example a graphics processor). It is possible to lockdown cache data on a 
per-master per-way basis, enabling management of cache sharing between multiple 
components.

9.10.1 Level 2 cache maintenance

We saw in Virtual and physical tags and indexes on page 9-10 how the programmer may need 
the ability either to clean or invalidate some or all of a cache. This can be done by writing to 
memory-mapped registers within the L2 cache controller in the case where the cache is external 
to the processor, or through CP15, where the level 2 cache is implemented inside the processor. 
The registers themselves are not cached, which makes this feasible. Where such operations are 
performed by having the processor perform memory-mapped writes, the processor needs a way 
of determining when the operation is complete. It does this by polling a further memory-mapped 
register within the L2 cache controller.

The ARM L2C-310 Level 2 cache controller operates only on physical addresses. Therefore, to 
perform cache maintenance operations, it may be necessary for the program to perform a virtual 
to physical address translation. The L2C-310 provides a cache sync operation which forces the 
system to wait for pending operations to complete.
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9.11 Parity and ECC in caches
So-called soft errors are increasingly a concern in today’s systems. Smaller transistor 
geometries and lower voltages give circuits an increased sensitivity to perturbation by cosmic 
rays and other background radiation, alpha particles from silicon packages, or from electrical 
noise. This is particularly true for memory devices which rely on storing small amounts of 
charge and which also occupy large proportions of total silicon area. In some systems, 
mean-time-between-failure could be measured in seconds if appropriate protection against soft 
errors was not employed.

The ARM architecture provides support for parity and Error Correcting Code (ECC) in the 
caches (and tightly coupled memories). Parity means that we have an additional bit which marks 
whether the number of bits with the value one is even (or odd, depending upon the scheme 
chosen). This provides a simple check against single bit errors. An ECC scheme enables 
detection of multiple bit failures and possible recovery from soft errors, but recovery 
calculations can take several cycles. Implementing a processor which is tolerant of level 1 cache 
RAM accesses taking multiple clock cycles significantly complicates the processor design. 
ECC is therefore more commonly used only on blocks of memory (for example, the Level 2 
cache), outside the processor. The Cortex-A15, however, supports ECC and parity inside the 
processor.

Parity is checked on reads and writes, and can be implemented on both tag and data RAMs. 
Parity mismatch generates a prefetch or data abort exception, and the fault status address 
registers are updated appropriately. 
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Memory Management Unit

This chapter describes the main concepts of virtual memory systems and memory management. An 
important function of a Memory Management Unit (MMU) is to allow us to manage tasks as 
independent programs running in their own private virtual memory space. A key feature of such a 
virtual memory system is address relocation, which is the translation of the (virtual) address issued 
by the processor to a different (physical) address in main memory. The ARM MMU translates 
addresses of code and data from the virtual view of memory to the physical addresses in the real 
system. The translation is carried out by the MMU hardware and is transparent to the application 
(ignoring for the moment any performance issues). In addition, it controls such things as memory 
access permissions, memory ordering and cache policies for each region of memory. 

In multi-tasking embedded systems, we typically need a way to partition the memory map and 
assign permissions and memory attributes to these regions of memory. In situations where we are  
running more complex operating systems, like Linux, we need even greater control over the 
memory system.

The MMU enables tasks or applications to be written in a way which requires them to have no 
knowledge of the physical memory map of the system, or about other programs which may be 
running simultaneously. This enables us to use the same virtual memory address space for each 
program. It also lets us work with a contiguous virtual memory map, even if the physical memory 
is fragmented. This virtual address space is separate from the actual physical map of memory in the 
system. Applications are written, compiled and linked to run in the virtual memory space. Virtual 
addresses are those used by the programmer, compiler and linker when placing code in memory. 
Physical addresses are those used by the actual hardware system. 
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It is the responsibility of the operating system to program the MMU to translate between these 
two views of memory. Figure 10-1 on page 10-2 shows an example system, illustrating the 
virtual and physical views of memory. Different processors and/or devices in a single system 
may have different virtual and physical address maps, for example, some multi-core boards and 
PCI devices.

Figure 10-1 Virtual and physical memory

When the MMU is disabled, all virtual addresses map directly to the corresponding physical 
address (a flat mapping). If the MMU cannot translate an address, it generates an abort exception 
on the processor and provides information to the processor about what the problem was. This 
feature can be used to map memory or devices on-demand, one page at a time.
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10.1 Virtual memory
The MMU allows us to build systems with multiple virtual address maps. Each task can have 
its own virtual memory map. The OS kernel places code and data for each application in 
physical memory, but the application itself does not need to know the location.

The key feature of the MMU hardware is address translation. It does this using page tables. 
These contain a series of entries, each of which describes the physical address translation for 
part of the memory map. Page table entries are organized by virtual address. In addition to 
describing the translation of that virtual page to a physical page, they also provide access 
permissions and memory attributes necessary for that page.

Note
 In the ARM architecture, the concept referred to in generic computer terminology as page tables 
has a more specific meaning. The ARM architecture uses multi-level page tables, and defines 
translation tables as a generic term for all of these. It then reserves the use of the term page 
tables to describe second level translation tables when using the short-descriptor format (not 
making use of Large Physical Address Extension (LPAE)).

Addresses generated by the processor are virtual addresses. When the MMU is not enabled, 
there is a direct mapping between the physical and virtual addresses.The MMU essentially 
replaces the most significant bits of this virtual address with some other value, to generate the 
physical address (effectively defining a base address of a piece of memory). The lower bits are 
the same in both addresses (defining an offset in physical memory from the base address). This 
smallest amount of memory that can be mapped independently is known as a page. The ARM 
MMU supports a multi-level page table architecture with two levels of page table: level 1 (L1) 
and level 2 (L2). We will describe the meaning of level 1 and level 2 in a moment. The same 
translation tables are used to define the translations and memory attributes that apply to both 
instruction fetches and to data accesses. The process in which the MMU accesses page tables to 
translate addresses is known as page table walking.
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10.2 Level 1 page tables
Let’s take a look at the process by which a virtual address is translated to a physical address 
using level 1 page table entries on an ARM processor. The first step is to locate the page table 
entry associated with the virtual address.

The first stage of translation uses a single level 1 page table (sometimes called a master page 
table). It can contain two basic types of page table entries. The L1 page table divides the full 
4GB address space of a 32-bit processor into 4096 equally sized sections, each of which 
describes 1MB of virtual memory space. The L1 page table therefore contains 4096 word-sized 
entries. 

Each entry can either hold a pointer to the base address of a level 2 page table or a page table 
entry for translating a 1MB section. If the page table entry is translating a 1MB section 
(determined by the encoding, see Figure 10-3 on page 10-5), it gives the base address of the 
1MB page in physical memory. 

The base address of the L1 page table is known as the Translation Table Base Address and is 
held within a register in CP15 c2. It must be aligned to a 16KB boundary.

When the MMU performs a translation, the top 12 bits of the requested virtual address acts as 
the index into the translation table. This is illustrated in Figure 10-2.

Figure 10-2 Finding the address of the level 1 page table entry

To take a simple example, suppose we place our L1 page table at address 0x12300000. The 
processor issues virtual address 0x00100000. The top 12 bits [31:20] define which 1MB of virtual 
address space is being accessed. In this case 0x001, so we need to read table entry 1. To get the 
offset into the table we must multiply the entry number by entry size:

0x001 * 4 bytes = address offset of 0x004

The address of the entry the MMU reads the word from is 0x12300000 + 0x004 = 0x12300004.

Figure 10-3 shows the format of a L1 page table entry.

Virtual Address
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Index
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Figure 10-3 Level 1 page table entry format

To summarize, an L1 page table entry can be one of four possible types:

• A fault entry that generates an abort exception. This can be either a prefetch or data abort, 
depending on the type of access. This effectively indicates virtual addresses that are 
unmapped.

• A 1MB section translation entry, mapping a 1MB region to a physical address.

• An entry that points to an L2 page table. This enables a 1MB piece of memory to be 
further sub-divided into pages.

• A 16MB supersection. This is a special kind of 1MB section entry, which requires 16 
entries in the page table, but can reduce the number of entries allocated in the Translation 
Lookaside Buffer for this region.

The least significant two bits [1:0] in the entry define whether the entry is a fault entry, a page 
table entry, or a section entry. Bit [18] is used to distinguish between a normal section and 
supersection. 

The page table entry for a section (or supersection) contains the physical base address used to 
translate the virtual address. Note that many other bits are given in the page table entry, 
including the Access Permissions (AP) and Cacheable (C) or Bufferable (B) types, which we 
will consider in Memory attributes on page 10-12. This is all of the information required to 
access the corresponding physical address and in these cases, the MMU does not need to look 
beyond the L1 table. 

Figure 10-4 on page 10-6 summarizes the translation process for an address translated by a 
section entry in the L1 page table.
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Figure 10-4 Generating a physical address from a level 1 page table entry

In a page table entry for a 1MB section of memory, the upper 12 bits of the page table entry 
replace the upper 12 bits of the virtual address when generating the physical address, as 
Figure 10-3 on page 10-5 shows.

A supersection is a 16MB piece of memory, which must have both its virtual and physical base 
address aligned to a 16MB boundary. As L1 page table entries each describe 1MB, we need 16 
consecutive, identical entries within the table to mark a supersection. In Choice of page sizes on 
page 10-11, we describe why supersections can be useful.
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10.3 Level 2 page tables
An L2 page table has 256 word-sized (4 byte) entries, requires 1KB of memory space and must 
be aligned to a 1KB boundary. Each entry translates a 4KB block of virtual memory to a 4KB 
block in physical memory. A page table entry can give the base address of either a 4KB or 64KB 
page. 

There are three types of entry used in L2 page tables, identified by the value in the two least 
significant bits of the entry:

• A large page entry points to a 64KB page.

• A small page entry points a 4KB page.

• A fault page entry generates an abort exception if accessed.

Figure 10-5 shows the format of L2 page table entries. 

Figure 10-5 Format of a level 2 page table entry

As with the L1 page table entry, a physical address is given, along with other information about 
the page. Type extension (TEX), Shareable (S), and Access Permission (AP, APX) bits are used 
to specify the attributes necessary for the ARMv7 memory model. Along with TEX, the C and 
B bits control the cache policies for the memory governed by the page table entry. The nG bit 
defines the page as being global (applies to all processes) or non-global (used by a specific 
process). We will describe all of these bits in more detail in Memory attributes on page 10-12. 
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Figure 10-6 Generating the address of the level 2 page table entry

In Figure 10-6 we see how the address of the L2 page table entry that we need is calculated by 
taking the (1KB aligned) base address of the level 2 page table (given by the level 1 page table 
entry) and using 8 bits of the virtual address (bits [19:12]) to index within the 256 entries in the 
L2 page table.

Figure 10-7 summarizes the address translation process when using two layers of page tables. 
Bits [31:20] of the virtual address are used to index into the 4096-entry L1 page table, whose 
base address is given by the CP15 TTB register. The L1 page table entry points to an L2 page 
table, which contains 256 entries. Bits [19:12] of the virtual address are used to select one of 
those entries which then gives the base address of the page. The final physical address is 
generated by combining that base address with the remaining bits of the virtual address.
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Figure 10-7 Summary of generation of physical address using the L2 page table entry
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10.4 The Translation Lookaside Buffer
We have seen that a single memory request from the processor can result in a total of three 
memory requests to external memory – one for the level one page table walk, a second access 
for the L2 page table walk and then finally the original request from the processor. This seems 
like it would be ruinous for performance of the system. Fortunately, page table walks are 
relatively uncommon events in the majority of systems, due to another part of the MMU.

The Translation Lookaside Buffer (TLB) is a cache of page translations within the MMU. On a 
memory access, the MMU first checks whether the translation is cached in the TLB. If the 
requested translation is available, we have a TLB hit, and the TLB provides the translation of 
the physical address immediately. If the TLB does not have a valid translation for that address, 
we have a TLB miss and an external page table walk is required. This newly loaded translation 
can then be cached in the TLB for possible reuse.

The exact structure of the TLB differs between implementations of the ARM processors. What 
follows is a description of a typical system, but individual implementations may vary from this. 
There are one or more micro-TLBs, which are situated close to the instruction and data caches. 
Addresses with entries which hit in the micro-TLB require no additional memory look-up and 
no cycle penalty. However, the micro-TLB has only a small number of mappings (typically eight 
on the instruction side and eight on the data side). This is backed by a larger main TLB (typically 
64 entries), but there may be some penalty associated with accesses which miss in the 
micro-TLB but which hit in the main TLB. Figure 10-8 shows how each TLB entry contains 
physical and virtual addresses, but also attributes (such as memory type, cache policies and 
access permissions) and potentially an ASID value (described in Address Space ID on 
page 10-15).

The TLB is like other caches and so has a TLB line replacement policy, but this is effectively 
transparent to the programmer (although see the next section on maintaining TLB coherency). 
If the page table entry is a valid one, the virtual address, physical address and other attributes 
for the whole page or section are stored as a TLB entry. If the page table entry is not valid, the 
TLB will not be updated. The ARM architecture requires that only valid page table descriptors 
are cached within the TLB. 

Figure 10-8 Illustration of TLB structure
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10.5 TLB coherency
When the operating system changes page table entries, it is possible that the TLB could contain 
stale translation information. The OS should therefore take steps to invalidate TLB entries. 
There are several CP15 operations available which allow a global invalidate of the TLB or 
removal of specific entries. As speculative instruction fetches and data reads may cause page 
table walks, it is essential to invalidate the TLB when a valid page table entry is changed. Invalid 
page table entries cannot be cached in the TLB so they can be changed without invalidation. 

The Linux kernel has a number of functions which use these CP15 operations, including 
flush_tlb_all() and flush_tlb_range(). Such functions are not typically required by device 
drivers.
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10.6 Choice of page sizes
This is essentially controlled by the operating system, but it is worth being aware of the 
considerations involved when selecting page sizes. Smaller page sizes allow finer control of a 
block of memory and potentially can reduce the amount of unused memory in a page. If a task 
needs 7KB of data space, there is less unused space if it is allocated two 4KB pages as opposed 
to a 64KB page or a 1MB section. Smaller page sizes also allow finer control over permissions, 
cache properties and so forth.

However, with increased page sizes, each entry in the TLB holds a reference to a larger piece of 
memory. It is therefore more likely that a TLB hit will occur on any access and so there will be 
fewer page table walks to slow external memory. For this reason, 16MB supersections can be 
used with large pieces of memory which do not require detailed mapping. In addition, each L2 
page table requires 1KB of memory. 
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10.7 Memory attributes
We have seen how page table entries allow the MMU hardware to translate virtual to physical 
addresses. However, they also specify a number of attributes associated with each page, 
including access permissions, memory type and cache policies.

10.7.1 Memory Access Permissions

The Access Permission (AP and APX) bits in the page table entry give the access permission 
for a page. See Table 10-1.

An access which does not have the necessary permission (or which faults) will be aborted. On 
a data access, this will result in a precise data abort exception. On an instruction fetch, the access 
will be marked as aborted and if the instruction is not subsequently flushed before execution, a 
prefetch abort exception will be taken. Faults generated by an external access will not, in 
general, be precise.

Information about the address of the faulting location and the reason for the fault is stored in 
CP15 (the fault address and fault status registers). The abort handler can then take appropriate 
action – for example, modifying page tables to remedy the problem and then returning to the 
application to retry the access. Alternatively, the application which generated the abort may 
have a problem and need to be terminated.

10.7.2 Memory types

Earlier ARM architecture versions enabled the programmer to specify the memory access 
behavior of pages by configuring whether the cache and write buffer could be used for that 
location. This simple scheme is inadequate for today’s more complex systems and processors, 
where we can have multiple levels of caches, hardware managed coherency between multiple 
processors sharing memory and processors which can speculatively fetch both instructions and 
data. The new memory types added to the ARM architecture in ARMv6 and extended in the 
ARMv7 architecture are designed to meet these needs.

Three mutually exclusive memory types are defined in the ARM architecture. All regions of 
memory are configured as one of these three types:
• Strongly-ordered
• Device 

Table 10-1 Summary of Access Permission encodings

APX AP Privileged Unprivileged Description

0 00 No access No access Permission fault

0 01 Read/Write No access Privileged Access only

0 10 Read/Write Read No user-mode write

0 11 Read/Write Read/Write Full access

1 00 - - Reserved

1 01 Read No access Privileged Read only

1 10 Read Read Read only

1 11 - - Reserved
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• Normal.

These are used to describe the memory regions. A summary of the memory types is shown in 
Table 10-2.

Further descriptions of these memory types can be found in ARM memory ordering model on 
page 11-4.

Table 10-3 shows how the TEX, C and B bits within the page table entry are used to set the 
memory types of a page and also the cache policies to be used. The meaning of each of the 
memory types is described in Chapter 11, while the cache policies were described in Chapter 9. 

Table 10-2 Memory attributes

Memory 
type 

Shareable/
Non-shareable

Cacheable Description

Normal Shareable Yes Designed to handle normal memory that is shared between
several processors.

Non-shareable Yes Designed to handle normal memory that is used only by a
single processor.

Device - No Designed to handle memory-mapped peripherals.a

Strongly
-ordered

- No All memory accesses to Strongly-ordered memory occur in
program order. All Strongly-ordered accesses are assumed to be
shared.

a. Shared memory was originally used to distinguish between accesses directed to the “peripheral private port” found on several ARM11 
processors. This use is now deprecated and processors implementing LPAE treat all device accesses as Shareable.

Table 10-3 Memory type and cacheable properties encoding in page table entry

TEX C B Description Memory type

000 0 0 Strongly-ordered Strongly-ordered

000 0 1 Sharable device Devicea

a. LPAE treats all device accesses as Shareable

000 1 0 Outer and Inner write-through, no allocate on write Normal

000 1 1 Outer and Inner write-back, no allocate on write Normal

001 0 0 Outer and Inner non-cacheable Normal

001 - - Reserved -

010 0 0 Non-shareable device Devicea

010 - - Reserved -

011 - - Reserved -

1XX Y Y Cached memory
XX = Outer policy
YY = Inner policy

Normal
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The final entry within the table needs further explanation. For normal cacheable memory, the 
two least significant bits of the TEX field are used to provide the outer cache policy (perhaps 
for level 2 or level 3 caches) while the C and B bits give the inner cache policy (for level 1 and 
any other cache which is to be treated as inner cache). This enables us to specify different cache 
policies for both the inner and outer cache. For the Cortex-A15 and Cortex-A8 processors, inner 
cache properties set by the page table entry apply to both L1 and L2 caches. On some older 
processors, outer cache may support write allocate, while the L1 cache may not. Such 
processors should still behave correctly when running code which requests this cache policy, of 
course.

10.7.3 Domains

The ARM architecture has an unusual feature which enables regions of memory to be tagged 
with a domain ID. There are 16 domain IDs provided by the hardware and CP15 c3 contains the 
Domain Access Control Register (DACR) which holds a set of 2-bit permissions for each 
domain number. This enables each domain to be marked as no-access, manager mode or client 
mode. No-access causes an abort on any access to a page in this domain, irrespective of page 
permissions. Manager mode ignores all page permissions and enables full access. Client mode 
uses the permissions of the pages tagged with the domain.

Note
 The use of domains is deprecated in the ARMv7 architecture, and will eventually be removed, 
but in order for access permissions to be enforced, it is still necessary to assign a domain number 
to a section and to ensure that the permission bits for that domain are set to client.
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10.8 Multi-tasking and OS usage of page tables
In most systems using Cortex-A series processors, we will have a number of applications or 
tasks running concurrently. Each task will have its own unique page tables residing in physical 
memory. Typically, much of the memory system is organized so that the virtual-to-physical 
address mapping is fixed, with page table entries that never change. This typically is used to 
contain operating system code and data, and also the page tables used by individual tasks.

Whenever an application is started, the operating system will allocate it a set of page table 
entries which map both the code and data used by the application to physical memory. If the 
application needs to map in code or extra data space (for example through a malloc() call), the 
kernel can subsequently modify these tables. When a task completes and the application is no 
longer running, the kernel can remove any associated page table entries and re-use the space for 
a new application. In this way, multiple tasks can be resident in physical memory. Upon a task 
switch, the kernel switches page table entries to the page in the next thread to be run. In addition, 
the dormant tasks are completely protected from the running task. This means that the MMU 
does not allow the running task to access the code or data of the kernel or of other user privilege 
tasks. 

When the page table entries are changed, an access by code to a particular virtual address can 
now translate to different location in physical memory. This can give rise to several possible 
problems. The ARM architecture has some features to try to mitigate the performance impact 
of these.

Older ARM processors (from the ARM7 and ARM9 family) have cache tags which store virtual 
addresses. When page table mappings are changed, the caches can contain invalid data from the 
old page table mapping. To ensure memory coherency, the caches would need to be cleaned and 
invalidated. This can have a significant performance impact, as often instructions and data from 
a location which has just been invalidated would then need to be re-fetched from external 
memory. However, all Cortex-A series processors use physically tagged caches. As a result no 
coherency problems are created by changing page table entries.

In addition, the TLB may also have cached old page table entries and these will need to be 
invalidated.

10.8.1 Address Space ID

When we described the page table bits in Level 2 page tables on page 10-7 we noted a bit called 
nG (non-global). If the nG bit is set for a particular page, the page is associated with a specific 
application. When the MMU performs a translation, it uses both the virtual address and an ASID 
value.

The ASID is a number assigned by the OS to each individual task. This value is in the range 
0-255 and the value for the current task is written in the ASID register (accessed via CP15 c13). 
When the TLB is updated and the entry is marked as non-global, the ASID value will be stored 
in the TLB entry in addition to the normal translation information. Subsequent TLB look-ups 
will only match on that entry if the current ASID matches with the ASID that is stored in the 
entry. We can therefore have multiple valid TLB entries for a particular page (marked as 
non-global), but with different ASID values. This significantly reduces the software overhead 
of context switches, as it avoids the need to flush the on-chip TLBs. The ASID forms part of a 
larger (32-bit) process ID register that can be used in task-aware debugging.

Note
 A context switch denotes the scheduler transferring execution from one process to another. This 
typically requires saving the current process state and restoring the state of the next process 
waiting to be run.
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Figure 10-9 illustrates this. Here, we have multiple applications (A, B and C), each of which is 
linked to run from virtual address 0. Each application is located in a separate address space in 
physical memory. There is an ASID value associated with each application so we can have 
multiple entries within the TLB at any particular time, which will be valid for virtual address 0. 

Figure 10-9 ASIDs in TLB mapping the same virtual address

10.8.2 Page Table Base Register 0 and 1

A further potential difficulty associated with managing multiple applications with their 
individual page tables is that there may need to be multiple copies of the L1 page table, one for 
each application. Each of these will be 16KB in size. Most of the entries will be identical in each 
of the tables, as typically only one region of memory will be task-specific, with the kernel space 
being unchanged in each case. Furthermore, if there is a need to modify a global page table 
entry, the change will be needed in each of the tables.
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To help reduce the effect of these problems, a second page table base register can be used. CP15 
contains two Translation Table Base Registers, TTBR0 and TTBR1. A control register (the TTB 
Control Register) is used to program a value in the range 0 to 7. This value (denoted by N) tells 
the MMU how many of the upper bits of the virtual address it should check to determine which 
of the two TTB registers to use.

When N is 0 (the default), all virtual addresses are mapped using TTBR0. With N in the range 
1-7, the hardware looks at the most significant bits of the virtual address. If the N most 
significant bits are all zero, TTBR0 is used, otherwise TTBR1 is used.

For example, if N is set to 7, any address in the bottom 32MB of memory will use TTBR0 and 
the rest of memory will use TTBR1. As a result, the application-specific page table pointed to 
by TTBR0 will contain only 32 entries (128 bytes). The global mappings are in the table pointed 
to by TTBR1 and only one table needs to be maintained.

When these features are used, a context switch will typically require the operating system to 
change the TTBR0 and ASID values, using CP15 instructions. However, as these are two 
separate, non-atomic operations, some care is needed to avoid problems associated with 
speculative accesses occurring using the new value of one register together with the older value 
of the other. OS programmers making use of these features should become familiar with the 
sequences recommended for this purpose in the ARM Architecture Reference Manual.

10.8.3 The Fast Context Switch Extension

The Fast Context Switch Extension (FCSE) was added to the ARMv4 architecture but has been 
deprecated since. It enabled multiple independent tasks to run in a fixed, overlapping area at the 
bottom of the virtual memory space without the need to clean the cache or TLB on a context 
switch. It did this by modifying virtual addresses by substituting a process ID value into the top 
seven bits of the virtual address (but only if that address lay within the bottom 32MB of 
memory). Some ARM documentation distinguishes Modified Virtual Addresses (MVA) from 
Virtual Addresses (VA). This distinction is useful only when the FCSE is used. Since it is 
deprecated, we will not discuss the FCSE any further.
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10.9 Large Physical Address Extensions
The Cortex-A15 and Cortex-A7 processors implement the ARMv7-A architecture Large 
Physical Address Extension (LPAE), which introduced a number of new features:

• Address mapping for a 40-bit address space, giving a range of accessible physical 
addresses from 4GB to 1024GB (a terabyte), with a granularity of 4KB. An additional 
page table entry format, called the long-descriptor format, was added. The existing 
Virtual Memory Systems Architecture (VMSA-v7) short-descriptor format page tables are 
still supported.

• Support is available for hierarchical permissions. 

• A contiguous page hint bit for page table entries. This is set to show that the entry is one 
of 16 contiguous entries which point to a contiguous output address range. If set, the TLB 
need cache only one translation for the group of 16 pages.

• An additional access permission setting – Privileged eXecute Never (PXN). This marks a 
page as containing code that can be executed only in a non-privileged (user) mode. This 
setting is also added to the legacy descriptor format. There is also a privileged execute 
setting (PX) which means that code can be executed only in privileged mode.

• The ASID is stored in the TTBR. This allows atomic ASID changes, which reduce the 
overhead of context switches.

• Simplified fault status encoding.

The Cortex-A15 and Cortex-A7 processor MMUs also support virtualization. This provides a 
second stage of address translation when running virtual machines. The first stage of this 
translation produces an Intermediate Physical Address (IPA) and the second stage then produces 
the Physical Address (PA). TLB entries may also have an associated Virtual Machine ID 
(VMID), in addition to an ASID. This will be covered in more detail in Chapter 27 
Virtualization. It is possible to disable the stage 2 MMU and have a flat mapping from IPA to PA. 

There are certain similarities between the short-descriptor format and the long-descriptor 
format:

• Both have an input 32-bit virtual address from the processor.

• Both use TTBR0/TTBR1 (See Table 6-5 on page 6-20) to point to level 1 translation 
tables (with TTBCR selecting which part of the address space is covered by each).

• Memory attributes are the same between the two formats, but the encoding is different.

• Long descriptors also provides a way to indicate “Outer-shareable” or “Inner-shareable” 
as opposed to just “Shareable”.

However, there are also some significant differences between the two:

• Long-descriptors have 64-bit sized translation table entries, while short-descriptor format 
uses 32-bit entries.

• Long-descriptors can have up to three levels of translation tables (only two were 
supported in short-descriptor format).

• Long-descriptors support up to 40-bit physical addresses and blocks (of 1GB or 2MB) and 
4KB pages (short-descriptors support 16MB or 1MB blocks and 64KB or 4KB pages).

• Cache policies are given by the memory attributes index field of a long-descriptor 
(short-descriptor format uses TEX [2:0], C & B bits).
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• Device memory is always considered shareable with long descriptor format.

Figure 10-10 shows the format of Level 1 and Level 2 descriptors.

Figure 10-10 Format of Level 1 and Level 2 descriptors

where UNK is ‘Unknown’ and SBZP is ‘Should Be Preserved’

The TTBR points to a four entry L1 translation table, with bits [31:30] of the virtual address 
being used to index this table. This first level can be used for 1GB blocks. If only 30-bit virtual 
addresses are used in the system, then this L1 translation table may be omitted. This is 
configured by a TTBCR bit and in this case, the TTBR then points directly to the first entry in 
the L2 translation table.

The L2 translation table contains 512 entries, each of which might be for a 2MB block or point 
to a third level (L3) translation table. These L3 translation tables contain 2048 entries, with bits 
[20:12] of the virtual address used as an index. Each entry points to a 4KB page.

The page table entries have two possible formats. The first, a table entry, is used to provide the 
28-bit address of a lower level translation table (given in bits [39:12] of the descriptor). Bits 
[1:0] are set to “11” to mark this as a table entry. The attribute bits (bits [63:59]) provide 
information such as access permissions, memory type, cache policies, and security status.

The other format, marked with bits [1:0]= “01” is used to give the physical address for the 
memory access. First level block descriptors point to a 1 GB block of memory, whose base 
address is given in descriptor bits [39:30]. Bits [39:21] are used to point to a 2MB block of 
memory, in a second level block descriptor, with bits [39:12] used to specify a 4KB page in a 
third level page descriptor. The lower attribute bits are used to define access permissions (for 
example shareable, global or non-global) similar to the VMSAv7 short-descriptor format.

Figure 10-11 on page 10-20 shows the format of Level 3 descriptors.

0Ignore

63 2 1 0

xInvalid

1Upper block attributes

63 52 51 3940 n n-1 12 11 2 1 0

UNK/SBZP Output address[39:n] UNK/SBZP Lower block attributes 0Block

For the first-level descriptor, n is 30. For the second-level descriptor, n is 21.

The first-level descriptor returns the address of the second-level table.
The second-level descriptor returns the address of the third-level table.

1

63 62 61 60 59 58 52 51 40 39 12 11 2 1 0

Ignored UNK/SBZP Next-level table address[39:12] Ignored 1Table

PXNTable
XNTable
APTable
NSTable

Stage 1 only, 
SBZ at stage 2
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Figure 10-11 Format of Level 3 descriptors

Remember that long-descriptor page tables may output a 40-bit physical address. The physical 
base address given by this translation will be of the form[39:0], with bit 39 of the descriptor 
producing bit [39] of the physical address. It is not necessary to map all of the physical address 
space, but all of the 4GB virtual address space has to be taken care of. There must be a descriptor 
for each virtual address – although it might simply be a fault descriptor.

0Ignore

63 2 1 0

xInvalid

Reserved,
invalid 1Reserved

63 2 1 0

0

Page 1Upper page attributes

63 52 51 3940 12 11 2 1 0

UNK/SBZP Output address[39:12] Lower page attributes 1
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Chapter 11 
Memory Ordering

Older implementations of the ARM architecture execute all instructions in program order and each 
instruction is completely executed before the next instruction is started.

Newer micro-processors employ a number of optimizations which relate to the way memory 
accesses are performed. As we have seen, the speed of execution of instructions by the processor 
is significantly higher than the speed of external memory. Caches and write buffers are used to 
partially hide the latency associated with this difference in speed. One potential effect of this is to 
re-order memory accesses. The order in which load and store instructions are executed by the 
processor will not necessarily be the same as the order in which the accesses are seen by external 
devices. 
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Figure 11-1 Memory ordering example

In Figure 11-1, we have three instructions listed in program order. The first instruction performs 
a write to external memory which in this example, misses in the cache (Access 1). It is followed 
in program order by two reads, one which misses in the cache (Access 2) and one which hits in 
the cache (Access 3). Both of the read accesses could complete before the write buffer 
completes the write associated with Access 1. Hit-under-miss behaviors in the cache mean that 
a load which hits in the cache (like Access 3) can complete before a load earlier in the program 
which missed in the cache (like Access 2). 

It is still possible to preserve the illusion that the hardware executes instructions in the order 
written by the programmer. There are generally only a few cases where the programmer has to 
worry about such effects. For example, when modifying CP15 registers or when copying or 
otherwise changing code in memory, it may be necessary for the programmer to explicitly make 
the processor wait for such operations to complete.

For very high performance processors, which support speculative data accesses, multi-issuing 
of instructions, cache coherency protocols and out-of-order execution in order to make further 
performance gains, there are even greater possibilities for re-ordering. In general, the effects of 
this re-ordering are invisible to the programmer, in a single processor system. The processor 
hardware takes care of many possible hazards for us. It will ensure that data dependencies are 
respected and ensure the correct value is returned by a read, allowing for potential modifications 
caused by earlier writes. 

However, in cases where we have multiple processors which communicate through Shareable 
memory (or share data in other ways), memory ordering considerations become more important. 
In general, we are most likely to care about exact memory ordering at points where multiple 
execution threads must be synchronized.

Processors which conform to the ARM v7-A architecture employ a weakly-ordered model of 
memory, this means that the order of memory accesses is not expected to be the same as the 
program order for load and store operations. The model can reorder memory read operations 
(from LDR, LDM and LDD instructions) with respect to each other, to store operations, and certain 
other instructions. Reads and writes to Normal memory can be re-ordered by hardware, with 
such re-ordering being subject only to data dependencies and explicit memory barrier 
instructions. In cases where we need stronger ordering rules to be observed, we must 
communicate this to the processor through the memory type attribute of the page table entry 

STR R12, [R1]        @Access 1.  

Program Order of Instructions Instruction ExecutionTimeline

Access 1 goes into write buffer

Time

Access 2 causes a cache lookup which misses

Access 3 causes a cache lookup which hits

Access 3 returns data into ARM register

Cache linefill triggered by Access 2 returns data

Memory store triggered by Access 1 is performed  

LDR R0, [SP], #4    @Access 2.

LDR R2, [R3,#8]     @Access 3.  
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which describes that memory. Enforcing ordering rules on the processor limits the possible 
hardware optimizations and therefore reduces performance and increases power consumption. 
The programmer therefore needs to understand when to apply such ordering constraints. 

In this chapter, we will consider the memory ordering model of the ARM architecture. We will 
look at the different types of memory (and other memory attributes) which are assigned to pages 
using page table entries. We will look at the barrier instructions in ARM assembly language (and 
accessible through C compiler intrinsics). Finally we will look at the support for coherency 
between SMP clusters and the concept of coherency domains, as well as considering some 
common cases where memory ordering problems can be encountered.
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11.1 ARM memory ordering model
As we have said, Cortex-A series processors employ a weakly ordered memory model. 
However, within this model specific regions of memory can be marked as Strongly-ordered. In 
this case memory transactions are guaranteed to occur in the order they are issued,

Three mutually exclusive memory types are defined. All regions of memory are configured as 
one of these three types:
• Strongly-ordered.
• Device. 
• Normal.

In addition, for Normal and Device memory, it is possible to specify whether the memory is 
Shareable (accessed by other agents) or not. For Normal memory, inner and outer cacheable 
properties can be specified.

11.1.1 Strongly-ordered and Device memory

Accesses to Strongly-ordered and Device memory have the same memory-ordering model. 
Access rules for this memory are as follows:

• The number and size of accesses will be preserved. Accesses will be atomic, and will not 
be interrupted part way through. 

• Both read and write accesses can have side-effects on the system. Accesses are never 
cached. Speculative accesses will never be performed.

• Accesses cannot be unaligned.

• The order of accesses arriving at Device memory is guaranteed to correspond to the 
program order of instructions which access Strongly-ordered or Device memory. This 
guarantee applies only to accesses within the same peripheral or block of memory. The 
size of such a block is implementation defined, but has a minimum size of 1KB.

• In the ARMv7 architecture, the processor can re-order Normal memory accesses around 
Strongly-ordered or Device memory accesses.

The only difference between Device and Strongly-ordered memory is that:

• A write to Strongly-ordered memory can complete only when it reaches the peripheral or 
memory component accessed by the write.

• A write to Device memory is permitted to complete before it reaches the peripheral or 
memory component accessed by the write.

System peripherals will almost always be mapped as Device memory.

Regions of Device memory type can further be described using the Shareable attribute.

On some ARMv6 processors, the Shareable attribute of Device accesses is used to determine 
which memory interface will be used for the access, with memory accesses to areas marked as 
Device, Non-Shareable performed using a dedicated interface, the private peripheral port. This 
mechanism is not used on ARMv7 processors.
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Note
 These memory ordering rules provide guarantees only about explicit memory accesses (those 
caused by load and store instructions). The architecture does not provide similar guarantees 
about the ordering of instruction fetches or page table walks with respect to such explicit 
memory accesses.

11.1.2 Normal memory

Normal memory is used to describe most parts of the memory system. All ROM and RAM 
devices are considered to be Normal memory. All code to be executed by the processor must be 
in Normal memory. The architecture does not permit code to be in a region of memory which is 
marked as Device or Strongly-ordered.

The properties of Normal memory are as follows:

• The processor can repeat read and some write accesses.

• The processor can pre-fetch or speculatively access additional memory locations, with no 
side-effects (if permitted by MMU access permission settings). The processor will not 
perform speculative writes, however.

• Unaligned accesses can be performed. 

• Multiple accesses can be merged by processor hardware into a smaller number of accesses 
of a larger size. Multiple byte writes could be merged into a single double-word write, for 
example.

Regions of Normal memory must also have cacheability attributes described (see Chapter 9 for 
details of the supported cache policies). The ARM architecture supports cacheability attributes 
for Normal memory for two levels of cache, the inner and outer cache. The mapping between 
these levels of cache and the implemented physical levels of cache is implementation defined. 

Inner refers to the innermost caches, and always includes the processor level 1 cache. An 
implementation might not have any outer cache, or it can apply the outer cacheability attribute 
to an L2 or L3 cache. For example, in a system containing a Cortex-A9 processor and the 
L2C-310 level2 cache controller, the L2C-310 is considered to be the outer cache. The 
Cortex-A8 L2 cache can be configured to use either inner or outer cache policy.

Normal memory must also be identified either as Shareable or Non-Shareable. A region of 
Normal memory with the Non-Shareable attribute is one which is used only by this processor. 
There is no requirement for the processor to make accesses to this location coherent with other 
processors. If other processors do share this memory, any coherency issues must be handled in 
software. For example, this can be done by having individual processors perform cache 
maintenance and barrier operations.

The Outer Shareable attribute enables the definition of systems containing multiple levels of 
coherency control. For example, an Inner Sharable domain could consist of a multiple core 
Cortex-A15 processor and a multiple core Cortex-A7 processor. Within a cluster, the data 
caches of the processors are coherent for all data accesses which have the inner Shareable 
attribute. The Outer Sharable domain, meanwhile, might consist of this cluster of processors and 
a graphics processor with multiple cores. An Outer Shareable domain can consist of multiple 
Inner Shareable domains, but and Inner Sharable domain can only be part of one Outer Sharable 
domain.
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Shareability

A region with the Shareable attribute set is one which can be accessed by other processors in the 
system. Accesses to memory in this region by other processors within the same shareability 
domain are coherent. This means that the programmer does not need to take care of the effects 
of data or caches. Without the Shareable attribute, in situations where cache coherency is not 
maintained between processors for a region of shared memory, the programmer would have to 
explicitly manage coherency themselves.

The ARMv7 architecture enables the programmer to specify Shareable memory as inner 
Shareable or outer Shareable (this latter case means that the location is both inner and outer 
Shareable).
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11.2 Memory barriers
A memory barrier is an instruction which requires the processor to apply an ordering constraint 
between memory operations which occur before and after the memory barrier instruction in the 
program. Such instructions may also be known as memory fences in other architectures. 

The term memory barrier can also be used to refer to a compiler mechanism which prevents the 
compiler from scheduling data access instructions across the barrier when performing 
optimizations. For example in GCC, we can use the inline assembler memory clobber, to 
indicate that the instruction changes memory and therefore the optimizer cannot re-order 
memory accesses across the barrier. The syntax is as follows:

asm volatile("" ::: "memory");

ARM RVCT includes a similar intrinsic, called __schedule_barrier().

Here, however, we are looking at hardware memory barriers, provided through dedicated ARM 
assembly language instructions. As we have seen, processor optimizations such as caches, write 
buffers and out-of-order execution can result in memory operations occurring in an order 
different from that specified in the executing code. Normally, this re-ordering is invisible to the 
programmer and application developers do not normally need to worry about memory barriers. 
However, there are cases where we may need to take care of such ordering issues, for example 
in device drivers or when we have multiple observers of the data which need to be synchronized.

The ARM architecture specifies memory barrier instructions, which allow the programmer to 
force the processor to wait for memory accesses to complete. These instructions are available in 
both ARM and Thumb code, in both user and privileged modes. In older versions of the 
architecture, these were performed using CP15 operations in ARM code only. Use of these is 
now deprecated, although preserved for compatibility.

Let’s start by looking at the practical effect of these instructions in a uni-processor system. Note 
that this description is a simplified version of that given in the ARM Architecture Reference 
Manual, what is written here is intended to introduce the usage of these instructions. The term 
explicit access is used to describe a data access resulting from a load or store instruction in the 
program. It does not include instruction fetches. 

Data Synchronization Barrier (DSB) 
This instruction forces the processor to wait for all pending explicit data accesses 
to complete before any further instructions stages can be executed. There is no 
effect on pre-fetching of instructions.

Data Memory Barrier (DMB) 
This instruction ensures that all memory accesses in program order before the 
barrier are observed in the system before any explicit memory accesses that 
appear in program order after the barrier. It does not affect the ordering of any 
other instructions executing on the processor, or of instruction fetches.

Instruction Synchronization Barrier (ISB) 
This flushes the pipeline and prefetch buffer(s) in the processor, so that all 
instructions following the ISB are fetched from cache or memory, after the 
instruction has completed. This ensures that the effects of context altering 
operations (for example, CP15 or ASID changes or TLB or branch predictor 
operations), executed before the ISB instruction are visible to any instructions 
fetched after the ISB. This does not in itself cause synchronization between data 
and instruction caches, but is required as a part of such an operation.
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Several options can be specified with the DMB or DSB instructions, to provide the type of access 
and the shareability domain it should apply to, as follows:

SY This is the default and means that the barrier applies to the full system, including 
all processors and peripherals.

ST A barrier which waits only for stores to complete.

ISH A barrier which applies only to the Inner Shareable domain.

ISHST A barrier which combines the above two (that is, it only stores to the Inner 
Shareable.

NSH A barrier only to the Point of Unification (PoU). (See Point of coherency and 
unification on page 9-17).

NSHST A barrier that waits only for stores to complete and only out to the point of 
unification.

OSH Barrier operation only to the Outer Shareable domain.

OSHST Barrier operation that waits only for stores to complete, and only to the Outer 
Shareable domain.

To make sense of this, we need to use a more general definition of the DMB and DSB operations in 
a multi-processor system. The use of the word processor (or agent) in the following text does 
not necessarily mean a processor and also could refer to a DSP, DMA controller, hardware 
accelerator or any other block that accesses shared memory.

The DMB instruction has the effect of enforcing memory access ordering within a shareability 
domain. All processors within the shareability domain are guaranteed to observe all explicit 
memory accesses before the DMB instruction, before they observe any of the explicit memory 
accesses after it. 

The DSB instruction has the same effect as the DMB, but in addition to this, it also synchronizes the 
memory accesses with the full instruction stream, not just other memory accesses. This means 
that when a DSB is issued, execution will stall until all outstanding explicit memory accesses have 
completed. When all outstanding reads have completed and the write buffer is drained, 
execution resumes as normal. 

It may be easier to appreciate the effect of the barriers by considering an example. Consider the 
case of a Cortex-A9 MPCore containing four processors. These processors operate as an SMP 
cluster and form a single Inner Shareable domain. When a single processor within the cluster 
executes a DMB instruction, that processor will ensure that all data memory accesses in program 
order before the barrier complete, before any explicit memory accesses that appear in 
program-order after the barrier. This way, it can be guaranteed that all processors within the 
cluster will see the accesses on either side of that barrier in the same order as the processor that 
performs them. If the DMB ISH variant is used, the same is not guaranteed for external observers 
such as DMA controllers or DSPs.
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11.2.1 Memory barrier use example

Consider the case where we have two processors A and B and two addresses in Normal memory 
(Addr1 and Addr2) held in processor registers. Each processor executes two instructions as shown 
in Example 11-1:

Example 11-1 Code example showing memory ordering issues

Processor A: 
STR R0, [Addr1]
LDR R1, [Addr2]

Processor B: 
STR R2, [Addr2]
LDR R3, [Addr1]

Here, there is no ordering requirement and we can make no statement about the order in which 
any of the transactions occur. The addresses Addr1 and Addr2 are independent and there is no 
requirement on either processor to execute the load and store in the order written in the program, 
or to care about the activity of the other processor.

There are therefore four possible legal outcomes of this piece of code, with four different sets 
of values from memory ending up in processor A, register R1 and processor B, register R3: 

• A gets the old value, B gets the old value.

• A gets the old value, B gets the new value.

• A gets the new value, B gets the old value.

• A gets the new value, B gets the new value.

If we were to involve a third processor, C, we should also note that there is no requirement that 
it would observe either of the stores in the same order as either of the other processors. It is 
perfectly permissible for both A and B to see an old value in Addr1 and Addr2, but for C to see 
the new values.

So, let’s consider the case where the code on B looks for a flag being set by A and then reads 
memory – for example if we are passing a message from A to B. We might now have code 
similar to that shown in Example 11-2:

Example 11-2 Possible ordering hazard with postbox

Processor A: 
STR R0, [Msg] @ write some new data into postbox
STR R1, [Flag] @ new data is ready to read

Processor B: 
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ is the flag set yet?
BEQ Poll_loop
LDR R0, [Msg] @ read new data. 
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Again, this might not behave in the way that is expected. There is no reason why processor B is 
not allowed to speculatively perform the read from [Msg] before the read from [Flag]. This is 
normal, weakly ordered memory and the processor has no knowledge about a possible 
dependency between the two. The programmer must explicitly enforce the dependency by 
inserting a memory barrier. In this example, we actually need two memory barriers. Processor 
A needs a DMB between the two store operations, to make sure they happen in the programmer 
specified order. Processor B needs a DMB before the LDR R0, [Msg] to be sure that the message is 
not read until the flag is set.

11.2.2 Avoiding deadlocks with a barrier

Here is another case which can cause a deadlock if barrier instructions are not used. Consider a 
situation where a processor writes to an address and then polls for an acknowledge value to be 
applied by a peripheral.

Example 11-3 shows the type of code which can cause a problem.

Example 11-3 Deadlock

STR R0, [Addr] @ write a command to a peripheral register
DSB
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ wait for an acknowledge/state flag to be set
BEQ Poll_loop

The ARMv7 architecture without multiprocessing extensions does not strictly require the 
processor’s store to [Addr] to ever complete (it could be sitting in a write buffer while the 
memory system is kept busy reading the flag), so both processors could potentially deadlock, 
each waiting for the other. Inserting a DSB after the STR of the processor forces its store to be 
observed before it will read from Flag. 

Processors which implement the multiprocessing extensions are required to complete accesses 
in a finite time (that is, their write buffers must drain) and so the barrier instruction is not 
required. 

11.2.3 WFE and WFI Interaction with barriers

The WFE (Wait For Event) and WFI (Wait For Interrupt) instructions, described further in 
Chapter 25 Power Management, allow us to stop execution and enter a low-power state. If we 
need to ensure that all memory accesses prior to executing WFI or WFE have been completed (and 
made visible to other processors), we must insert a DSB instruction. 

A further consideration relates to usage of WFE and SEV (Send Event) in an MP system. These 
instructions allow us to reduce the power consumption associated with a lock acquire loop (a 
spinlock). A processor which is attempting to acquire a mutex may find that some other 
processor already has the lock. Instead of having the processor repeatedly poll the lock, we can 
suspend execution and enter a low-power state, using the WFE instruction. We wake either when 
an interrupt or other asynchronous exception is recognized, or another processor sends an event 
(with the SEV instruction). The processor that had the lock will use the SEV instruction to wake-up 
other processors in the WFE state after the lock has been released. For the purposes of memory 
barrier instructions, the event signal is not treated as an explicit memory access. We therefore 
need to take care that the update to memory which releases the lock is actually visible to other 
processors before the SEV instruction is executed. This requires the use of a DSB. DMB is not 
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sufficient as it only affects the ordering of memory accesses without synchronizing them to a 
particular instruction, whereas DSB will prevent the SEV from executing until all preceding 
memory accesses have been seen by other processors.

11.2.4 Linux use of barriers

In this section, we will look at the implications of barriers in multi-core systems and take a much 
more detailed look at SMP operation.

Barriers are needed to enforce ordering of memory operations. Most programmers will not need 
to understand, or explicitly use memory barriers. This is because they are already included 
within kernel locking and scheduling primitives. Nevertheless, writers of device drivers or those 
seeking an understanding of kernel operation may find a detailed description useful.

Both the compiler and processor micro-architecture optimizations permit the order of 
instructions and associated memory operations to be changed. Sometimes, however, we wish to 
enforce a specified order of execution of memory operations. For example, we can write to a 
memory mapped peripheral register. This write can have side effects elsewhere in the system. 
Memory operations which are in before or after this operation in our program can appear as if 
they can be re-ordered, as they operate on different locations. In some cases, however, we wish 
to ensure that all operations complete before this peripheral write completes. Or, we may want 
to make sure that the peripheral write completes before any further memory operations are 
started. Linux provides some functions to do this, as follows:

• We instruct the compiler that re-ordering is not permitted for a particular memory 
operation. This is done with the barrier() function call. This controls only the compiler 
code generation and optimization and has no effect on hardware re-ordering.

• We call a memory barrier function which maps to ARM processor instructions that 
perform the memory barrier operations. These enforce a particular hardware ordering. 
The available barriers are as follows (in a Linux kernel compiled with Cortex-A SMP 
support): 
— the read memory barrier rmb() function ensures that any read that appears before the 

barrier is completed before the execution of any read that appears after the barrier
— the write memory barrier wmb() function ensures that any write that appears before 

the barrier is completed before the execution of any write that appears after the 
barrier

— the memory barrier mb() function ensures that any memory access that appears 
before the barrier is completed before the execution of any memory access that 
appears after the barrier.

• There are corresponding SMP versions of these barriers, called smp_mb(), smp_rmb() and 
smp_wmb(). These are used to enforce ordering on Normal cacheable memory, between 
cores inside the same SMP processor. For example, each processor inside a Cortex-A15 
MPCore. They can be used with devices and they work even for normal non-cacheable 
memory. When the kernel is compiled without CONFIG_SMP, each invocation of these are 
expanded to barrier() statements.
All of the locking primitives provided by Linux include any required barrier.

For these memory barriers, it is almost always the case that a pair of barriers is required. For 
further information, see http://www.kernel.org/doc/Documentation/memory-barriers.txt.
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11.3 Cache coherency implications
The caches are largely invisible to the application programmer. However they can become 
visible when memory locations are changed elsewhere in the system or when memory updates 
made from the application code must be made visible to other parts of the system.

A system containing an external DMA device and a processor provides a simple example of 
possible problems. There are two situations in which a breakdown of coherency can occur. If 
the DMA reads data from main memory while newer data is held in the processor’s cache, the 
DMA will read the old data. Similarly, if a DMA writes data to main memory and stale data is 
present in the processor’s cache, the processor can continue to use the old data.

Therefore dirty data which is in the ARM processor data cache must be explicitly cleaned before 
the DMA starts. Similarly, if the DMA is copying data to be read by the ARM processor, it must 
be certain that the ARM processor data cache does not contain stale data (the cache will not be 
updated by the DMA writing memory and this may need the ARM processor to clean or 
invalidate the affected memory areas from the cache(s) before starting the DMA). As all 
ARMv7-A processors can do speculative memory accesses, it will also be necessary to 
invalidate after using the DMA. 

11.3.1 Issues with copying code

Boot code, kernel code or JIT compilers can copy programs from one location to another, or 
modify code in memory. There is no hardware mechanism to maintain coherency between 
instruction and data caches. The programmer must invalidate stale code from the instruction 
cache by invalidating the affected areas, and ensure that the code written has actually reached 
the main memory. Specific code sequences including instruction barriers are needed if the 
processor is then intended to branch to the modified code. 

11.3.2 Compiler re-ordering optimizations

It is important to understand that memory barrier instructions apply only to hardware 
re-ordering of memory accesses. Inserting a hardware memory barrier instruction may not have 
any direct effect on compiler re-ordering of operations. The volatile type qualifier in C tells the 
compiler that the variable can be changed by something other than the currently executing code 
that is accessing it. This is often used for C language access to memory mapped I/O, allowing 
such devices to be safely accessed through a pointer to a volatile variable. The C standard does 
not provide rules relating to the use of volatile in systems with multiple processors. So, 
although we can be sure that volatile loads and stores will happen in program specified order 
with respect to each other, there are no such guarantees about re-ordering of accesses relative to 
non-volatile loads or stores. This means that volatile does not provide a shortcut to implement 
mutexes.
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Chapter 12 
Exception Handling

In this chapter, we look at how ARM processors respond to exceptions. An exception is any 
condition that needs to halt normal execution and instead run software (known as an exception 
handler) associated with each exception type. Other architectures may refer to what ARM calls 
exceptions as traps or interrupts, however, in the ARM architecture, these terms are reserved for 
specific types of exceptions, as described in Types of exception on page 12-3. We begin by 
introducing exceptions and see how the ARM processor handles each of the different types and 
what they are used for. We then look in more detail at interrupts and describe mechanisms of 
interrupt handling on ARM processors and standard interrupt handling schemes.

All microprocessors need to respond to external asynchronous events, such as a button being 
pressed, or a clock reaching a certain value. Normally, there is specialized hardware which activates 
input lines to the processor. This causes the microprocessor to temporarily stop the current program 
sequence and execute a special handler routine. The speed with which a processor can respond to 
such events may be a critical issue in system design. Indeed in many embedded systems, there is 
no main program as such – all of the functions of the system are handled by code which runs from 
interrupts, and assigning priorities to these is a key area of design. Rather than have the processor 
constantly polling the flags from different parts of the system to see if there is something to be done, 
we instead allow the system to tell the processor that something needs to happen, by generating an 
interrupt. Complex systems have very many interrupt sources with different levels of priority and 
requirements for nested interrupt handling (where a higher priority interrupt can interrupt a lower 
priority one).

In normal program execution, the program counter increments through the address space, with 
branches in the program modifying the flow of execution (for example, for function calls, loops, 
and conditional code). When an exception occurs, this sequence is interrupted.
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In addition to responding to external interrupts, there are a number of other things which can 
cause the processor to take an exception, both external (reset, external aborts from the memory 
system) and internal (MMU generated aborts or OS calls using the SVC instruction). Dealing with 
exceptions causes the ARM processor to switch between modes and copy some registers into 
others. Readers new to the ARM architecture may wish to refresh their understanding of the 
modes and registers described in Chapter 4, before continuing with this chapter.
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12.1 Types of exception
As we have seen from Table 4-1 on page 4-3, the A classes and R classes of architecture support 
seven processor modes, six privileged modes called FIQ, IRQ, Supervisor, Abort, Undefined 
and System, and the non-privileged User mode. The Hyp mode and Monitor mode registers can 
be added to the list if the Virtualization Extensions and Security Extensions are implemented. 
The current mode can change under software control or when processing an exception. 

However, the unprivileged User mode can switch to another mode only by generating an 
exception. 

When an exception occurs, the processor saves the current status and the return address, enters 
a specific mode and possibly disables hardware interrupts. Execution resumes from a fixed 
memory address called an exception vector. This happens automatically and is not under direct 
control of the programmer.

The following types of exception exist:

Interrupts There are two types of interrupts provided on ARMv7-A processors, called IRQ 
and FIQ. 
FIQ is higher priority than IRQ. FIQ also has some potential speed advantages 
owing to its position in the vector table and the higher number of banked registers 
available in FIQ mode. This potentially saves processor clock cycles on pushing 
registers to the stack within the handler. Both of these kinds of exception are 
typically associated with input pins on the processor – external hardware asserts 
an interrupt request line and the corresponding exception type is raised when the 
current instruction finishes executing, assuming that the interrupt is not disabled.

Aborts Aborts can be generated either on failed instruction fetches (prefetch aborts) or 
failed data accesses (data aborts). They can come from the external memory 
system giving an error response on a memory access (indicating perhaps that the 
specified address does not correspond to real memory in the system). 
Alternatively, the abort can be generated by the Memory Management Unit 
(MMU) of the processor. An operating system can use MMU aborts to 
dynamically allocate memory to applications. 
An instruction can be marked within the pipeline as aborted, when it is fetched. 
The prefetch abort exception is taken only if the processor then actually tries to 
execute it. The exception takes place before the instruction actually executes. If 
the pipeline is flushed before the aborted instruction reaches the execute stage of 
the pipeline, the abort exception will not occur. A data abort exception happens 
when a load or store instruction executes and is considered to happen after the 
data read or write has been attempted. 
An abort is described as synchronous if it is generated as a result of execution or 
attempted execution of the instruction stream, and where the return address will 
provide details of the instruction that caused it. An asynchronous abort is not 
generated by executing instructions, while the return address may not always 
provide details of what caused the abort.
The ARMv7 architecture distinguishes between precise and imprecise 
asynchronous aborts. Aborts generated by the MMU are always synchronous. 
The architecture does not require particular classes of externally aborted accesses 
to be synchronous. 
For example, on a particular processor implementation, it may be the case that an 
external abort reported on a page table walk is treated as precise, but this is not 
required to be the case for all processors. For precise asynchronous aborts, the 
abort handler can be certain which instruction caused the abort and that no further 
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instructions were executed after that instruction. This is in contrast to an 
imprecise asynchronous abort, which results when the external memory system 
reports an error on an unidentifiable access. 
In this case, the abort handler cannot determine which instruction caused the 
problem (or further instructions may have executed after the one which generated 
the abort). For example, if a buffered write receives an error response from the 
external memory system, further instructions will have been executed after the 
store. This means that it will be impossible for the abort handler to fix the problem 
and return to the application. All it can do is to kill the application which caused 
the problem. Device probing therefore needs special handling, as externally 
reported aborts on reads to non-existent areas will generate imprecise 
synchronous aborts even when such memory is marked as Strongly-ordered, or 
Device. 
Detection of asynchronous aborts is controlled by the CPSR A bit. If the A bit is 
set, asynchronous aborts from the external memory system will be recognized by 
the processor, but no abort exception will be generated immediately. Instead, the 
processor keeps the abort pending until the A bit is cleared and takes an exception 
at that time. Kernel code will typically ensure (through the use of a barrier 
instruction) that pending asynchronous aborts are recognized against the correct 
application. If a thread has to be killed due to an imprecise abort, it needs to be 
the correct one! 

Reset All processors have a reset input and will take the reset exception immediately 
after they have been reset. It is the highest priority exception and cannot be 
masked.

Exceptional instructions 
There are two classes of instruction which can cause exceptions on an ARM 
processor. The first is the Supervisor Call (SVC), previously known as Software 
Interrupt (SWI). This is typically used to provide a mechanism by which User 
mode programs can pass control to privileged, kernel code in the OS to perform 
OS-level tasks. The second is an undefined instruction. The architecture defines 
certain bit-patterns as corresponding to undefined opcodes. Trying to execute one 
of these causes an Undefined Instruction exception to be taken. In addition, 
executing coprocessor instructions for which there is no corresponding 
coprocessor hardware will also cause this trap to happen. Some instructions can 
be executed only in a privileged mode and executing these from User mode will 
cause an undefined instruction exception.

When an exception occurs, code execution passes to an area of memory called the vector table. 
Within the table just one word is allocated to each of the various exception types and this will 
usually contain a branch instruction to the actual exception handler. This behavior is different 
from the majority of other architectures, which usually store an execution address in the 
exception table, rather than an instruction.

You can write the exception handlers in either ARM or Thumb code. The CP15 SCTLR.TE bit 
is used to specify whether exception handlers will use ARM or Thumb. When handling 
exceptions, the prior mode, state, and registers of the processor must be preserved so that the 
program can be resumed after the exception has been handled. 
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12.2 Exception mode summary
Table 12-1 lists the state of the interrupt disabling I and F bits of the CPSR upon entering an 
exception handler.

Table 12-1 Summary of exception behavior

Vector 
offset Exception Mode Event

CPSR 
interrupt 
mask

Return address 
offset

0x0 Reset Supervisor Reset input asserted F = 1
I = 1

Not applicable

0x4 UNDEFINED 
instruction

Undefined Executing undefined 
instruction

I = 1 0
(if emulating the 
instruction)
4
(if re-executing 
after, for example, 
enabling VFP)

0x8 Supervisor Call Supervisor SVC instruction I = 1 0

0xC Prefetch Abort Abort Instruction fetch 
from invalid address

I = 1 4

0x10 Data Abort Abort Data Read/Write to 
invalid address

I = 1 8
(if retry of the 
aborting instruction 
is wanted)

0x14 Hypervisor Calla HYP Hypervisor entry - 0

0x18 Interrupt IRQ IRQ input asserted I = 1 4

0x1C Fast Interrupt FIQ FIQ input asserted F = 1
I = 1

4

a. Hypervisor entry exception (described in Chapter 27 Virtualization) is available only in processors which 
support Virtualization Extensions and is unused in other processors.
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12.2.1 Exception priorities

As some of the exception types can occur simultaneously, the processor assigns a fixed priority 
for each exception, as shown in Table 12-1 on page 12-5. The Undefined instruction, prefetch 
abort and Supervisor Call exceptions are due to execution of an instruction (there are specific 
bit patterns for undefined and SVC opcodes) and so can never happen together. They therefore 
have the same priority.

Note
 The ARM architecture does not define when asynchronous exceptions are taken. Therefore the 
prioritization of asynchronous exceptions relative to other exceptions, both synchronous and 
asynchronous, is implementation defined.

It is important to distinguish between prioritization of exceptions, which happens when multiple 
exceptions are required at the same time, and the actual exception handler code. You will notice 
that Table 12-1 on page 12-5 contains columns explaining how FIQ and IRQ are automatically 
disabled by some exceptions. (All exceptions disable IRQ, only FIQ and reset disable FIQ.) This 
is done by the processor automatically setting the CPSR I (IRQ) and F (FIQ) bits. 

So, an FIQ exception can interrupt an abort handler or IRQ exception. In the case of a data abort 
and FIQ occurring simultaneously, the data abort (which has higher priority) is taken first. This 
lets the processor record the return address for the data abort. But as FIQ is not disabled by data 
abort, we then take the FIQ exception immediately. At the end of the FIQ we return back to the 
data abort handler.

More than one exception can potentially be generated at the same time, but some combinations 
are mutually exclusive. A prefetch abort marks an instruction as invalid and so cannot occur at 
the same time as an undefined instruction or SVC (and of course, an SVC instruction cannot also 
be an undefined instruction). These instructions cannot cause any memory access and therefore 
cannot cause a data abort. The architecture does not define when asynchronous exceptions, FIQ, 
IRQ or asynchronous aborts must be taken, but the fact that taking an IRQ or data abort 
exception does not disable FIQ exceptions means that FIQ execution will be prioritized over 
IRQ or asynchronous abort handling.

Table 12-2 Exception priorities

Priority Exception

Highest 1 Reset

2 Data Abort

3 FIQ

4 IRQ

6 Prefetch Abort

Lowest 7 Undefined instruction
SVC, SMC, HVC
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12.3 Entering an exception handler
When an exception occurs, the ARM processor automatically does the following things: 

• Preserves the address of the next instruction, in the Link Register (LR) of the new mode.

• Copies CPSR to the SPSR, one of the banked registers specific to each (non-user) mode 
of operation.

• Modifies the CPSR mode bits to a mode associated with the exception type. The other 
CPSR mode bits are set to values determined by bits in the CP15 System Control Register. 
The T bit is set to the value given by the CP15 TE bit. The J bit is cleared and the E bit 
(Endianness) is set to the value of the EE (Exception Endianness) bit. This enables 
exceptions to always run in ARM or Thumb state and in little or big-endian, irrespective 
of the state the processor was in before the exception.

• Forces the PC to point to the relevant instruction from the exception vector table.

Once in the new mode the processor will access the view associated with that mode, as shown 
in Figure 4-1 on page 4-4.

It will almost always be necessary for the exception handler software to save registers onto the 
stack immediately upon exception entry. (FIQ mode has more dedicated registers and so a 
simple handler may be able to be written in a way which needs no stack usage.)

A special assembly language instruction is provided to assist with saving the necessary registers, 
called SRS (Store Return State). This instruction pushes the LR and SPSR onto the stack of any 
mode; which stack should be used is specified by the instruction operand. 
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12.4 Exit from an exception handler
To return from an exception handler, two separate operations must take place atomically:

• Restore the CPSR from the saved SPSR.

• Set the PC to the return address offset, see Table 12-1 on page 12-5.

In the ARM architecture this can be achieved either by using the RFE instruction or any 
flag-setting data processing operation (with the S suffix) with the PC as the destination register, 
such as SUBS PC, LR, #offset (note the S). The Return From Exception (RFE) instruction pops the 
link register and SPSR off the current mode stack.
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12.5 Vector table
The first column in Table 12-1 on page 12-5 gives the vector offset within the vector table 
associated with the particular type of exception. This is a table of instructions that the ARM 
processor jumps to when an exception is raised. These instructions are located in a specific place 
in memory. The normal vector base address is 0x00000000, but most ARM processors allow the 
vector base address to be moved to 0xFFFF0000 (or HIVECS). All Cortex-A series processors 
permit this, and it is the default address selected by the Linux kernel. Processors that implement 
the Security Extensions can additionally set the vector base address, separately for Secure and 
Non-secure states, using the CP15 Vector base Address registers.

You will notice that there is a single word address associated with each exception type. 
Therefore, only a single instruction can be placed in the vector table for each exception 
(although, in theory, two 16-bit Thumb instructions could be used). FIQ is different. Therefore, 
the vector table entry almost always contains one of the various forms of branches.

B<label> 
This performs a PC-relative branch. It is suitable for calling exception handler 
code which is close enough in memory that the 24-bit field provided in the branch 
instruction is large enough to encode the offset.

LDR PC, [PC, #offset] 
This loads the PC from a memory location whose address is defined relative to 
the address of the exception instruction. This lets the exception handler be placed 
at any arbitrary address within the full 32-bit memory space (but takes some extra 
cycles relative to the simple branch above).
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12.6 Return instruction
The Link Register (LR) is used to store the appropriate return address for the PC after the 
exception has been handled. Its value needs to be modified as shown in Table 12-1 on page 12-5, 
depending upon the type of exception occurred. The ARM Architecture Reference Manual 
defines the LR values that are appropriate (the definition derives from the values that were 
convenient for early hardware implementations).
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Chapter 13 
Interrupt Handling

In this chapter, we will look at a range of methods by which interrupts are handled in ARM 
processors, and briefly look at the Generic Interrupt Controller (GIC) architecture.

Older versions of the ARM architecture allowed implementers considerable freedom in their design 
of an external interrupt controller, with no agreement over the number or types of interrupts or the 
software model to be used to interface to the interrupt controller block. The GIC architecture 
provides a much more tightly controlled specification, with a greater degree of consistency between 
interrupt controllers from different manufacturers. This enables interrupt handler code to be more 
portable. 
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13.1 External interrupt requests
As we discussed in Types of exception on page 12-3, all ARM processors have two external 
interrupt requests, FIQ and IRQ. Both of these are level-sensitive active-LOW inputs. 
Individual implementations have interrupt controllers which accept interrupt requests from a 
wide variety of external sources and map them onto FIQ or IRQ, causing the processor to take 
an exception. 

In general, an interrupt exception can be taken only when the appropriate CPSR disable bit (the 
F and I bits respectively) is clear.

The CPS assembly language instruction provides a simple mechanism to enable or disable the 
exceptions controlled by CPSR A, I and F bits (asynchronous abort, IRQ and FIQ respectively). 
CPS can be used additionally to change mode, as shown below.

CPS #<mode>
CPSIE <if>
CPSID <if>

where <mode> is the number of the mode to change to. If this option is omitted, no mode change 
occurs. The values of these modes are listed in Table 4-1 on page 4-3.

IE or ID will enable or disable exceptions respectively. The exceptions to be enabled or disabled 
are specified using one or more of the letters A, I and F. Exceptions whose corresponding letters 
are omitted will not be modified.

In Cortex-A series processors, it is possible to configure the processor so that FIQs cannot be 
masked by software. This is known as Non-Maskable FIQ and is controlled by a hardware 
configuration input signal which is sampled when the processor is reset. They will still be 
masked automatically upon taking an FIQ exception.

13.1.1 Assigning interrupts

A system will always have an interrupt controller which accepts interrupt requests from multiple 
pieces of external hardware. This typically contains a number of registers enabling software 
running on the ARM processor to mask individual interrupt sources, to acknowledge interrupts 
from external devices and to determine which interrupt sources are currently active.

This interrupt controller can be a design specific to the system, or it can be an implementation 
of the ARM Generic Interrupt Controller (GIC) architecture, which is described in Generic 
Interrupt Controller on page 13-4.

13.1.2 Simplistic interrupt handling

This represents the simplest kind of interrupt handler. An interrupt occurs and while processing 
that interrupt, further interrupts are disabled. We can only handle further interrupts at the 
completion of the first interrupt request and there is no scope for a higher priority or more urgent 
interrupt to be handled during this time. This is not generally suitable for complex embedded 
systems, but it is useful to examine before proceeding to a more realistic example.

The steps taken to handle an interrupt are as follows:

1. An IRQ exception is raised by external hardware. The processor performs several steps 
automatically. The contents of the PC in the current execution mode are stored in 
LR_IRQ. The CPSR register is copied to SPSR_IRQ. The bottom byte of the CPSR is 
updated to change to IRQ mode, and to disable IRQ which prevent further exceptions 
from occurring. The PC is set to IRQ entry in the vector table.
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2. The instruction at the IRQ entry in the vector table (a branch to the interrupt handler) is 
executed.

3. The interrupt handler saves the context of the interrupted program (that is, it pushes onto 
the stack any registers which will be corrupted by the handler).

4. The interrupt handler determines which interrupt source needs to be processed and calls 
the appropriate device driver.

5. Finally, the SPSR_IRQ is copied back into the CPSR, which switches the system back to 
the previous execution mode. At the same time, the PC is restored from the LR_IRQ.

13.1.3 Nested interrupt handling

In a nested handler, we re-enable interrupts before the handler has fully served the current 
interrupt. This allows us to prioritize interrupts and make significant improvements to the 
latency of high priority events at the cost of additional complexity.

A reentrant interrupt handler must save the IRQ state and then switch processor modes, and save 
the state for the new processor mode, before it branches to a nested subroutine or C function 
with interrupts enabled. This is because a fresh interrupt could occur at any time, which would 
cause the processor to store the return address of the new interrupt in LR_IRQ, overwriting the 
original interrupt. When the original interrupt attempts to return to the main program, it will 
cause the system to fail. The nested handler must change into an alternative kernel mode before 
re-enabling interrupts in order to prevent this.

Note
 A computer program is reentrant if it can be interrupted in the middle of its execution and then 
be called again before the previous version has completed.

A reentrant interrupt handler must therefore take the following steps after an IRQ exception is 
raised and control is transferred to the interrupt handler in the way previously described.

1. The interrupt handler saves the context of the interrupted program (that is, it pushes onto 
the alternative kernel mode stack any registers which will be corrupted by the handler, 
including the return address and SPSR_IRQ).

2. It determines which interrupt source needs to be processed and clears the source in the 
external hardware (preventing it from immediately triggering another interrupt).

3. The interrupt handler changes the processor SVC mode, leaving the CPSR I bit set 
(interrupts are still disabled).

4. The interrupt handler saves the exception return address on the stack (a stack for the new 
mode, located in kernel memory) and re-enables interrupts.

5. It calls the appropriate device driver.

6. Upon completion, the interrupt handler disables IRQ and pops the exception return 
address from the stack.

7. It restores the context of the interrupted program directly from the alternative kernel mode 
stack. This includes restoring the PC, and the CPSR which switches back to the previous 
execution mode. If the SPSR does not have the I bit set then the operation also re-enables 
interrupts.
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13.2 Generic Interrupt Controller
The GIC architecture defines a Generic Interrupt Controller (GIC) which comprises a set of 
hardware resources for managing interrupts in a single or multi-core system. The GIC provides 
memory-mapped registers which can be used to manage interrupt sources and behavior and (in 
multi-core systems) for routing interrupts to individual processors. It enables software to mask, 
enable and disable interrupts from individual sources, to prioritize (in hardware) individual 
sources and to generate software interrupts. It also provides support for the TrustZone Security 
Extensions described in Chapter 26 Security. The GIC accepts interrupts asserted at the system 
level and can signal them to each processor it is connected to, potentially resulting in an IRQ or 
FIQ exception being taken.

From a software perspective, a GIC has two major functional blocks:

Distributor 
which is shared between all processors in a multiprocessor system. This is used 
for configuring things such as prioritization and routing, as well as providing 
global enabling or disabling of individual interrupts.

CPU Interface 
which is each processor’s private channel for handling interrupts. This is where 
you find out which interrupt has been triggered and notify when you have 
completed processing an interrupt.

Each interrupt can be considered to be in one of four states:

• Inactive

• Pending – this means that the interrupt source has been asserted, but is waiting to be 
handled by a processor

• Active – this describes an interrupt that has been acknowledged by a processor and is 
currently being serviced

• Active and pending – this describes the situation where a processor is servicing the 
interrupt and the GIC also has a pending interrupt from the same source.

Interrupts can be of a number of different types:

Software Generated Interrupt (SGI) 
This is generated by writing to a dedicated register, the Software Generated 
Interrupt Register (ICDSGIR). It is most commonly used for inter-processor 
communication.

Private Peripheral Interrupt (PPI) 
This is generated by a peripheral that is private to an individual processor. 

Shared Peripheral Interrupt (SPI) 
This is generated by a peripheral that the Interrupt Controller can route to more 
than one processor. 

Interrupts can either be edge-triggered (considered to be asserted when the Interrupt Controller 
detects a rising edge on the relevant input – and to remain asserted until cleared) or 
level-sensitive (considered to be asserted only when the relevant input to the Interrupt 
Controller is HIGH).

The source of an individual interrupt can be determined using an ID number. The GIC assigns 
a specified range of ID values to different types of interrupt.
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The processor hardware then compares the interrupt priority with the current interrupt priority 
for the processor. If the interrupt has sufficient priority, an interrupt exception request is 
signaled.

We will return to the subject of the GIC in Chapter 22, where we describe its implementation 
within an ARM MPCore processor. More detailed information on GIC behavior can be found 
in the TRMs for the individual processors and in the ARM Generic Interrupt Controller 
Architecture specification.

13.2.1 Configuration

Access to the Generic Interrupt Controller registers is memory-mapped. In an MPCore 
processor which uses the GIC, this is done using an interface private to each processor (see 
Handling interrupts in an SMP system on page 22-6 for further details).

The distributor contains a set of configuration registers, the number depending on how many 
external interrupts are implemented:

• The Interrupt Configuration Registers configure individual interrupt sources as edge or 
level sensitive.

• The Interrupt Priority Registers set priority values for individual interrupts. A lower value 
indicates a higher priority.

The CPU Interfaces provide per-processor instances of registers for interrupt handling, as 
opposed to configuration:

• The Priority Mask Register that prevents interrupts below a certain priority level from 
being delivered to a processor. Interrupts of the lowest priority are never delivered.

• The Binary Point Register that enables a configurable number of the least significant bits 
of the priority value to be ignored for pre-emption purposes. This enables interrupts to be 
configured such that groups of interrupts with similar levels of priority do not pre-empt 
each other, but are still handled in priority order if triggered simultaneously.

Initialization sequence

This section describes the initialization sequence.

1. Enable the distributor using the Distributor Control Register.

2. Enable and set priority of SPIs using the Enable Set and Priority Level registers. The reset 
priority level of interrupts might be too low for them to be delivered.

3. Enable the CPU Interface using the CPU Interface Control Register.

4. Set Priority Mask Register (the reset value prevents all interrupts from being delivered).

5. Enable and set the priority of the Private Peripheral Interrupts and Software Generated 
Interrupts using the Enable Set and Priority Level registers. These operations are 
performed in the Distributor Priority Level registers. These registers are banked providing 
a separate copy for each processor.

6. Ensure that a valid entry exists in the vector table for the interrupt.

7. Clear the I bit in the CPSR.
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13.2.2 Interrupt handling

When the processor takes the interrupt exception, it reads the Interrupt Acknowledge Register 
(ICCIAR), to acknowledge the interrupt. This read returns an interrupt ID, which is used to 
select the correct interrupt handler. When the GIC sees this read, it changes the state of the 
interrupt from pending to active or to active and pending, as appropriate. If no interrupt is 
currently pending, a pre-defined ID for the spurious interrupt is returned.

If an interrupt was made active, the interrupt controller then de-asserts the IRQ input to the 
processor. This means that the interrupt service routine can now re-enable interrupts. This 
enables the arrival of a higher-priority interrupt to pre-empt processing of the current one.

When the interrupt service routine has completed handling the interrupt, it signals this by 
writing to the End of Interrupt Register (ICCEOIR) in the GIC. Until this is done, new signaling 
of that interrupt (and any interrupts of lower priority) will not be detected. 

• Interrupt numbers ID1020-ID1023 are reserved for special purposes, including signaling 
spurious interrupts.

• Interrupt ID values in the range ID32-ID1019 are used for SPIs.

• Interrupt numbers ID0-ID31 are used for interrupts that are private to a processor 
interface. In MPCore systems (or on a multi-core GIC implementation) these numbers are 
banked on a per core basis. ID0-ID15 are used for SGIs and ID16-ID31 are used for PPIs.
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Chapter 14 
Other Exception Handlers

In this chapter, we will briefly look at handlers for aborts, undefined instructions and SVC 
instructions and look at how interrupts are handled by the Linux kernel. Reset handlers are covered 
in depth in Chapter 15 Boot Code.
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14.1 Abort handler
Abort handler code can vary significantly between systems. In many embedded systems, an 
abort indicates an unexpected error and the handler will record any diagnostic information, 
report the error and have the application (or system) quit gracefully.

In systems which support virtual memory using an MMU, the abort handler can load the 
required virtual page into physical memory. In effect, it tries to fix the cause of the original abort 
and then return to the instruction which aborted and re-execute it. Chapter 10 Memory 
Management Unit gives further information about how Linux does this.

CP15 registers provide the address of the memory access which caused an abort (the Fault 
Address Register) and the reason for the abort (Fault Status Register). The reason might be lack 
of access permission, an external abort or a page table translation fault. In addition, the link 
register (with a –8 or –4 adjustment, depending on whether the abort was caused by an 
instruction fetch or a data access), gives the address of the instruction executing before the abort 
exception. By examining these registers, the last instruction executed and possibly other things 
in the system (for example, page table entries), the abort handler can determine what action to 
take. 
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14.2 Undefined instruction handling
An undefined instruction exception is taken if the processor tries to execute an instruction with 
an opcode which is described in the ARM architecture specification as UNDEFINED, or when a 
coprocessor instruction is executed but no coprocessor recognizes it as an instruction that it can 
execute.

In some systems, it is possible that code includes instructions for a coprocessor (such as a VFP 
coprocessor), but that no corresponding VFP hardware is present in the system. In addition, it 
may be that the VFP hardware cannot handle the particular instruction and wishes to call 
software to emulate it. Alternatively, the VFP hardware is disabled, and we take the exception 
so that we can enable it and re-execute the instruction.

Such emulators are called through the undefined instruction vector. They examine the 
instruction opcode which caused the exception and determine what action to take (for example, 
perform the appropriate floating-point operation in software). In some cases, such handlers may 
need to be daisy-chained together (for example, there might be multiple coprocessors to 
emulate).

If there is no software which makes use of undefined or coprocessor instructions, the handler 
for the exception should record suitable debug information and kill the application which failed 
due to this unexpected event.

An additional use for the undefined instruction exception in some cases is to implement user 
breakpoints, see Chapter 29 Debug for more information on breakpoints. (See also the 
description of the Linux context switch for VFP in Chapter 7.)
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14.3 SVC exception handling
A supervisor call (SVC) is typically used to allow User mode code to access OS functions. For 
example, if user code wishes to access privileged parts of the system (for example to perform 
file I/O) it will typically do this using an SVC instruction. 

Parameters can be passed to the SVC handler either in registers or (less frequently) by using the 
comment field within the opcode.

Code to illustrate SVC usage with the Linux kernel is shown in Example 14-1.

Example 14-1 Linux kernel SVC usage

_start:
MOV     R0, #1             @ STDOUT
ADR R1, msgtext      @ Address
MOV     R2, #13            @ Length
MOV     R7, #4 @ sys_write
SVC #0
....

.align 2
msgtxt:

.asciz "Hello World\n"

The SVC #0 instruction makes the ARM processor take the SVC exception, which is the 
mechanism to access a kernel function. Register R7 defines which system call we want (in this 
case, sys_write). The other parameters are passed in registers; for sys_write we have R0 telling 
where to write to, R1 pointing to the characters to be written and R2 giving the length of the 
string.

Another example of the use of the SVC instruction can be seen by application developers. Tools 
developed by ARM use SVC 0x123456 (ARM state) or SVC 0xAB (Thumb) to represent 
semi-hosting debug functions (for example, outputting a character on a debugger window).
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14.4 Linux exception program flow
Linux utilizes a cross-platform framework for exception handling which does not distinguish 
between different privileged processor modes when handling exceptions. Therefore, the ARM 
implementation uses an exception handler stub to allow the kernel to handle all exceptions in 
SVC mode. All exceptions other than SVC and FIQ use the stub to switch to SVC mode and 
invoke the correct exception handler.

14.4.1 Boot process

During the boot process, the kernel will allocate a 4KB page as the vector page. It maps this to 
the location of the exception vectors, virtual address 0xFFFF0000 or 0x00000000. This is done by 
devicemaps_init() in the file arch/arm/mm/mmu.c. This is invoked very early in the ARM system 
boot. After this, trap_init (in arch/arm/kernel/traps.c), copies the exception vector table, 
exception stubs and kuser helpers into the vector page. The exception vector table obviously has 
to be copied to the start of the vector page, the exception stubs being copied to address 0x200 
(and kuser helpers copied to the top of the page, at 0x1000 - kuser_sz), using a series of memcpy() 
operations, as shown in Example 14-2.

Example 14-2 Copying exception vectors during Linux boot

unsigned long vectors = CONFIG_VECTORS_BASE; 

memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start); 
memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);

When the copying is complete, the kernel exception handler is in its runtime dynamic status, 
ready to handle exceptions

14.4.2 Interrupt dispatch

There are two different handlers, __irq_usr and __irq_svc. These save all of the processor 
registers and use a macro get_irqnr_and_base which indicates if there is an interrupt pending. 
The handlers loop around this code until no interrupts remain. If there is an interrupt, the code 
will branch to do_IRQ which exists in arch/arm/kernel/irq.c.

At this point, the code is the same in all architectures and we call an appropriate handler written 
in C.

There is, however, a further point to consider. When the interrupt is completed, we would 
normally need to check whether or not the handler has done something which needs the kernel 
scheduler to be called. If the scheduler decides to go to a different thread, the one that was 
originally interrupted stays dormant until it is selected to run again.
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Chapter 15 
Boot Code

In this chapter, we will look at the work which needs to be undertaken within the boot code running 
in an ARM processor based system. We will focus on two distinct areas:

• Code to be run immediately after the processor comes out of reset, on a so-called bare-metal 
system, that is, one in which code is run without the use of an operating system. This is a 
situation which is often encountered when first starting up a chip or system.

• How a bootloader loads and runs the Linux kernel.
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15.1 Booting a bare-metal system
When the processor has been reset, it will commence execution at the location of the reset vector 
within the exception vector table (at either address 0x00000000 or 0xFFFF0000). The reset handler 
code will need to do some, or all of the following: 

• In a multi-processor system, put non-primary processors to sleep (see Booting SMP 
systems on page 22-10).

• Initialize exception vectors.

• Initialize the memory system, including the MMU.

• Initialize processor mode stacks and registers.

• Initialize any critical I/O devices.

• Perform any necessary initialization of NEON or VFP.

• Enable interrupts.

• Change processor mode or state.

• Handle any set-up required for the Secure world (see Chapter 26).

• Call the main() application.

The first consideration is placement of the exception vector table. We need to make sure that it 
contains a valid set of instructions which branch to the appropriate handlers. The _start 
directive in the GNU Assembler tells the linker to locate code at a particular address and can be 
used to place code in the vector table. The initial vector table will be in non-volatile memory 
and can contain branch to self instructions (other than the reset vector) as no exceptions are 
expected at this point. Typically, the reset vector contains a branch to the boot code in ROM. 
The ROM can be aliased to the address of the exception vector. The ROM then writes to some 
memory-remap peripheral, which maps RAM into address 0 and the real exception vector table 
is copied into RAM. This means the part of the boot code which handles remapping should be 
position-independent, as only PC-relative addressing can be used. Example 15-1 shows an 
example of typical code which will be placed in the exception vector table. 

Example 15-1 Typical exception vector table code

start
B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Data_Handler
NOP @ Reserved vector
B IRQ_Handler 

@ FIQ_Handler will follow directly after this table

We may then need to initialize stack pointers for the various modes that our application can 
make use of. Example 15-2 on page 15-3 gives a simple example, showing code which 
initializes the stack pointers for FIQ and IRQ modes.
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Example 15-2 Code to initialize the stack pointers

LDR     R0, stack_base 
@ Enter each mode in turn and set up the stack pointer
MSR     CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ;
MOV     SP, R0 
SUB     R0, R0, #FIQ_Stack_Size
MSR     CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; 
MOV     SP, R0

The next step is to set up the caches, MMU and branch predictors. An example of such code is 
shown in Example 15-3. We begin by disabling the MMU and caches and invalidating the 
caches and TLB. The example code is for the Cortex-A9 processor. For the Cortex-A8 and 
Cortex-A5 processors, the cache invalidation can be done automatically by a hardware state 
machine at reset, but for the Cortex-A9 processor, boot code must explicitly cycle through the 
lines of the cache and invalidate them. The MMU TLBs must be invalidated. The branch target 
predictor hardware may not need to be explicitly invalidated, but it should be enabled by boot 
code. Branch prediction can safely be enabled at this point; this will improve performance. 

Example 15-3 Setting up caches, MMU and branch predictors

@ Disable MMU
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
BIC   r1, r1, #0x1
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Disable L1 Caches
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
BIC   r1, r1, #(0x1 << 12) @ Disable I Cache
BIC   r1, r1, #(0x1 << 2) @ Disable D Cache
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Invalidate L1 Caches
@ Invalidate Instruction cache
MOV   r1, #0
MCR   p15, 0, r1, c7, c5, 0

@ Invalidate Data cache
@ to make the code general purpose, we calculate the
@ cache size first and loop through each set + way

MRC   p15, 1, r0, c0, c0, 0  @ Read Cache Size ID 
MOV   r3, #0x1ff
AND   r0, r3, r0, LSR #13 @ r0 = no. of sets - 1

MOV   r1, #0 @ r1 = way counter way_loop
way_loop:
MOV   r3, #0 @ r3 = set counter set_loop

set_loop:
MOV   r2, r1, LSL #30 @
ORR   r2, r3, LSL #5 @ r2 = set/way cache operation format
MCR   p15, 0, r2, c7, c6, 2 @ Invalidate line described by r2
ADD   r3, r3, #1 @ Increment set counter
CMP   r0, r3 @ Last set reached yet?
BNE   set_loop @ if not, iterate set_loop
ADD   r1, r1, #1 @ else, next
CMP   r1, #4 @ Last way reached yet?
BNE   way_loop @ if not, iterate way_loop
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@ Invalidate TLB
MCR   p15, 0, r1, c8, c7, 0

@ Branch Prediction Enable
MOV   r1, #0
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR   r1, r1, #(0x1 << 11) @ Global BP Enable bit
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

After this, we can create some page tables, as shown in the example code of Example 15-4. The 
variable ttb_address is used to denote the address to be used for the initial page table. This 
should be a 16KB area of memory (whose start address is aligned to a 16KB boundary), to 
which an L1 page table can be written by this code. 

Example 15-4 Create page tables

@ Enable D-side Prefetch
MRC   p15, 0, r1, c1, c0, 1 @ Read Auxiliary Control Register
ORR   r1, r0, #(0x1 <<2)  Enable D-side prefetch
MCR   p15, 0, r1, c1, c0, 1 ;@ Write Auxiliary Control Register
DSB
ISB
@ DSB causes completion of all cache maintenance operations appearing in program
@ order before the DSB instruction
@ An ISB instruction causes the effect of all branch predictor maintenance
@ operations before the ISB instruction to be visible to all instructions 
@ after the ISB instruction.
@ Initialize PageTable

@ We will create a basic L1 page table in RAM, with 1MB sections containing a flat 
(VA=PA) mapping, all pages Full Access, Strongly Ordered

@ It would be faster to create this in a read-only section in an assembly file

LDR   r0, =2_00000000000000000000110111100010 @ r0 is the non-address part of 
descriptor
LDR   r1, ttb_address
LDR   r3, = 4095 @ loop counter

write_pte
ORR   r2, r0, r3, LSL #20 @ OR together address & default PTE bits
STR   r2, [r1, r3, LSL #2] @ write PTE to TTB
SUBS  r3, r3, #1 @ decrement loop counter
BNE   write_pte

@ for the very first entry in the table, we will make it cacheable, normal, 
write-back, write allocate
BIC   r0, r0, #2_1100 @ clear CB bits
ORR   r0, r0, #2_0100 @ inner write-back, write allocate
BIC   r0, r0, #2_111000000000000 @ clear TEX bits
ORR   r0, r0, #2_101000000000000 @ set TEX as write-back, write allocate
ORR r0, r0, #2_10000000000000000 @ shareable
STR   r0, [r1]

@ Initialize MMU
MOV   r1,#0x0
MCR   p15, 0, r1, c2, c0, 2 @ Write Translation Table Base Control Register
LDR   r1, ttb_address
MCR   p15, 0, r1, c2, c0, 0 @ Write Translation Table Base Register 0
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@ In this simple example, we don't use TRE or Normal Memory Remap Register.
@ Set all Domains to Client
LDR r1, =0x55555555
MCR p15, 0, r1, c3, c0, 0 @ Write Domain Access Control Register

@ Enable MMU
MRC   p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR   r1, r1, #0x1 @ Bit 0 is the MMU enable
MCR   p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

The L2 cache, if present, and if running without an operating system, may also need to be 
invalidated and enabled at this point. NEON or VFP access must also be enabled. If the system 
makes use of the TrustZone Security Extensions, it may need to switch to the Normal world 
when the Secure world is initialized. See Chapter 26 Security for details of this,

The next steps will depend upon the exact nature of the system. It may be necessary, for 
example, to zero-initialize memory which will hold uninitialized C variables, copy the initial 
values of other variables from a ROM image to RAM, and set up application stack and heap 
spaces. It may also be necessary to initialize C library functions, call top-level constructors (for 
C++ code) and other standard embedded C initialization.

We will examine MPCore programming in more detail in Chapter 21 - Chapter 24, but we can 
touch briefly on how these are booted here. A common approach is to allow a single processor 
within the MPCore to perform system initialization, while the same code, if run on a different 
processor, will cause it to sleep (that is, enter WFI state, as described in Chapter 25). The other 
processors might be woken after processor 0 has created a simple set of L1 page table entries, 
as these could be used by all processors in the system. Example 15-5 shows example code which 
determines which processor it is running on and either branches to initialization code (if running 
on processor 0), or goes to sleep otherwise. The secondary processors are typically woken up 
later by an SMP OS.

Example 15-5  Determining which processor is running

@ Only CPU 0 performs initialization. Other CPUs go into WFI
@ to do this, first work out which CPU this is
@ this code typically is run before any other initialization step

MRC   p15, 0, r1, c0, c0, 5 @ Read Multiprocessor Affinity Register
AND   r1, r1, #0x3 @ Extract CPU ID bits
CMP   r1, #0 
BEQ initialize @ if we’re on CPU0 goto the start

wait_loop:
@ Other CPUs are left powered-down
.....
.....
.....

initialize:
@ next section of boot code goes here
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15.2 Configuration
There are a number of control register bits within the ARM processor which will typically be 
set by boot code. In all cases, for best performance, code should run with the MMU, instruction 
and data caches and branch prediction enabled. Page table entries for all regions of memory 
which are not peripheral I/O devices should be marked as L1 Cacheable and (by default) set to 
read-allocate, write-back cache policy. For MPCore systems, pages should be marked as 
Shareable and the broadcasting feature for CP15 maintenance operations should be enabled.

In addition to the CP15 registers mandated by the ARM architecture, processors typically also 
have registers which control implementation-specific features. Programmers of boot code 
should refer to the relevant technical reference manual for the correct usage of these. 
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15.3 Booting Linux
It is useful to understand what happens from the ARM processor coming out of reset and 
executing its first instruction at the exception base address 0x00000000 or 0xFFFF0000 if HIVECS 
(known as high vectors) is selected, until the Linux command prompt appears. (See Vector table 
on page 12-9.) 

When the kernel is present in memory, the sequence on an ARM processor based system is 
similar to what might happen on a desktop computer. However, the bootloading process can be 
very different, as ARM processor based phones or more deeply embedded devices can lack a 
hard drive or PC-like BIOS. 

Typically, what happens when we power the system on is that hardware specific boot code runs 
from flash or ROM. This code initializes the system, including any necessary hardware 
peripheral code and then launches the bootloader (for example U-Boot). This initializes main 
memory and copies the compressed Linux kernel image into main memory (from a flash device, 
memory on a board, MMC, host PC or elsewhere). The bootloader passes certain initialization 
parameters to the kernel. The Linux kernel then decompresses itself and initializes its data 
structures and running user processes, before starting the command shell environment. Let’s 
take a more detailed look at each of those processes.

15.3.1 Reset handler

There is typically a small amount of system-specific boot monitor code, which configures 
memory controllers and performs other system peripheral initialization. It sets up stacks in 
memory and typically copies itself from ROM into RAM, before changing the hardware 
memory mapping so that RAM is mapped to the exception vector address, rather than ROM. In 
essence this code is independent of which operating system is to be run on the board and 
performs a function similar to a PC BIOS. When it has completed execution, it will call a Linux 
bootloader, such as U-Boot.

15.3.2 Bootloader

Linux needs a certain amount of code to be run out of reset, to initialize the system. This 
performs the basic tasks needed to allow the kernel to boot: 

• Initializing the memory system and peripherals.

• Loading the kernel image to an appropriate location in memory (and possibly also an 
initial RAM disk).

• Generate the boot parameters to be passed to the kernel (including machine type).

• Set up a console (video or serial) for the kernel.

• Enter the kernel.

The exact steps taken vary between different bootloaders, so for detailed information, please 
refer to documentation for the one that you wish to use. U-Boot is a widely used example, but 
other bootloader possibilities include Apex, Blob, Bootldr and Redboot. 

When the bootloader starts, it is typically not present in main memory. It must start by allocating 
a stack and initializing the processor (for example invalidating its caches) and installing itself 
to main memory. It must also allocate space for global data and for use by malloc() and copy 
exception vector entries into the appropriate location. 
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15.3.3 Initialize memory system

This is very much a board or system specific piece of code. The Linux kernel has no 
responsibility for the configuration of the RAM in the system. It is presented with the physical 
memory layout, but has no other knowledge of the memory system. In many systems, the 
available RAM and its location are fixed and the bootloader task is straightforward. In other 
systems, code must be written which discovers the amount of RAM available in the system.

15.3.4 Kernel images

The kernel image from the build process is typically compressed in zImage format (the 
conventional name given to the bootable kernal image). Its head code contains a magic number, 
used to verify the integrity of the decompression, plus start and end addresses. The kernel code 
is position independent and can be located anywhere in memory. Conventionally, it is placed at 
a 0x8000 offset from the base of physical RAM. This gives space for the parameter block placed 
at a 0x100 offset (used for page tables etc). 

Many systems need an initial RAM disk (initrd), as this lets us have a root filesystem available 
without other drivers being setup. The bootloader can place an initial ramdisk image into 
memory and pass the location of this to the kernel using ATAG_INITRD2 (a tag which describes the 
physical location of the compressed RAM disk image) and ATAG_RAMDISK.

The bootloader will typically setup a serial port in the target, allowing the kernel serial driver to 
detect the port and use it for a console. In some systems, another output device such as a video 
driver can be used as a console. The kernel command line parameter console= can be used to 
pass the information.

15.3.5 Kernel parameters

Historically, the parameters passed to the kernel are in the form of a tagged list, placed in 
physical RAM with register R2 holding the address of the list. Tag headers hold two 32-bit 
unsigned ints, with the first giving the size of the tag in words and the second providing the tag 
value (indicating the type of tag). For a full list of parameters which can be passed, consult the 
appropriate documentation. Examples include ATAG_MEM to describe the physical memory map 
and ATAG_INITRD2 to describe where the compressed ramdisk image is located. The bootloader 
must also provide an ARM Linux machine type number (MACH_TYPE). This can be a hard-coded 
value, or the boot code can inspect the available hardware and assign a value accordingly.

There is currently work underway to implement a more flexible, or generic method for passing 
this information using Flattened Device Trees (FDTs).

15.3.6 Kernel entry

Kernel execution must commence with the ARM processor in a fixed state. The bootloader calls 
the kernel image by branching directly to its first instruction – the start label in 
arch/arm/boot/compressed/head.S. The MMU and data cache must be disabled. The processor 
must be in Supervisor mode, with CPSR I and F Bits set (IRQ and FIQ disabled). R0 must 
contain 0, R1 the MACH_TYPE value and R2 the address of the tagged list of parameters.

The first step in getting the kernel working is to decompress it. This is mostly architecture 
independent. The parameters passed from the bootloader are saved and the caches and MMU 
are enabled. Checks are made to see if the decompressed image will overwrite the compressed 
image, before calling decompress_kernel() in arch/arm/boot/compressed/misc.c, The cache is 
then cleaned and invalidated before being disabled again. We then branch to the kernel startup 
entry point in arch/arm/kernel/head.S. 
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15.3.7 Platform-specific actions

A number of architecture specific tasks are now undertaken. The first checks processor type 
using __lookup_processor_type() which returns a code specifying which processor it is running 
on. The function __lookup_machine_type() is then used (unsurprisingly) to look up machine 
type. A basic set of page tables is then defined which map the kernel code. The cache and MMU 
are initialized and other control registers set. The data segment is copied to RAM and 
start_kernel() is called.

15.3.8 Kernel start-up code

In principle, the rest of the startup sequence is the same on any architecture, but in fact some 
functions are still hardware dependent.

IRQ interrupts are disabled with local_irq_disable(), while lock_kernel() is used to stop FIQ 
interrupts from interrupting the kernel. It initializes the tick control, memory system and 
architecture-specific subsystems and deals with the command line options passed by the 
bootloader. Stacks are setup and the Linux scheduler is initialized. The various memory areas 
are set-up and pages allocated. The interrupt and exception table and handlers are setup, along 
with the GIC. The system timer is setup and at this point IRQs are enabled. Further memory 
system initialization occurs and then a value called BogoMips is used to calibrate the processor 
clock speed. Internal components of the kernel are set up, including the filesystem and the 
initialization process, followed by the thread daemon which creates kernel threads. The kernel 
is unlocked (FIQ enabled) and the scheduler started. The function do_basic_setup() is called to 
initialize drivers, sysctl, work queues and network sockets. At this point, the switch to User 
mode is performed. 
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Figure 15-1 Linux virtual memory view

The memory map used by Linux is shown in Figure 15-1. ZI refers to zero-initialized data. 
There is a broad split between kernel memory, above address 0xBF000000 and user memory, 
below that address. Kernel memory uses global mappings, while user memory uses non-global 
mappings, although both code and data can be shared between processes. As already mentioned, 
application code starts at 0x1000, leaving the first 4KB page unused, to allow for trapping of 
NULL pointer references. 
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Chapter 16 
Porting

New projects will normally use an existing operating system and re-use code from existing 
applications. New code might be targeted at the ARMv7-A architecture, but might eventually need 
porting to a different board. In this chapter, we will mainly cover issues associated with porting 
code from a different architecture to run on an ARM processor, or from older versions of the ARM 
architecture to ARMv7-A. 

For many applications (particularly those coded with portability issues in mind), this will mean 
recompiling the source code. For example, a large amount of Linux application software is 
designed to run in many different environments and tends to make fewer assumptions about the 
underlying hardware. However, there are a number of areas where C code is not fully portable. We 
shall look at these further and see what problems this causes and how to resolve them. In particular, 
low level, hardware-specific code such as device drivers may require more effort than porting 
applications.

There is a further consideration when porting code between processors: that of efficiency. It may 
be the case that optimizations applied to code running on another processor, or to older versions of 
the ARM architecture, do not apply to that code when running on ARMv7-A. Equally, there may 
be scope for making code smaller or faster on ARMv7-A class processors. Optimizations may 
differ between processors or systems. Code which is optimal for one processor may not be optimal 
for others. We will consider the area of ARM-specific optimization in Chapter 19.
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16.1 Endianness
The use of the terms little-endian and big-endian was introduced by Danny Cohen in his 1980 
paper “On Holy Wars and a Plea for Peace”. Cohen has also been responsible for many advances 
in the fields of networks and computer graphics. It is a reference to Gulliver’s Travels, a famous 
satire from the early 18th century, by Irish writer Jonathan Swift, in which a war is fought 
between the fictional countries of Lilliput and Blefuscu over the correct end to open a boiled 
egg.

There are two basic ways of viewing bytes in memory – little-endian and big-endian. On 
big-endian machines, the most significant byte of an object in memory is stored at the least 
significant (closest to zero) address. On little-endian machines, the least significant byte is 
stored at the address closest to zero (lowest address).

The term byte-ordering can also be used rather than endian. Other kinds of endianness do exist, 
notably middle-endian and bit-endian, but we will not discuss these further.

Consider the following simple piece of code (Example 16-1):

Example 16-1 Endian access

int i = 0x44332211;
unsigned char c = *(unsigned char *)&i;

On a 32-bit big-endian machine, c is given the value of the most significant byte of i: 0x44. On 
little-endian machines, c is the least significant byte of i: 0x11. 

Figure 16-1 on page 16-3 illustrates the two differing views of memory. It should be stated at 
this point that many people find endianness confusing and that even the act of drawing a 
diagram to illustrate it can reveal a personal bias! The diagram shows a 32-bit value in a register 
being written to address 0x1000, using a STR instruction. The processor then performs a read of 
a byte, using a LDRB instruction. A different value will be returned by this instruction sequence 
depending upon whether we have a little- or big-endian memory system.
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Figure 16-1 Different endian behaviors

ARM processors support both modes, but are most commonly used in, and typically default to 
little-endian mode. Most Linux distributions for ARM tend to be little-endian only. The x86 
architecture is little-endian. The PowerPC or the venerable 68K, on the other hand, are generally 
big-endian (although the Power architecture can also handle little-endian). Several common file 
formats and networking protocols specify different endianness. For example, .BMP and .GIF 
files are little-endian, while .JPG is big-endian, and TCP/IP is big-endian, but USB and PCI are 
little-endian. 

So, there are two issues to consider – code portability and data sharing. Systems are built from 
multiple blocks and can include one or more processors, DSPs, peripherals, memory, network 
connections and so forth. Whenever data is shared between these elements, there is a potential 
endianness conflict. If code is being ported from a system with one endianness to a system with 
different endianness, it may be necessary to modify that code, either to make it endian-neutral 
or to work with the opposite byte-ordering.

Cortex-A series processors provide support for systems of either endian configuration, 
controlled by the CPSR E bit, which enables software to switch dynamically between viewing 
data as little or big-endian. Instructions in memory are always treated as little-endian. The REV 
instruction (see Byte reversal on page 6-23) can be used to reverse bytes within an ARM 
register, providing simple conversion between big and little-endian formats.

In principle, it is straightforward to support mixed endian systems (typically this means the 
system is natively of one endian configuration, but there are peripherals which are of the 
opposite endianness). The CPSR E bit can be modified dynamically by software, and there is a 
SETEND assembly instruction provided to do this. The CP15:SCTLR (System Control Register, 
c1), contains the EE bit (see Coprocessor 15 on page 6-19), which defines the endian mode to 
switch to upon an exception and also the endianness of translation table lookups. It would be 
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difficult if exception code had to worry about which endian state the processor was in upon 
arrival at the handler. In practice, however, it can be difficult to tell the compiler that part of the 
system is of a different endian configuration to the rest of memory.

Modern ARM processors support a big-endian format known architecturally as BE8. Older 
ARM processors used a different format known as BE-32, which applied to both instructions 
and data. BE8 corresponds to what most other computer architectures simply call big-endian.

Let’s look at a simple piece of code (Example 16-2) which will behave differently when run on 
architectures with different endianness. 

Example 16-2 Non-portable code

int i- 0x12345678; 
char *buf = (char*)&i; 
char i0, i1, i2, i3; 

i0 = buf[0]; 
i1 = buf[1]; 
i2 = buf[2]; 
i3 = buf[3]; 

The values of i0…i3 are not guaranteed to be the same if the system endianness changes. This 
kind of code is therefore inherently non-portable.

When inspecting code in which you suspect endianness problems, you should look for the 
following potential causes of problems:

Unions A union can hold objects of different types and sizes. The programmer must keep 
track of what the data member represents at any particular time. Code which uses 
unions should be carefully checked. If the union is used to access the same data, 
but with different data types, there exists a possible endianness, alignment, and 
packing problem. Any time that halfword, word (or longer) data types are 
combined or viewed as an array of bytes is a potential issue.

Casting of data types 
Anywhere that data is accessed in a way outside of its native data type is a 
potential problem. Similarly, if there are arrays of bytes, they should not be 
accessed other than as a byte data type. Casting of pointers changes how data is 
addressed and can be endian sensitive.

Bitfields To avoid endianness problems code that defines bitfields or performs bit 
operations should not be used in code that is intended to be portable.

Data sharing 
Any code which reads shared data from another block, or exports data to another 
block, should be checked to see whether the two blocks agree endian definitions. 
If the two are different, it may be necessary to implement byte swapping at one 
location.

Network code 
Code which accesses networking or other I/O devices needs to be reviewed to see 
if there is any endian dependency. Again, it may be necessary to re-write code for 
greater efficiency, or swap bytes at the interface.
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16.2 Alignment
The alignment of accesses is significant on ARM processors. On older ARM processors, 
accesses to addresses which are not aligned are possible, but with a different behavior to those 
using the ARMv7 architecture. On ARM7 and ARM9 processors, an unaligned LDR is performed 
in the memory system in the same way as an aligned access, but with the data returned being 
rotated so that the data at the requested address is placed in the least significant byte of the 
loaded register. Some older compilers and operating systems were able to use this behavior for 
clever optimizations. This can represent a portability problem when moving code from an 
ARMv4 or ARMv5 to ARMv7 architecture.

ARM MMUs can be configured to automatically detect such unaligned accesses and abort them 
(using the CP15:SCTL A bit), see Coprocessor 15 on page 6-19.

For the Cortex-A series of processors, unaligned accesses are supported (although one must 
enable this by setting the U bit in the CP15:SCTL register, indicating that unaligned accesses 
are permitted). This means that instructions to read or write words or halfwords can access 
addresses which are not aligned to word or halfword boundaries. However, load and store 
multiple instructions (LDM and STM) and load and store double-word (LDRD or STRD) must be 
aligned to at least a word boundary. Furthermore, loads and stores of floating-point values must 
always be aligned. Additional alignment constraints may be imposed by the ABI that are 
stronger than those imposed by the ARM architecture.

These unaligned accesses can take additional cycles in comparison with aligned accesses and 
therefore alignment is also a performance issue. In addition, such accesses are not guaranteed 
to be atomic. This means that a external agent (another processor in the system) might perform 
a memory access which appears to occur part way through the unaligned access. For example, 
it might read the accessed location and see the new value of some bytes and the old value of 
others.

Figure 16-2 Aligned words at address 0 or 8

A word aligned address is one which is a multiple of four, for example 0x100, 0x104, 0x108, 
0x10C, 0x110. Figure 16-2 shows examples of aligned accesses.

0123

4567

89AB

The word at address 0

The word at address 8

0x100

0x104

0x108
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Figure 16-3 An unaligned word

An unaligned word at address 1 is shown in Figure 16-3. It takes three bytes from the word at 0 
and one byte from the word at 4.

A simple example where alignment effects can have significant performance effects is the use 
of memcpy(). Copying small numbers of bytes between word aligned addresses will be compiled 
into LDM or STM instructions. Copying larger blocks of memory aligned to word boundaries will 
typically be done with an optimized library function which will also use LDM or STM. Copying 
blocks of memory whose start or end points do not fall on a word boundary can result in a call 
to a generic memcpy() function which can be significantly slower. Although, if the source and 
destination are similarly unaligned then only the start and end fragments are non-optimal. 
Whenever explicit typecasting is performed, that cast always carries alignment implications.

0123

4567

89AB

The word at address 1

The word at address 8
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16.3 Miscellaneous C porting issues
In this section we consider some other possible causes of problems when porting C code.

16.3.1 unsigned char and signed char

The piece of code in Example 16-3 illustrates a very simple example of a possible issue when 
porting code to ARM.

Example 16-3 Use of unsigned char

char c = -1;
if (c > 0)  printf("c is positive \n");
else    printf("c is negative \n”);

When this is compiled for some architectures (for example, for x86) the result is the one you 
might intuitively expect, which is that it reports the variable c as negative, but compiling the 
code on an ARM Compiler will produce code which reports c as positive (and typically a 
warning will be emitted by the compiler, too).

The ANSI C standard specifies a range for both signed (at least -127 to +127) and unsigned (at 
least 0 to 255) chars. Simple chars are not specifically defined and it is compiler dependent 
whether they are signed or unsigned. Although the ARM architecture now has the instruction 
LDRSB (which loads a signed byte into a 32-bit register with sign extension), the earliest 
versions of the processor did not. And so it made sense for the compiler to treat simple chars as 
unsigned, whereas on the x86 simple chars are, by default, treated as signed.

One workaround for users of GCC is to use the -fsigned-char command line switch (or 
--signed-chars for RVCT), which forces all chars to become signed, but a better practice is to 
write portable code by declaring char variables appropriately. Unsigned char should be used for 
accessing memory as a block of bytes or for small unsigned integers. Signed char should be used 
for small signed integers and simple char should be used only for ASCII characters and strings. 
In fact, on an ARM processor, it is usually better to use ints rather than chars, even for small 
values, for performance reasons. You can read more on this in Chapter 19 Optimizing Code to 
Run on ARM Processors. 

A second piece of code, in Example 16-4, illustrates another possible problem with chars. Here 
we compare EOF with an unsigned char. On the ARM, the while loop will never complete. The 
value of EOF is defined as -1 and when it is converted to be compared with a char (which is 
unsigned and therefore in the range 0 to 255), it can never be equal and so the loop does not 
terminate.

Example 16-4 Use of EOF

char c; 
while ((c = getchar()) != EOF) putchar(c);

Here, we should declare the variable as int instead of char to avoid the problem – in fact, this 
is how the functions in stdio.h are defined.

Similar cases to look out for include the use of getopt() and getc() – both are defined as 
returning an int.
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16.3.2 Compiler packing of structures

Compilers are not allowed to re-order members of a structure and have to follow the alignment 
restrictions of the processor architecture. This means that compilers may have to add unused 
bytes into user defined structures, for best performance and code size. Such padding is 
architecture specific and can therefore lead to portability problems if assumptions have been 
made about the location and size of this padding.

Marking a structure as __packed in the ARM Compiler or using the attribute __packed__ in GCC, 
will remove any padding. This reduces the size of the structure and can be useful when porting 
code or for structures being passed from external hardware, but can reduce performance and 
increase code size, although generally it will be relatively efficient on Cortex-A series 
processors.

If we have some simple struct code, as shown in Example 16-5:

Example 16-5 A typical C struct

struct test
{

unsigned char  c;
unsigned int i ; 
unsigned short s; 

}

Then the arrangement of data within the struct will be as in Figure 16-4.

Figure 16-4 Packed versus unpacked

If we now mark the structure as packed, as in Example 16-6:

Example 16-6 Packed structure

struct test
{

unsigned char  c;
unsigned int i ; 
unsigned short s; 

} __attribute__((__packed__));
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The layout is now that byte 0 holds c, bytes 1-4 hold i and bytes 5-6 will hold s. To access s or 
i will require the processor to perform an unaligned access, which is also shown in Figure 16-4 
on page 16-8.

16.3.3 Use of the stack

Code which makes assumptions about the stack structure can require porting effort. For 
example, functions with a variable number and type of arguments can receive their variables 
through the stack. The <stdarg.h> macros dealing with accessing these arguments will walk 
through the stack frame and provide compatibility between systems, but code which does not 
use standard libraries or macros can have a problem.

16.3.4 Other issues

A function prototype is a declaration that omits the function body but gives the function name, 
argument and return types. It effectively gives a way to specify the interface of a function 
separately from its definition. Incorrectly prototyped functions can behave differently between 
different compilers. 

Compilers can allocate different numbers of bytes to enum. Care is therefore required when 
enumerations are used; cross-linking of code and libraries between different compilers may not 
be possible if enums are used.

Code written for 8-bit or 16-bit microprocessors must assume that integer variables are 16-bit. 
On ARM processors, they will always be 32 bits. The program may rely on 16-bit behaviors. In 
general, this is easily fixed by the use of the C short type. Use of short ints can be less efficient, 
as we shall see in the chapter on optimization and in cases where the code does not rely on 16-bit 
behavior, it is usually better to promote these variables to a 32-bit int.
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16.4 Porting ARM assembly code to ARMv7
So far in this chapter, we have looked at porting C code from other architectures to ARM. It is 
sometimes necessary to port assembly code from older ARM processors to the Cortex-A series. 
Sometimes, it can be difficult to determine which ARM architecture variant your code was 
originally targeting. GCC has a series of macros, with names like __ARM_ARCH_6__ which are 
mutually exclusive. The ARM Compiler has a similar set of macros such as __TARGET_ARCH_7_A. 
In general, ARM assembler code is backward compatible and will work unmodified.

There are a few special cases to look for:

CP15 Operations 
The architecture specifies a consistent mapping of CP15 to designed system 
control operations. In general, one should attempt to understand the purpose of 
code which performs CP15 instructions and ensure that this code is appropriate 
for the ARMv7-A Architecture. In addition, a number of CP15 registers (for 
example CP15:ACTL, the Auxiliary Control Register) are implementation 
specific. Code which references such registers will always need attention when 
being ported.

SWP The SWP (or SWPB) instruction was used to implement atomic operations in older 
versions of the ARM architecture, but is deprecated and its use strongly 
discouraged in the ARMv7 Architecture. There is no encoding for SWP in Thumb 
at all, so SWP is not allowed when building for Thumb. In the ARMv7 
Architecture, SWP is disabled by default, but can be re-enabled by setting 
CP15:SYSCTL bit [10]. Code which uses SWP should be rewritten to make use of 
LDREX or STREX (and possibly also barrier instructions – see Chapter 11). 
Alternatively, the GCC __sync_... intrinsics could be used. It is usually preferable 
to use library functions for such things as spinlocks, semaphores, and mutexes, 
rather than writing such primitives yourself. The mechanisms used are different 
from those used by SWP, so it is necessary to port all code accessing an atomic 
object, not just some of it. Usually an atomic object will be managed by a piece 
of library code shared between the threads which access it, so this is not typically 
a problem. Cortex-A series processors treat SWP as Undefined out of reset.

16.4.1 Memory access ordering and memory barriers

The ARMv7 architecture has a weakly-ordered memory model. Code for older processors 
which makes implicit assumptions about ordering of memory accesses may not operate 
correctly on ARMv7 devices. This may be particularly true for code which interacts with other 
devices, such as a DMA controller or other bus master. Such code should be inspected and 
modified, possibly by the insertion of appropriate barrier instructions or by the use of suitable 
atomic primitives. See Chapter 11 for a more detailed description of memory ordering and 
memory barriers. 
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16.5 Porting ARM code to Thumb
We also consider problems associated with porting code written for the ARM instruction set to 
the Thumb instruction set. As we have seen, use of Thumb is often preferred due to its 
combination of small code size with higher performance relative to the older 16-bit only Thumb 
instruction set.

16.5.1 Use of PC as an operand

Instructions which use PC (R15) as an explicit operand can cause problems when assembling in 
Thumb. As we have seen, it is not possible to encode any arbitrary 32-bit address into any 
instruction as an operand. For this reason, it is common to address data stored in a literal pool 
using offsets relative to the current instruction location. In ARM code, the PC value can be used 
(with some adjustment) to determine the address of the currently executing instruction, for this 
purpose and this enables position-independent coding. However, the PC value obtained in this 
way can show some inconsistencies between ARM and Thumb states and can also depend upon 
the type of instruction executed. For this reason, ARM assembly code which directly references 
the PC register may need to be modified in order to work correctly in Thumb. 

It is better to avoid explicit PC arithmetic and instead to use an instruction like:

LDR     r0, =<value>

This automatically puts <value> somewhere in the text section and assembles an appropriate 
PC-relative LDR instruction. You can still do a load from a local text section label which you 
declare explicitly, as shown below, but again, the assembler or linker should be allowed to 
perform the PC offset calculation:

LDR     r0, data
...
data:   .long   <value>

Sometimes the required PC-relative address offset is too large to encode in a single LDR 
instruction, causing the assembler to complain that a literal pool is out of range. This can be 
resolved by explicitly placing a literal pool, using the .ltorg directive, which tells the assembler 
where to insert literal data. The programmer must ensure that the literal data is not located where 
it might be executed as code. This typically means the .ltorg directive is placed after an 
unconditional branch or function return instruction.

16.5.2 Branches and interworking

When using Thumb, the system will typically have both ARM and Thumb functions (even if we 
compile our application for Thumb, we may still need to think about such things as libraries and 
prebuilt binaries). The processor needs to know which instruction set is to be used for the code 
being executed after a branch, procedure call or return. This interworking between instruction 
sets was described in Interworking on page 5-11. When writing C code, the linker takes care of 
this for us, but a little more care is needed when porting assembly code.

The target instruction set state is determined in different ways depending on the type of branch. 
We can consider a number of different instructions:

Function return 
Code written for ARMv4 can use the MOV PC, LR instruction. This is unsafe for 
systems which contain a mix of ARM and Thumb code and should be replaced 
by BX LR for code running on all later architectures. 
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Function return from the stack 
This is done using the LDMFD SP!, {registers, pc} instruction, which will 
continue to work correctly in the ARMv7-A architecture (although a newer, 
equivalent form, POP {<registers>, pc} is also available). This is used when the 
LR and other registers which need to be preserved by the function are PUSHed at 
the start of the function.

Branch A simple B instruction will work in the same fashion on all ARM architectures. If 
ARM and Thumb instructions are mixed in a single source file (this is unusual), 
there is no automatic instruction set switch for local symbols. The assembler may 
or may not introduce a veneer depending on whether it knows that the destination 
is in a different instruction set and is definitely a code symbol (such as a .type 
<symbol>, %function or .thumb_func). Note that just because a symbol appears in 
a code section it is not assumed to be a code symbol unless specifically tagged in 
this way. If the label is in a different file, the linker will take care of any necessary 
instruction set change. Similar considerations apply for a function call (BL).

Note
 Veneers are small pieces of code which are automatically inserted by the linker 

when it detects that a branch target is out of range or is a conditional branch to 
code in the other state, for example, from Thumb to ARM or vice-versa. The 
veneer becomes an intermediate target of the original branch with the veneer itself 
then being a branch to the target address. Often these veneers can be inlined. The 
linker can reuse a veneer generated for a previous call, for other calls to the same 
function if it is in range from both calls. Occasionally, such veneers can be a 
performance factor. If you have a loop which calls multiple functions through 
veneers, you will get many pipeline flushes and therefore sub-optimal 
performance. Placing related code together in memory can avoid this. The ARM 
linker can be made to export information on this by specifying the –-info veneers 
option.

PC modification 
Care may be needed with other instructions which modify the PC and produce a 
branch effect. For example, MOV PC, register must be replaced with BX register in 
systems which contain both ARM and Thumb code. 

Function call to register address 
If code contains a sequence like MOV LR, PC followed by MOV PC, register, this 
will not work in a system which has both ARM and Thumb code. It should be 
replaced with the single instruction BLX <register>.

When a destination or return address is variable or calculated at run-time, care is needed to 
appropriately set the Thumb bit (bit [0]) in the address correctly and to do the correct type of 
branch, to make sure that the call (and return, if applicable) switches instruction set 
appropriately. 

If an external label or function defined in another object is referenced, the linker will produce 
an address with the Thumb bit (bit [0]) set appropriately. However, if you reference a symbol 
internal to the object, things are more complicated. For C functions, or code tagged as Thumb, 
bit [0] will be set appropriately, but it will not be set appropriately for other symbols. In 
particular, GNU Assembler local labels will not have the Thumb bit set appropriately, nor will 
the GNU current assembly location symbol “.”.

Therefore, when coding in assembler, if an address will be passed to any other function or 
object, for example, as a return address, method address or callback, you must handle the Thumb 
bit setting yourself, setting bit [0] of the address where required. 
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16.5.3 Operand combinations

Thumb and ARM Assembly code have different restrictions on instruction operands. You may 
therefore find that existing ARM code can produce assembler errors when targeted for Thumb.

Branch out of range errors occur when the distance between the current instruction and the 
branch target is too large to be encoded in a Thumb instruction. To resolve this, it may be 
necessary to use a different type of branch, move code sections or to use two separate branches, 
a so-called trampoline. 

Similarly, index out of range errors may be produced on load and store operations, and to resolve 
these it may be necessary to manually add part (or all) of the required index offset to the base 
register in a separate explicit instruction.

Generally, use of SP should be limited to stack operations – other usage may not be permitted 
in Thumb code. This means that PUSH, POP, LDMFD SP!, STMFD SP!, ADD, SUB or MOV instructions which 
use the SP are allowed, but other operations should be treated as possible problems. Similarly, 
operations which directly operate on the PC should be checked (other than the usual function or 
exception return operations, or literal pool loads).

16.5.4 Other ARM/Thumb differences

There are a number of other differences which can need attention by the assembly language 
programmer.

• The RSC instruction is not available in Thumb. Therefore, code which uses RSC needs to be 
re-coded using RSB or SBC, or be built in ARM state.

• Most ARM instructions can optionally be made conditional. This is not the case in 
Thumb, other than for branches. Instead, small instruction sequences can be executed 
conditionally by preceding them with the IT instruction. For compatibility with both ARM 
and Thumb, the IT block construct is always understood when using unified assembler 
syntax. Manually modifying code to use IT instructions can be tedious. Fortunately, the 
assembler command-line option -mimplicit-it=<when>, where <when> can be one of never, 
arm, thumb or always. In this case we don’t need to add IT instructions, the assembler will 
work out the right thing to do for the given target. When assembling for Thumb, however, 
it is sensible to use -mimplicit-it=thumb.
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Application Binary Interfaces

The C compiler is able to generate code from many separately compiled modules. For programs to 
execute successfully these modules must be able to work together with each other, with the 
operating system code and any code which is written in assembler or any other compiled language. 
For that reason, we must define a set of conventions to govern inter-operability between separate 
pieces of code. 

The Application Binary Interface (ABI) for the ARM architecture specification describes a set of 
rules that an ARM executable must adhere to in order to execute in a specific environment. It 
specifies conventions for executables, including file formats and ensures that objects from different 
compilers or assemblers can be linked together successfully. There are variants of the ABI for 
specific purposes, for example, we may consider the Linux ABI for the ARM architecture or the 
Embedded ABI (EABI).

The ARM Architecture Procedure Call Standard (AAPCS) is part of the ABI and specifies 
conventions for register and stack usage by the compiler and during subroutine calls. Knowledge 
of this is vital for inter-working C and assembly code and can be useful for writing optimal code. 
The AAPCS supersedes the previous ARM-Thumb Procedure Call Standard (ATPCS).

The AAPCS mandates specific things that must be done by a caller to allow a callee function to run 
and what the called routine must do to preserve the program state of the caller through a function. 
It describes the way that data is laid out in memory and how the stack is laid out, plus permitted 
variations for processor extensions. It defines how code which has been separately compiled or 
assembled works together. 
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17.1 Procedure Call Standard
As we have seen, there are 16 integer registers available in the processor, each of size 32-bits. 
These are labeled R0-R15. Table 17-1 shows the role assigned to registers within the procedure 
call standard.

For the purposes of function calls, the registers are divided into three groups:

• Argument registers R0-R3 (a1-a4). These can be used as scratch registers or as 
caller-saved register variables which can hold intermediate values within a routine, 
between calls to other functions.

• Callee-saved registers, normally used as register variables. Typically, the registers R4-R8, 
R10 and R11 (v1-v5, v7 and v8) are used for this purpose. 

• Registers which have a dedicated role.
The function of the program counter, link register and stack pointer should by now be 
clear. If not, you should refer to Registers on page 4-4. 
The IP (R12) register can be used by the linker, as a scratch register between a routine and 
any subroutine it calls, or as an additional local variable within a function. As the BL 
instructions cannot address the full 32-bit address space, the linker may need to insert a 
veneer between the caller and callee. Veneers can also be used for ARM-Thumb 
inter-working or dynamic linking. Veneers are permitted to modify the contents of IP 
(R12). 

Table 17-1 APCS registers

Register PCS name PCS role

R0 a1 argument 1/scratch register/result

R1 a2 argument 2/scratch register/result

R2 a3 argument 3/scratch register/result

R3 a4 argument 4/scratch register/result

R4 v1 register variable

R5 v2 register variable

R6 v3 register variable

R7 v4 register variable

R8 v5 register variable

R9 tr/sb/v6 static base/ register variable

R10 s1/v7 stack limit/stack chunk handle/register variable

R11 FP/v8 frame pointer/register variable

R12 IP scratch register/new -sb in inter-link-unit calls

R13 SP Lower end of the current stack frame

R14 LR link register/scratch register

R15 PC program counter
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Register R9 has a role which is specific to a particular environment. It can be used as the 
static base register (SB) to point to position-independent data, or as the thread register 
(TR) where thread-local storage is used. In code that has no need for such a special 
register, it can be used as an extra callee-saved variable register, v6.

The first four word-sized parameters passed to a function will be transferred in registers R0-R3. 
Sub-word sized arguments (for example, char) will still use a whole register. Arguments larger 
than a word will be passed in multiple registers. If more arguments are passed, the fifth and 
subsequent words will be passed on the stack. Passing arguments on the stack always requires 
additional instructions and memory accesses and therefore reduces performance. For optimal 
code, therefore, the programmer should always try to limit arguments to four words or fewer. If 
this is not possible, the most commonly used parameters should be defined in the first four 
positions of the function definition. If the arguments are part of a structure then it is more 
optimal to pass a pointer to the structure instead. C++ uses the first argument to pass the this 
pointer to member functions, so only three arguments can be passed in registers. 

There are additional rules about 64-bit types. 64-bit types must always be 8-byte aligned in 
memory (recall that in Alignment on page 16-5 we described how there are limitations on use of 
LDRD and STRD double-word instructions to unaligned addresses). In addition, 64-bit arguments 
to functions must be passed in an even + consecutive odd register pair (for example, R0 + R1 or 
R2 + R3). 

If 64-bit arguments are passed on the stack, they must be at an 8-byte aligned location. Again, 
this is because of restrictions on LDRD and STRD instructions. If such 64-bit arguments are listed 
in a sub-optimal fashion, there can be wasted space in registers or on the stack. When 
considering such issues, it is important to take into account the this pointer in R0 present in all 
non-static C++ member functions.

Figure 17-1 Efficient parameter passing

Figure 17-1 shows some examples of how sub-optimal listing of arguments can cause 
unnecessary spilling of variables to the stack. The figure shows how two different function calls, 
which pass identical parameters, make use of the registers and stack. 

The first function passes an int, a double and a further int. The first parameter is passed in R0. 
The second argument is 64-bits and must be passed in an even and consecutive odd register (or 
in an 8-byte aligned location on the stack). It is therefore passed in R2 and R3. This means that 
the final argument is passed on the stack. 

R0 R1 R2 R3

Stack

Foo1 (int i0, double d, int i1)

i0 d d

Stack

Foo2 (int i0, int i1, double d)

i0 d d

Stack

i1

Unused i1 Unused
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As the stack pointer needs to be 8-byte aligned (a constraint imposed by the ABI to simplify the 
interface at function boundaries), there will be an additional unused word pushed and popped. 
In the second function call, we can pass the two int values in registers R0 and R1 and the 
double value in R2 and R3. This means that no values are spilled to the stack, which gives more 
efficient code, requiring both fewer instructions and fewer memory accesses.

The registers R4-R11 (v1-v8) are used to hold the values of the local variables of a subroutine. 
A subroutine is required to preserve (on the stack), the contents of the registers R4-R8, R10, R11 
and SP (and R9 in PCS variants that designate R9 as v6), if they are used by that subroutine. 

A caller function will have code like this:

@ may need to preserve r0-r3
@ does not need to preserve r4-r11
BL Func

while the callee function will have code like this:

Func:

@ Must preserve r4-r11, lr (if used)
@ May corrupt r0-r3, r12
PUSH {r4-r11, lr}
...
...
...
POP {r4-r11, pc}

@ Returns value in r0 - char, short or int
@ Returns value in r0 & r1 - double

The PUSH/POP instructions must maintain 8-byte stack alignment, and hence use an even number 
of registers. Leaf functions do not have to do so. The example callee code as shown pushes or 
pops R4-R11 and LR and PC, which would not preserve an 8-byte aligned stack. It is shown like 
this to indicate which registers need to be saved. In practice, the compiler will normally push an 
extra register, depending on whether the function is leaf and which registers are modified by the 
function. Actual instructions will usually be one of PUSH/POP {r4, lr/pc}, PUSH/POP {r4-r8, lr/pc}, 
PUSH/POP {r4-r10, lr/pc} or PUSH/POP {r4-r12, lr/pc}. In each case, we would PUSH lr and POP pc.

17.1.1 VFP and NEON register usage

Readers unfamiliar with ARM floating-point may wish to refer to Chapter 7 Floating-Point 
before reading this section.

VFPv3 has 32 single-precision registers s0-s31, which can also be accessed in pairs as 
double-precision registers d0-d15. There are a further 16 double-precision registers, d16-d31. 
NEON can also view these as quadword registers q0-q15. Registers s16-s31 (d8-d15, q4-q7) 
must be preserved across subroutine calls; registers s0-s15 (d0-d7, q0-q3) do not need to be 
preserved (and can be used for passing arguments or returning results in standard procedure-call 
variants). Registers d16-d31 (q8-q15), do not need to be preserved.

The Procedure Call Standard specifies two ways in which floating-point parameters can be 
passed. For software floating-point, they will be passed using ARM registers R0-R3 and on the 
stack, if required. An alternative, where floating-point hardware exists in the processor, is to 
pass parameters in the VFP or NEON registers.
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This hardware floating-point variant behaves in the following way:

• Integer arguments are treated in exactly the same way as in softfp. So, if we consider the 
function f below, we see that the 32-bit value a will be passed to the function in R0, and 
because the value b must be passed in an even or odd register pair, it will go into R2 or 
R3, leaving R1 unused.
void f(uint32_t a, uint64_t b)

r0: a
r1: unused
r2: b[31:0]
r3: b[63:32]

• FP arguments fill d0-d7 (or s0-s15), independently of any integer arguments. This means 
that integer arguments can flow onto the stack and FP arguments will still be slotted into 
FP registers (if there are enough available).

• FP arguments are able to back-fill, so it's less common to get the unused slots that we see 
in integer arguments. Consider the following examples:
void f(float a, double b)

d0:
s0: a
s1: unused

d1: b 

Here, b is aligned automatically by being assigned to d1 (which occupies the same 
physical registers as VFP s2 or VFP s3).

void f( float a, double b, float c)
d0:
s0: a
s1: c 

d1: b 

In this example, the compiler is able to place c into s1; it does not need to be placed into s4.
In practice, this is implemented (and described) by using separate counters for s, d and q 
arguments, and the counters always point at the next available slot for that size. In the 
second FP example above, a is allocated first because it's first in the list, and it goes into 
first available s register, which is s0. Next, b is allocated into the first available d register, 
which is d1 because a is using part of d0. When c is allocated, the first available s register 
is s1. A subsequent double or single argument would go in d2 or s4, respectively.

• There is a further case when filling FP registers for arguments. When an argument must 
be spilled to the stack, no back-filling can occur, and stack slots are allocated in exactly 
the same way for further parameters as they are for integer arguments.

void f( double a, double b, double c, double d,
double e, double f, float g, double h,
double i, float j)

d0: a
d1: b
d2: c
d3: d
d4: e
d5: f
d6:
s12: g
s13: unused

d7: h
*sp:    i
*sp+8:  j
*sp+12: unused (4 bytes of padding for 8-byte sp alignment)

Arguments a-f are allocated to d0-d5 as expected.
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The single-precision g is allocated to s12, and h goes to d7.
The next argument, i, can't fit in registers, so it is stored on the stack. It would be 
interleaved with stacked integer arguments if there were any. However, while s13 is still 
unused, j must go on the stack because we cannot back-fill to registers when FP 
arguments have hit the stack.

• Double-precision and quad-precision registers can also be used to hold vector data. This 
would not occur in typical C code.

• No VFP registers are used for variadic procedures, that is, a procedure which does not 
have a fixed number of arguments. They are instead treated as in softfp, in that they are 
passed in integer registers (or the stack). Note that single-precision variadic arguments are 
converted to doubles, as in softfp.

17.1.2 Linkage

If the platform has hardware support for NEON technology or an FPU, the highest performance 
is achieved by passing NEON and FPU parameters and return values in NEON and FPU 
registers. This is called hardware floating-point linkage. In some situations, using the 
general-purpose registers for parameter passing might be preferred, to simplify software 
compatibility between platforms with and without hardware floating-point support. This is 
called software floating-point linkage.

You cannot mix objects with different floating-point linkage in a single image. Any dynamic 
libraries loaded while the application is running must also use the same linkage.

Any system that supports both NEON and VFP instructions uses a common register bank for 
these instructions, therefore configuration options that affect the floating-point calling 
convention also affect how NEON parameters are passed and returned.

17.1.3 Stack and heap

The stack implementation is full-descending, with the current top of the stack pointed to by R13 
(SP). The stack must be contiguous in the virtual memory space. Detection of a stack overflow 
is usually handled with memory management. The stack must always be aligned to a word 
boundary, except at an external interface, when it must be double-word aligned. 

The heap is an area (or areas) of memory that are managed by the process itself (for example, 
with the C malloc() function). It is typically used for the creation of dynamic data objects. 

17.1.4 Returning results

A function which returns a char, short, int or single-precision float value will do so using R0. 
A function which returns a 64-bit value (a double-precision float or long long) does so in R0 
and R1. As mentioned in VFP and NEON register usage on page 17-4, floating-point and 
NEON return values will be in s0, d0, or q0 when using hardware linkage. If the software uses 
hardware linkage it will return floating-point values in s0, d0, or q0. If the software uses software 
linkage, it will return single-precision float in r0. 
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17.2 Mixing C and assembly code
One example of why it can be useful to understand the AAPCS is to write assembly code which 
is compatible with C code. One way to do this is write separate modules and assemble them with 
GNU Assembler. They can be defined as extern functions in C and called; provided the AAPCS 
rules are followed, there should be no problem.

We can also insert assembly code into our C code. Let’s look at some inline or embedded 
assembly, through the GCC asm statement. This is very simple to use. For example, we can 
implement a NOP as shown in Example 17-1.

Example 17-1 NOP

asm("nop");

The time taken to carry out a NOP is undefined.

In fact, it is likely that this NOP will have no effect, because the C compiler will optimize it away, 
or the processor will discard the instruction. When you include assembly language code with 
inline assembler, the resulting code is still subject to optimization by the C compiler. This is a 
very important point which must be taken into account whenever inline assembly is used. Even 
if the compiler does not optimize-away the NOP instruction, the processor itself may filter out 
the NOP from the instruction stream so that it never reaches the execute stage.

Inline assembly code has a different syntax to regular assembly code. Registers and constants 
have to be specified differently, if they refer to C expressions. 

Let’s look at a slightly more complicated example. We take the value of an int and use the USAD8 
assembly instruction to calculate the sum of difference of bytes and then store the result in a 
different int. Example 17-2 shows the relevant code.

Example 17-2 Using the USAD8 instruction

asm volatile (“usad8 %0, %1, %2” : “=r” (result): “r”(value1), “r”(value2));

The general format of such inline assembly code is:

asm volatile (assembler instructions : output operands (optional) : input operands 
(optional) : clobbered registers (optional) );

The colons divide the statement up into parts. The first part “usad8 %0, %1, %2” is the actual 
assembly instruction. The second part is an (optional) list of output values from the sequence. 
If more than one output is needed, commas are used to separate the entries. We may then 
optionally have a list of input values for the sequence, with the same format as the output. If you 
don’t specify an output operand for an assembly sequence, it is quite likely that the C compiler 
optimizer will decide that it is not serving any useful purpose and optimize it away! A way to 
avoid this is to use the volatile attribute, which tells GCC not to optimize the sequence.

In the actual assembly language statement, operands are referenced by a percent sign followed 
by the symbolic name in square brackets. The symbolic name references the item with the same 
name in either the input or output operand list. This name is completely distinct from any other 
symbol within your C code (although clearly it is less confusing to use symbols which do have 
a meaning within your code). Alternatively, the name can be omitted and the operand can be 
specified using a percent sign followed by a digit indicating the position of the operand in the 
list (that is, %0, %1 … %9), as shown in the example.
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There is an optional fourth part to an asm statement, called the clobber list. This enables us to 
specify to the compiler what will be changed by the assembly code. We can specify registers 
(for example, R0), the condition code flags (cc) or memory.

This makes the compiler store affected values before and reload them after executing the 
instruction.

The constraints mentioned when we talked about input and output operand lists relate to the fact 
that assembly language instructions have specific operand type requirements. When passing 
parameters to inline assembly statements, the compiler must know how they should be 
represented. For example, the constraint “r“ specifies one of the registers R0-R15 in ARM state, 
while “m” is a memory address and “w” is a single precision floating-point register. These 
characters have an = placed before them to indicate a write-only output operand, a “+” for a 
read/write output operand (that is, one that is both input and output to the instruction). The “&” 
modifier instructs the compiler not to select any register for the output value, which is used for 
any of the input operands. 

You can force the inline assembler to use a particular register to hold a local variable by using 
something like the code shown in Example 17-3.

Example 17-3 Inline assembler local variable usage

void func (void) {
register unsigned int regzero asm(“r0”);

and later

asm volatile("rev r0, r0");

This usage can interfere with the compiler optimization and does not guarantee that the register 
will not be re-used, for example when the local variable is no longer referenced. Hard coding 
register usage is always bad practice. It is almost always better to use local variables instead.

Example 17-4 gives a longer example of inline assembler, taken from the Linux kernel. It shows 
how a series of inline assembly language instructions can be used. The code manipulates the 
CPSR, to change modes. This would not be possible using C code.

Example 17-4 Inline assembler

void __naked get_fiq_regs(struct pt_regs *regs)
{
register unsigned long tmp;
asm volatile (
"mov ip, sp\n\
stmfd sp!, {fp, ip, lr, pc}\n\
sub fp, ip, #4\n\
mrs %0, cpsr\n\
msr cpsr_c, %2 @ select FIQ mode\n\
mov r0, r0\n\
stmia %1, {r8 - r14}\n\
msr cpsr_c, %0 @ return to SVC mode\n\
mov r0, r0\n\
ldmfd sp, {fp, sp, pc}"
: "=&r" (tmp)
: "r" (&regs->ARM_r8), "I" (PSR_I_BIT | PSR_F_BIT | FIQ_MODE));

}
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The ARM compiler tools have a similar concept, albeit with different syntax. In addition to 
inline assembly, they also support embedded assembly which is assembled separately from the 
C code and produces a compiled object which is combined with the object from the C 
compilation.

A global index gives unique data for each thread within a process. A thread allocates the index 
when the process starts. The other threads use this to retrieve the unique data associated with the 
index. When a thread starts, it allocates a block of dynamic memory and stores a Thread Local 
Storage (TLS) pointer to this memory. This can either be located in memory, or in ARM 
MPCore systems, a dedicated CP15 register.
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Chapter 18 
Profiling

Donald Knuth once famously observed that “Premature optimization is the root of all evil”. 
However, Knuth's comment does not argue against appropriate optimization. 

Code optimization is an important part of the work of software engineers– modifying software so 
that it runs more quickly, uses less power and makes less use of memory or other resources. To do 
this, we must first identify which part (or parts) of the code should be optimized. It is worth noting, 
however, that programmer’s best guesses about where the time is spent are notoriously innacurate 
- hence the importance of profiling.

Profiling is a technique that lets us identify functions (or other pieces of code) which consume large 
proportions of the total execution time. It is usually more productive to focus optimization efforts 
on code segments which are executed very frequently, or which take a long time to execute than to 
optimize rarely used functions or code which takes little time to execute. A profiler will tell us 
which parts of the code are frequently executed and which occupy the most processor cycles. A 
profiler can help us identify bottlenecks, situations where the performance of the system is 
constrained by a small number of functions (or just one). This data is collected using 
instrumentation, an execution trace or sampling, and can often be a good method for finding hidden 
bugs too. 

When you have identified some slow part of your code it's important to consider first whether you 
can change the algorithm, before trying to improve the existing code. For example, if the time is 
being spent searching a linked list, it's probably much more beneficial to change to using a tree or 
hash table instead of spending effort to speed up the linked list search.
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Profiling can be considered as a form of dynamic code analysis. Profiling tools can gather 
information in a number of different ways. We can distinguish two basic approaches to 
gathering information.

Time based sampling 
Here, the state of the system is sampled at a periodic, time-based interval. The 
size of this interval can affect the results – a smaller sampling interval can 
increase execution time but produce more detailed data.

Event based sampling 
Here, sampling is driven by occurrences of an event, which means that the time 
between sampling intervals is usually variable. Events can often be hardware 
related – for example, cache misses.

It is also important to understand that profilers typically operate on a statistical basis – they may 
not necessarily produce absolute counts of events. In complex systems, it may be necessary to 
control profiling information by use of annotation options to specify which events are to be 
recorded, which events shown, or thresholds to avoid displaying large numbers of functions 
with low count numbers. 
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18.1 Profiler output
Profiler tools normally provide two kinds of information:

Call graph The call graph tells us the number of times each function was called. This can help 
point out which function calls can be eliminated or replaced and shows 
inter-relations between different functions. Viewing a call graph can suggest code 
to optimize and reveal hidden bugs (for example, if code is unexpectedly calling 
an error function many times). Collecting call graph information can require 
building the code with special options. 

Flat profile A flat profile, as in Example 18-1 shows how much processor time each function 
uses and the number of times it was called. This enables a simple identification 
of which functions consume large fractions of run-time and should therefore be 
considered first for possible optimizations.

Example 18-1 Example flat profile

Flat profile:

Each sample counts as 0.01 seconds.
 %   cumulative   self              self     total 
 time   seconds   seconds    calls  ms/call  ms/call  name 
 33.34     0.02     0.02     6275     0.00     0.00  start
 16.67     0.03     0.01      192     0.07     0.21  func1
 16.67     0.04     0.01       15     1.20     1.20  memcpy
 16.67     0.05     0.01        7     1.41     1.41  write

It may be useful at this point to consider some example profiling tools which can be used in 
Cortex-A series processors.

18.1.1 Gprof

GProf is a GNU tool which provides an easy way to profile your C/C++ application and find the 
locations that need work. 

Using GCC, you can generate profile information by compiling with a special flags. The source 
code has to be compiled with the -pg option. For line-by-line profiling, the –g option would also 
be needed. You then execute the compiled program and the profiling data is collected. You then 
run gprof on the resulting statistics file to view the data, in a variety of convenient formats.

When you compile with -pg the compiler adds profiling instrumentation that collects data at 
function entry and exits at runtime. It therefore profiles only the user application code and not 
anything that happens in code that has not been built for profiling (for example, libc) or the 
kernel. Gprof can give misleading results if the performance limitations of the code come from 
kernel or I/O issues (memory fragmentation or file accesses for example).

It may be necessary to remove GCC optimization flags, as some compiler optimizations can 
cause problems while profiling. It is also the case that the use of the profiling flags will actually 
slow the program down. This can be an important consideration in some types of real-time 
system, where it may be that the interaction of real-time events has a significant effect on the 
performance of the profiled code. A binary file called gmon.out containing profiling information 
is generated. This file can then be operated on by the gprof tool.
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18.1.2 OProfile

OProfile is a whole system profiling tool which runs on Linux and includes the kernel in its 
metrics. Unlike gprof, it works using a statistical sampling method. OProfile can examine the 
system at regular intervals, determine what code is running, and update appropriate counters. If 
a long enough profile is taken, with a sufficient sample rate, an accurate picture of the execution 
is obtained. Like other profilers which make use of interrupts, code which disables interrupts 
can cause inaccuracies. For this reason, the Linux function spinlock_irq_restore(), which 
re-enables interrupts after a spinlock has been relinquished can erroneously appear to be a major 
system bottleneck, as the time for which interrupts were disabled can be counted against it. 
OProfile can also be made to trigger on hardware events and will record all system activity 
including kernel and library code execution.

OProfile does not need code to be recompiled with any special flags (provided symbol 
information is available). It provides useful hardware information about such things as clock 
cycles and cache misses. Call graphs are statistically generated, so may not be completely 
accurate.

18.1.3 DS-5 Streamline

DS-5 Streamline is a graphical performance analysis tool, which can be used to analyze the 
performance of an Linux or Android system. It is a component of ARM DS-5 and combines a 
kernel driver, target daemon and Eclipse-based user interface. (For more information about 
DS-5, see ARM DS-5 on page 3-11.)

DS-5 Streamline takes sampling data and system trace information and produces reports that 
present the data visually and in a statistical form. It uses hardware performance counters and 
kernel metrics to provide an accurate representation of system resources. DS-5 Streamline 
allows the application source code to be annotated to augment its graphical display with 
additional textual or visual information, such as labelled timing markers or screen shots from 
the target.

For example, DS-5 Streamline has a display mode called X-ray mode. In this mode the process 
trace view changes from an intensity map of time to a view that highlights processor affinity. 
Figure 18-1 on page 18-5 shows the DS-5 Streamline view of a multi-threaded Linux 
application running on a multi-core processor. Threads are being assigned to the processors by 
the Linux kernel:
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Figure 18-1 X-ray mode in ARM DS-5 Streamline

18.1.4 ARM performance monitor

The performance monitor hardware is able to count several events, using multiple counters. 
Normally, we combine together multiple values to generate useful parameters to optimize. For 
example, we can choose to count the total number of clock cycles and the number of instructions 
executed and use this to derive a cycles per instruction figure which is a useful proxy for the 
efficiency with which the processor is operating. We can generate information about cache hit 
or miss rates (separately for both L1 data and instruction caches) and examine how code changes 
can affect these.

Cortex-A series processors contain event counting hardware which can be used to profile and 
benchmark code, including generation of cycle and instruction count figures and to derive 
figures for cache misses and so forth. The performance counter block contains a cycle counter 
which can count processor cycles, or be configured to count every 64 cycles. There are also a 
number of configurable 32-bit wide event counters which can be set to count instances of events 
from a wide-ranging list (for example, instructions executed, or MMU TLB misses). These 
counters can be accessed through debug tools, or by software running on the processor, through 
the CP15 Performance Monitoring Unit (PMU) registers. They provide a non-invasive debug 
feature and do not change the behavior of the processor. CP15 also provides a number of 
controls for enabling and resetting the counters and to indicate overflows (there is an option to 
generate an interrupt on a counter overflow). The cycle counter can be enabled independently 
of the event counters.

It is important to understand that information generated by such counters may not be exact. In 
a superscalar, out-of-order processor, for example, it can be difficult to guarantee that the 
number of instructions executed is precise at the time any other counter is updated.
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Profiling 
The standard countable events, common to all ARMv7-A processors are listed in Table 18-1. 
The TRM for the specific processor being used provides further information on the lists of 
events which can be monitored, which can include a large number of additional possibilities in 
addition to those listed here.

Table 18-1 Performance monitor events

Number Event counted

0x00 Software increment of the Software Increment Register

0x01 Instruction fetch that causes a Level 1 instruction cache refill

0x02 Instruction fetch that causes a Level 1 instruction TLB refill

0x03 Memory Read or Write operation that causes a Level 1 instruction TLB refill

0x04 Memory Read or Write operation that causes a Level 1 data cache access

0x05 Memory Read or Write operation that causes a Level 1 data TLB refill

0x06 Memory-reading instruction executed

0x07 Memory-writing instruction executed

0x09 Exception taken

0x0A Exception return executed

0x0B Instruction that writes to the Context ID register

0x0C Software change of program counter

0x0D Immediate branch instruction executed

0x0F Unaligned load or store

0x10 Branch mispredicted or not predicted

0x11 Cycle count; the register is incremented on every cycle

0x12 Predictable branch speculatively executed

0x13 Data memory access

0x14 Level 1 instruction cache access

0x15 Level 1 data cache write-back

0x16 Level 1 data cache write-back

0x17 Level 2 data cache refill

0x18 Level 2 data cache write-back

0x19 Bus access

0x1A Local memory error

0x1B Instruction speculatively executed

0x1C Instruction write to TTBR

0x1D Bus cycle

0x1E-0x3F Reserved
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MPCore processors include a significant number of additional events relating to SMP 
capabilities, described in Chapter 22 SMP Architectural Considerations. These include 
numbers of barrier instructions executed, measures of coherent cache activity and counts of 
exclusive access failures.

In Linux, these counters are normally accessed through the kernel via the Linux OProfile tool 
or the Linux perf events framework. However, User mode access to these counters can be 
enabled for direct access if required. 

18.1.5 Linux perf events

Linux contains patches (as of Linux-2.6.34) to support the Ingo Molnar Perf Events framework. 
It handles multiple events, including processor cycles and cache-misses but also measures 
kernel events like context switches. It provides simple, platform independent access to the ARM 
performance counter registers and also to software events. Through this framework, tools can 
produce graphs and statistics about such things as function calls. You can also record execution 
traces, profile on a per-processor, per-application and per-thread basis and generate summaries 
of events.

18.1.6 Ftrace

Ftrace is an increasingly widely used trace tool on Linux. It provides visualization of the flow 
within the kernel by tracing each function call. It enables interactions between parts of the kernel 
to be viewed and enables to developers to investigate potential problem paths where interrupts 
or pre-emption are disabled for long periods.

18.1.7 Valgrind and Cachegrind 

Valgrind is a widely used tool, commonly used for detection of memory leaks and other memory 
handling problems; however, it can also be used for profiling memory usage and is potentially 
able to give much more detailed results than OProfile. Valgrind translates a program into a 
processor-neutral intermediate representation. Other tools associated with Valgrind are able to 
operate on this and then Valgrind translates the code back into native machine code. This 
process makes the code run an order of magnitude slower, but enables checks for accesses to 
undefined memory, off-by-one errors and so forth to be performed by tools like Memcheck.

For memory access optimization, the Cachegrind tool can be used. As Valgrind simulates the 
execution of the program, we can use Cachegrind to record all uses of program memory. By 
simulating the operation of the processor caches, we can generate statistics about cache usage. 
Some care is needed – this is a simulation of the cache and it is possible that it does not represent 
the real cache hardware completely accurately. Nevertheless, it can be a very useful tool to 
examine cache and memory usage by an application. When writing high level applications, it 
can be difficult for the programmer to have much appreciation for (or control over) addresses 
used by a program. The linker will typically generate many of the virtual addresses used within 
an image, while the runtime loader will control positioning of libraries and so forth. Finally, the 
kernel is responsible for placement of code and data in physical memory. Memory profiling 
tools can therefore be a useful aid. 
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Chapter 19 
Optimizing Code to Run on ARM Processors

In Chapter 18, we looked at how to identify which parts of the program are suitable for 
optimization. In this chapter we will look at some possible software optimizations. Much of what 
is presented will apply equally to any system, but some of the suggested optimizations are specific 
to ARM systems, or indeed to particular ARM processors.

Optimization does not necessarily mean optimizing to make programs faster. In embedded systems, 
we may prefer to optimize for battery life, code density or memory footprint, for example. Writing 
code which is more efficient delivers not only higher levels of performance, but can also be crucial 
in conserving battery life. If we can get a job done faster, in fewer cycles, we can turn off the power 
for longer periods.

Many compilers provide options to help with this. For example, both the ARM Compiler and the 
GNU GCC compiler have -O flags to specify the level of optimization. We will spend some time 
looking at the effects of these and how to trade off optimizations of code density, speed and debug 
visibility. 

We will continue by looking at ways in which you can modify your program in order to generate 
more optimized code. In a book of this size, we cannot cover the areas of algorithm design which 
can lead to significant performance gains. We will instead concentrate our efforts on areas where 
an understanding of the underlying ARM architecture can help to optimize code.

Although cycle timing information can be found in the Technical Reference Manual (TRM) for the 
processor that you are using, it is very difficult to work out how many cycles even a trivial piece of 
code will take to execute. The movement of instructions through the pipeline is dependent on the 
progress of the surrounding instructions and can be significantly affected by memory system 
activity. Pending loads or instruction fetches which miss in the cache can stall code for tens of 
cycles. Standard data processing instructions (logical and arithmetic) will take only one or two 
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cycles to execute, but this does not give the full picture. Instead, we must use profiling tools, or 
the system performance monitor built-in to the processor, to extract useful information about 
performance.
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19.1 Compiler optimizations
The ARM Compiler and GNU GCC give us a wide range of options which aim to increase the 
speed, or reduce the size, of the executable files it generates. For each line in the source code 
there are generally many possible choices of assembly instructions that could be used. The 
compiler must trade-off a number of resources, such as registers, stack and heap space, code size 
(number of instructions), compilation time, ease of debug, and number of cycles per instruction 
in order to produce the best image file. 

We’ll begin by looking at some of the source-level optimization options available to the 
compiler.

19.1.1 Function inlining

When a function is called, there is a certain overhead. A caller function must store its own return 
address on the stack. Instructions may be required to place arguments in the appropriate registers 
and push registers on the stack, in accordance with the Procedure Call Standard. There is a 
corresponding overhead when returning to the original point of execution when the function 
ends, again requiring a branch (and corresponding instruction pipeline flush) and possibly 
popping registers from the stack. This function-call overhead can become important when there 
are functions which contain only a few instructions, and where these functions represent a 
significant amount of the total run-time. Also, executing branches uses branch predictor 
resources, which can affect overall program performance. Function inlining eliminates this 
overhead by replacing calls to a function by a copy of the actual code of the function itself 
(known as placing the code inline). 

Inlining for critical code paths is always a worthwhile optimization if there is only one place 
where the function is called. It is always worthwhile if calling the function requires more 
instructions (memory) than inlining the function body. A further consideration is that inlining 
can help permit other optimizations. Clearly, increasing the number of times that a function is 
called will increase the number of inlined copies of the function that are made and this will 
increase the cost in code size.

GCC performs inlining only within each compilation unit. The inline keyword can be used to 
request that a specific function should be inlined wherever possible, even in other files. The 
GCC documentation gives more details of this (and how its use can be combined with static 
and extern).

We will look at inlining in a little more detail when we consider cache optimizations.

19.1.2 Eliminating common sub-expressions 

Another simple source-level optimization is re-using already computed results in a later 
expression. This common sub-expression elimination is performed automatically when 
optimization command line switches are used and can make code both smaller and faster. 
However, the compiler may not necessarily catch all cases, and it can sometimes be more useful 
to do this by hand.
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Example 19-1 illustrates how this works:

Example 19-1 Common sub-expression

i = a * b + c;
j = a * b * d;

The compiler can treat this code as if it had been written as in Example 19-2.

Example 19-2 Common sub-expression elimination

tmp = a * b;
i = tmp + c;
j = tmp * d;

This reduces both the instruction count and cycle count.

19.1.3 Loop unrolling

Every iteration of a loop has a certain penalty associated with it. Every conditional loop must 
include a test for the end of loop on each iteration. Furthermore, there is a branch instruction to 
iterate over the loop, which can take a number of cycles to execute. We can avoid this penalty 
by unrolling loops, partially or fully.

Consider the simple code shown in Example 19-4, to initialize an array. 

Example 19-3 Initializing an array

for (i = 0; i < 10; i++)
{

x[i] = i;
}

Each iteration of the loop contains an assembler sequence of the form in Example 19-4.

Example 19-4 Loop termination assembly code

CMP i,#10
BLT for_loop 

A large proportion of the total run time will have been spent checking if the loop has terminated 
and in executing a branch to re-execute the loop. 

The same code can be written by unrolling the loop, as shown in Example 19-5.

Example 19-5 Unrolled loop

x[0] = 0;
x[1] = 1;
x[2] = 2;
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x[3] = 3;
x[4] = 4;
x[5] = 5;
x[6] = 6;
x[7] = 7;
x[8] = 8;
x[9] = 9;

When the code is written in this way, we remove the compare and branch instruction and have 
a sequence of stores and adds. This is clearly larger than the original code but can execute 
considerably faster.

Conventionally, loop unrolling is often considered to increase the speed of the program but at 
the expense of an increase in code size (except for very short loops). However, in practice this 
may not always be the case on many hardware platforms. In many systems, an access to external 
memory takes significant numbers of cycles and an instruction cache is provided. Code which 
loops will typically fit into the cache very well. The code is fetched into the cache during the 
first loop iteration and is executed directly from cache after that. Unrolling the loop can mean 
that the code is executed only once and so does not cache so well. This is more likely to be the 
case for functions which are executed only once – loops which are frequently executed may well 
be cached whether they are unrolled or not. A further consideration is that modern ARM 
processors typically include branch prediction logic which can hide the effect of pipeline flushes 
from the programmer by speculatively predicting whether a branch will or will not be taken 
ahead of the actual evaluation of a condition. In some cases, the branch instruction can be 
folded, so that it does not require an actual processor cycle to execute.

Cortex-A series processors can have long, complex instruction pipelines, with 
interdependencies between instructions, particularly loads and instructions which set condition 
code flags. The compiler understands the rules associated with a particular processor and can 
often re-arrange instructions so that pipeline interlocks are avoided. This is called scheduling 
and typically involves re-arranging the order of instructions in ways which do not alter the 
logical correctness of the program or its size, but which reduce its execution time. This can 
significantly increase the compiler effort, increasing both the time and memory required for the 
compilation. It can also restrict the ability to perform source level debug. There may no longer 
be a strict one-to-one link between a line of C source and a sequence of assembly instructions. 
We can instead have a couple of instructions from a C statement followed by instructions for the 
next statement and then some more instructions for the first statement.

19.1.4 GCC optimization options

GCC has a range of optimization levels, plus individual options to enable or disable particular 
optimizations. 

The overall compiler optimization level is controlled by the command line option -On, where n 
is the required optimization level, as follows: 

• -O0. (default). No optimization is performed. Each source code command relates directly 
to the corresponding instructions in the executable file. This gives the clearest view for 
source level debugging.

• -O1. This enables most common forms of optimization that requires no size versus speed 
decisions, including function inlining. It can often actually produce a faster compile than 
–O0, due to the resulting files being smaller.

• -O2.This enables further optimizations, such as instruction scheduling. Again, 
optimizations which can have speed versus size implications will not be used.
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• -O3. This enables further optimizations, such as aggressive function inlining and can 
therefore increase the speed at the expense of image size. Furthermore, this option enables 
-ftree-vectorize - causing the compiler to attempt to automatically generate NEON code 
from standard C or C++. See Chapter 20 Writing NEON Code.

• -funroll-loops. This option is independent of the above and enables loop unrolling. As 
previously described, loop unrolling can increase code size and may not have a beneficial 
effect in all cases.

• -Os. This selects optimizations which attempt to minimize the size of the image, even at 
the expense of speed.

Higher levels of optimization can restrict debug visibility and increase compile times. It is usual 
to use -O0 for debugging, and -O2 for finished code. When using the above optimization options 
with the –g (debug) switch, it can be difficult to see what is happening. The optimizations can 
change the order of statements or remove (or add) temporary variables among other things. But 
an understanding of the kinds of things the compiler will do means that satisfactory debug is 
normally still possible with –O2 -g.

For optimal code, it is important to specify to the compiler as much detailed information about 
the target platform as practically possible.

For the compiler to optimize for a specific processor or instruction set version, you also need to 
provide some information about your target platform. Many useful options are documented on 
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html.

The main platform-specifying parameters are:

-march=<arch>

where <arch> is the architecture version to compile for. This defines the instruction set 
supported, It can make a significant difference to performance to specify –march=armv7-a if this 
is supported by your platform but is not used by default by your compiler.

-mcpu=<cpu>

More specific than –march, -mcpu specifies which processor to optimize for, including scheduling 
instructions in the way most efficient for that processor’s pipeline.

-mtune=<cpu>

This option provides processor specific tuning options for code, even when only an architecture 
version is specified on the command line. For instance, the command line might contain 
-march=armv5te -mtune=cortex-a8. This selects instructions for the architecture ARMv5TE but 
tunes the selected instructions for execution on a Cortex-A8 processor.

-mfpu=<fpu>

If your target platform supports hardware floating-point or NEON, specify this to ensure that 
the compiler can make use of these instructions. For a Cortex-A5 target, you would specify 
–mfpu=neon-vfpv4.

-mfloat-abi=<name>

This option specifies the floating-point ABI to use. Values for <name> are:

soft causes GCC to generate code containing calls to the software floating-point 
library for floating-point operations.

softfp enables GCC to generate code containing hardware floating-point instructions, 
but still uses the software floating-point linkage.
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hard enables GCC to generate code containing hardware floating-point instructions 
and uses FPU-specific hardware floating-point linkage.

The default depends on the target configuration. You must compile your entire program with the 
same ABI, and link with a compatible set of libraries.

Table 19-1 shows a few examples of code generation for floating-point operations.

19.1.5 armcc optimization options

The armcc compiler enables you to compile your C and C++ code. It is an optimizing compiler 
with a range of command-line options to enable you to control the level of optimization. 

The command line option gives a choice of optimization levels, as follows: 

• -Ospace. This option instructs the compiler to perform optimizations to reduce image size 
at the expense of a possible increase in execution time.

• -Otime. This option instructs the compiler to perform optimizations to reduce execution 
time at the expense of a possible increase in image size.

• -O0. Turns off most optimizations. It gives the best possible debug view and the lowest 
level of optimization.

• -O1. Removes unused inline functions and unused static functions. Turns off optimizations 
that seriously degrade the debug view. If used with --debug, this option gives a satisfactory 
debug view with good code density.

• -O2 (default). High optimization. If used with --debug, the debug view might be less 
satisfactory because the mapping of object code to source code is not always clear.

• -O3. performs the same optimizations as -O2 however the balance between space and time 
optimizations in the generated code is more heavily weighted towards space or time 
compared with -O2. That is:
— -O3 -Otime aims to produce faster code than -O2 -Otime, at the risk of

increasing your image size
— -O3 -Ospace aims to produce smaller code than -O2 -Ospace, but performance might 

be degraded.

Table 19-1 Floating-point code generation

-mfpu -mfloat-abi Resultant code

Any value soft Floating-point emulation using software floating-point library

vfpv3 softfp VFPv3 floating-point code

vfpv3-d16 softfp VFPv3 floating-point code

neon hard VFPv3 and Advanced SIMD code, where the floating-point and 
SIMD types use the hardware FP registers
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19.2 ARM memory system optimization
Writing code which is optimal for the system it will run on is a key part of the art of 
programming. It requires the programmer to understand how the compiler and underlying 
hardware will carry out the tasks described in the lines of code. If we can do the job with less 
access to external memory, we can save power by keeping everything on-chip. Furthermore, by 
accessing the external memory less frequently, we improve the performance of the system, 
allowing software to run faster (or the processor to be clocked more slowly or for shorter 
periods, to save power).

19.2.1 Data cache optimization

In most Cortex-A series processors, there is a significant gap in performance between memory 
accesses which hit in the cache and those that do not. Cache misses can take tens of cycles to 
resolve. Cache hits return data within a few cycles and the compiler can often schedule 
instructions in a way that hides latency. For most algorithms, therefore, ensuring that cache 
misses are minimized is the most important possible optimization. The most important 
improvements are those which affect the level 1 cache. 

Let us consider the problem of data cache misses first. Optimization is particularly significant 
for pieces of code which use a dataset larger than the available cache size. It is important for the 
programmer of such code to understand the arrangement of data in memory and how that 
corresponds to data cache accesses. Code should be structured in a way which ensures 
maximum re-use of data already loaded into the cache. It is this principle of data locality, the 
degree to which accesses to the same cache line are concentrated during program execution, in 
both space and time, which gives best performance. 

Several techniques to improve this locality can be considered.

19.2.2 Loop tiling

Loop tiling divides loop iterations into smaller pieces, in a way which promotes data cache 
re-use. Large arrays are divided into smaller blocks (tiles), which match the accessed array 
elements to the cache size. The classic example to illustrate this approach is a large matrix vector 
product.

Consider two square matrices a and b, each of size 1024 × 1024. Example 19-6 shows code to 
compute a matrix vector product. This requires us to multiply each element in each array with 
each element in the other array.

Example 19-6 Matrix vector product code

for (i = 0; i < 1024; i++)
for (j = 0; j < 1024; j++)
for (k = 0; k < 1024; k++)

result[i][j] = result[i][j] + a[i][k] * b[k][j];

In this case, the contents of matrix a are accessed sequentially, but matrix b advances in the inner 
loop, by row. It is therefore, highly probable that we will encounter a cache miss for each 
multiply operation.

It is obvious that the order in which the additions for each element of the result matrix are 
calculated does not change the result, ignoring the effect of such things as overflows. It should 
therefore be possible to rewrite the code in a way which improves the cache hit rate. The 
elements of matrix b are accessed in the following way (0,0), (1,0), (2,0)… (1023, 0), (0,1), 
(1,1)… (1023,1). The elements are stored in memory in the order (0,0), (0,1) etc. For word sized 
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elements, it means that the elements (0,0), (0,1)…(0,7) will be stored in the same cache line. 
(For simplicity, we will assume that the start address of the matrix is aligned to a cache line. 
Alignment will be mentioned again in Structure alignment on page 19-10.) Therefore, elements 
(0,0), (0,1), (0,2) etc. will be in the same cache line; when we load (0,0) into the cache, we get 
(0,1...7) too. By the time the inner loop completes, it is likely that this cache line will be evicted. 

If we modify the code so that two (or indeed four, or eight) iterations of the middle loop are 
performed at once while executing the inner loop, as in Example 19-7 we can make a big 
improvement. Similarly, we should unroll the outer loop two (or four, or eight) times as well. 

Example 19-7 Code using tiles

for (io = 0; io < 1024; io += 8)
for (jo = 0; jo < 1024; jo += 8)
for (ko = 0; ko < 1024; ko += 8)
for (ii = 0, rresult = &result[io][jo],
ra = &a[io][ko]; ii < 8;
ii++, rresult += 1024, ra += 1024)
for (ki = 0, rb = &b[ko][jo];
ki < 8; ki++, rb += 1024)
for (ji = 0; ji < 8; ji++)

rresult[ji] += ra[ki] * rb[ji];

There are now six nested loops. The outer loops iterate with steps of 8, representing the fact that 
eight int sized elements are stored in each line of the level 1 cache. Some further optimizations 
have also been introduced. The order of ji and ki has been reversed as only one expression uses 
ki, but two use ji. In addition, we optimize by removing common expressions from the inner 
loops. All pointer accesses are potential sources of aliasing in C, so by using result, ra and rb 
to access array elements, the array indexing is speeded up. We cover this in more detail in Source 
code modifications on page 19-13. Figure 19-1 illustrates the changing cache access pattern 
which results from changes to the C code.

Figure 19-1 Effect of tiling on cache usage

19.2.3 Loop interchange

In many programs, there will be nested loops – a very simple example would be code that 
stepped through the items in a 2-dimensional array. For reasonably complex code, we can 
sometimes get better performance by re-arrangement of the loops. It is better to have the loop 
with the smaller number of iterations as the outer loop and the one with the highest iteration 
count as the innermost loop.
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This gives two potential advantages. One is that the compiler can potentially unroll the inner 
loop. Perhaps more importantly for complex loops where the size of the nested loop is 
sufficiently large that it may not all be held in level 1 cache at the same time, the overall cache 
hit rate will be improved by this change. Some compilers can make this change automatically 
at higher levels of optimization. For example, GCC 4.4 adds the switch -floop-interchange to 
do this.

19.2.4 Structure alignment

Efficient placement of structure elements and alignment are not the only aspects of data 
structures which influence cache efficiency. Where code has a large working set, it is important 
to make efficient use of the available cache space. To achieve this, it might be necessary to 
rearrange data structures. 

It is common to have data structures which span multiple cache lines, but where the program 
uses only a few parts of the structure at any particular time. If there are many objects of this type, 
it can make sense to try to split the structure so that it fits within a cache line. For example, you 
can split an array of structures into two or more arrays of smaller structures. This only makes 
sense if the object itself is aligned to a cache boundary. For example, consider the case where 
we have a very large array of instances of a 64-byte structure (much larger than the cache size). 
Within that structure, we have a byte-sized quantity and we have a commonly used function 
which iterates through the array looking only at that byte-sized quantity. This function would 
probably make inefficient use of the cache, as we would need to load an entire cache line to read 
the 8-bit value. If instead those 8-bit values were stored in their own array (rather than as part 
of a larger structure), we would get 32 or 64 values per cache linefill. 

Furthermore, as we saw in Chapter 16 Porting, unaligned accesses are supported, but can take 
extra cycles in comparison to aligned accesses. For performance reasons, therefore, it can be 
sensible to remove or reduce unaligned accesses. 

19.2.5 Associativity effects

As we have seen, ARM L1 caches are normally 4-way set-associative, but L2 caches typically 
have 8- or 16-way associativity. There can be performance problems if more than four of the 
locations in the data fall into the same cache set, as there can be repeated cache misses, even 
though other parts of the cache can be unused. The ARM L1 Cache uses physical rather than 
virtual addresses, so it can be difficult for programmers operating in User mode to take care of 
this.

A particularly common cause of this problem is arranging data so that it is on boundaries of 
powers of two. If the cache size is 16KB, each way is 4KB in size. If you have multiple blocks 
of data arranged on boundaries which are multiples of 4KB, the first access to each block will 
go into line 0 of a way. If code accesses the first line in several such blocks then we can get cache 
misses even if only five cache lines in total are being used. Unaligned accesses can increase the 
likelihood of this, as each access might require two cache lines rather than one. 

19.2.6 Optimizing instruction cache usage 

The C programmer does not directly have control over how the instruction cache is used by 
code. Code is linear between branch instructions and this pattern of sequential accesses uses the 
cache efficiently. The branch prediction logic of the processor will try to minimize the stalls due 
to branches, so there is little the programmer can do to assist. The main goal for the programmer 
is to reduce the code footprint. Many of the compiler optimizations enabled at -O2 and -O3 for 
the ARM Compiler and GCC deal with loop optimizations and function inlining. These 
optimizations will improve performance if the code accounts for a significant part of the total 
program execution. In particular, function inlining has multiple potential benefits. Obviously, it 
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can reduce branch penalties by removing branches on both function call and exit, and potentially 
also stack usage. Equally importantly, it enables the compiler to optimize over a larger block of 
code which can lead to better optimizations for value range propagation and elimination of 
unused code.

However, modifications intended for speed optimizations which increase code size can actually 
reduce performance due to cache issues. Larger code is less likely to fit in the L1 cache (or 
indeed the L2 cache) and the performance lost by the additional cache linefills can well 
outweigh any benefits of the optimization. It is often better to use the armcc -Ospace or gcc –Os 
option to optimize for code density rather than speed. Clearly, using Thumb code will also 
improve code density and cache efficiency.

There are some interesting decisions to be made around function inlining and in some cases 
human judgment can improve on that of the compiler. A function which is only ever called from 
one place will always give a benefit if inlined. One might think that inlining very small functions 
always gives a benefit, but this is not the case. An instance of a tiny function which is called 
from many places is likely to be re-used many times within the instruction cache. If the same 
function is repeatedly inlined, it is much more likely that it will cause a cache miss (and also 
evict other potentially useful code from the cache). The branch prediction logic within Cortex-A 
series processors is efficient and an unconditional function call and return consumes few cycles 
– much less than would be used for a cache linefill. The programmer may wish to use the GCC 
function attributes noinline and always_inline to control such cases.

This is a general problem and not specific to inlining functions. Whenever conditional execution 
is used and it is lopsided (that is, the expression far more often leads to one result than the other) 
there is the potential for false static branch prediction and thus bubbles in the pipeline. It is 
usually better to order conditional blocks so that the often-executed code is linear, while the less 
commonly executed code has to be branched to and does not get pre-fetched unless it is actually 
used. The GCC attribute __builtin_expect used with the –freorder-blocks optimization option 
can help with this. 

The performance monitor block of the processor (and OProfile) can be used to measure branch 
prediction rates in code. Note that there are two effects at play here. Correct branch prediction 
saves clock cycles by avoiding pipeline flushes, but taking fewer conditional branches which 
skip forward over code can help performance by making more of the program fit within the L1 
cache.

19.2.7 Optimizing L2 and outer cache usage 

Everything said about optimizations for using the L1 cache also applies to the L2 cache 
accesses. Best performance results from having a working dataset which is smaller than the L2 
cache size, and where the data is used more than once; there is little benefit caching data which 
is used only once, other than possibly producing more optimal bus accesses. If the dataset is 
larger than the cache size, the programmer should consider similar techniques to those already 
described for the L1 cache. There is, however, a further point to consider with outer caches, 
which is that they may well be shared with other processors and therefore the effective size for 
an individual processor can be less than the actual size. In addition, when writing generic code 
to run on a number of ARM families, it can be difficult to make optimal use of the L2 cache. 
The presence of such a cache is not guaranteed and its size can vary significantly between 
systems.

19.2.8 Optimizing TLB usage 

In general, the scope for optimizing usage of the Translation Lookaside Buffer (see Chapter 10) 
is much less than for optimizing cache accesses. The key points are to minimize the number of 
pages in use (this obviously gives fewer TLB misses) and to use large MMU mappings 
(supersections or sections in preference to 4KB pages) as this reduces the cost of individual page 
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table walks (one external memory access rather than two) and also means that a larger amount 
of memory is represented within an individual TLB entry (thus also giving fewer TLB misses). 
In practice, however, an operating system like Linux uses 4KB pages everywhere, so the main 
optimization technique available is to separate the frequently accessed code and data from the 
infrequently accessed code and data (for example exception handling code can be moved to a 
different page) and trying to limit the number of frequently accessed pages to below the 
maximum number supported by the processor hardware. The main optimization would be to try 
to process multiple cache lines’ worth of data per page, so that the L1 cache is the limiting factor 
rather than TLB entries.

19.2.9 Data abort optimization

As we saw in Chapter 10 Memory Management Unit, in the context of Linux, data aborts will 
be generated by page faults on the first time that a memory page is accessed and again when the 
page is first written to. This means that the kernel abort handler is called to take appropriate 
action and there is a certain performance overhead to this. Simplistically, we can reduce this 
overhead by using fewer pages. Again, code optimizations which make code smaller will help, 
as will reducing the size of the data space.

19.2.10 Prefetching a memory block access

ARM Cortex-A series processors contain sophisticated cache systems, and support for 
speculation and out of order execution which can hide latencies associated with memory 
accesses. However, accesses to the external memory system are usually sufficiently slow that 
there will still be some penalty. If we can prefetch instructions or data into the cache before we 
need them, we can hide this latency. 

Many ARM processors provide support for preloading of data, using the PLD instruction. The 
PLD instruction is a hint that enables the programmer to request that data is loaded to the data 
cache in advance of it actually being read or written by the application. The PLD operation may 
generate a cache linefill on a data cache miss, independent of load and store instruction 
execution, while the processor continues to execute other instructions. If supported and used 
correctly, PLD can significantly improve performance by hiding memory access latencies. 
There is also a PLI instruction, which enables the programmer to hint to the processor that an 
instruction load from a particular address is likely in the near future. This can cause the 
processor to preload the instructions to its cache.

In addition to this programmer-initiated prefetch, the processor may also support automatic data 
prefetching. Essentially, the processor looks out for a series of sequential accesses to memory. 
When it sees this, it automatically requests the following cache lines speculatively, in advance 
of the program actually using them. 

In many systems, significant numbers of cycles are consumed initializing or moving blocks of 
memory, using the memset() or memcpy() functions. Optimized ARM libraries will typically 
implement such functions by using Store Multiple instructions, with each store aligned to a 
cache line boundary. 
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19.3 Source code modifications
We have seen how profiling tools allow us to identify code segments or functions which can 
benefit from optimization and how different compiler options can enable compiler 
optimizations to our code. We will now look at a variety of source code modifications which can 
yield faster or smaller code on the ARM. 

19.3.1 Loop termination

For inner loops that have been identified by the profiler, it may be appropriate to have integer 
loop counters which end at 0 (zero), rather than start from 0 (zero). This is because a compare 
with zero comes for free with the ADD or SUB instruction used to update the loop counter, whereas 
a compare with a non-zero value will typically require an explicit CMP instruction.

Replace a loop which counts up to a terminating value: 

for (i = 1; i<= total; i++)

with one which counts down to zero: 

for (i = total; i != 0; i--)

This will remove a CMP instruction from each iteration of the loop.

It is also good practice to use int (32-bit) variables for loop counters. This is because the ARM 
is natively a 32-bit machine. Its ADD assembly language instruction operates on two 32-bit 
registers. If it does an ADD (or other data processing operation) with a smaller quantity, the 
compiler may need to insert additional instructions to handle overflow (see also Variable 
selection on page 19-14).

19.3.2 Loop fusion

This is one of a variety of other possible loop techniques which can be employed either by the 
programmer, or by an optimizing compiler. It essentially means merging loops which have the 
same iteration count and no interdependencies (Example 19-8 and Example 19-9). 

Example 19-8 Loop fusion

for (i = 0; i < 10; i++)
{
x[i] = 1;

}
for (j = 0; j < 10; j++)
{
y[j] = j;

}

It should be immediately apparent that this can be optimized to:

Example 19-9 Fused loops

for (i = 0; i < 10; i++)
{
x[i] = 1;
y[i] = i;
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}

It is worth mentioning that this approach can sometimes lead to a reduction in performance 
because of cache effects such as thrashing, depending on the cache associativity and the 
addresses of the data being accessed.

19.3.3 Reducing stack and heap usage

In general, it is a good idea to try to minimize memory usage by code. The ARM processor has 
a register set which provides a relatively limited set of resources for the compiler to keep 
variables in. When all registers are allocated with currently live variables, further variables will 
be spilled to the stack – causing memory operations and extra cycles for the code to execute. 
There are a number of ways available to the programmer to try to help. A key rule is to try to 
limit the number of live variables at any one time. 

When we looked at the procedure call standard in Chapter 17, it was stated that up to four 
parameters can be passed to a function. Further parameters are passed on the stack. It is therefore 
significantly more efficient to pass four or fewer parameters than to pass five or more. Of course, 
the ARM registers in question are 32-bits in size and therefore if we pass a 64-bit variable, it 
will take two of our four register slots. For similar reasons, recursive functions do not typically 
yield efficient processor register usage. Remember also that non-static C++ functions also 
consume one argument slot with the this pointer.

19.3.4 Variable selection

ARM integer registers are 32-bit sized and optimal code is therefore produced most readily 
when using 32-bit sized variables, as this avoids the need to provide extra code to deal with the 
case where a 32-bit result overflows an 8- or 16-bit sized variable.

Consider the following code: 

unsigned int i, j, k;
i = j+k;

The compiler would typically emit assembly code similar to:

ADD R0, R1, R2 

If these variables were instead short (16-bit) or char (8-bit), the compiler must ensure the result 
does not overflow the halfword or byte. 

The same code might need to be as shown in Example 19-10, for signed halfwords (shorts).

Example 19-10 Addition of 2 signed shorts (assembly code)

ADD      R0, R1, R2
SXTH R0, R0

Or for unsigned halfwords as in Example 19-11.

Example 19-11 Addition of 2 unsigned shorts (assembly code)

ADD       R0, R1, R2
BIC       R0, R0, #0x10000
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This has the effect of clipping the result to the defined size.

Although the compiler can cope with such things as an incorrect type specification for a loop 
counter variable, it is generally best to use the correct type in the first place.

19.3.5 Pointer aliasing

If a function has two pointers pa and pb, with the same value, we say the pointers alias each 
other. This introduces constraints on the order of instruction execution. If two write accesses 
which alias occur in program order, they must happen in the same order on the processor and 
cannot be re-ordered. This is also the case for a write followed by a read, or a read followed by 
a write. Two read accesses to aliases are safe to re-order. As any function pointer argument could 
alias any other function pointer argument in C, the compiler must assume that memory regions 
accessed through these pointers can overlap, which prevents many possible optimizations. C++ 
enables more optimizations, as pointer arguments will not be treated as possible aliases if they 
point to different types.

C99 introduces the restrict keyword which specifies that a particular pointer argument does 
not alias any other. If you know that pointers do not overlap, using this keyword to give the 
compiler this information can yield significant improvements. However, misusing it can lead to 
incorrect program function. The restrict keyword qualifies the pointer and not the object being 
pointed to. This consideration is not specific to the ARM architecture and applies to all 
processors. When using GCC, you can enable the C99 standard by adding -std=c99 to your 
compilation flags. In code that cannot be compiled with C99, use either __restrict or 
__restrict__ to enable the keyword as a GCC extension.

Consider the following simple code sequence:

void foo(unsigned int *ptr1, unsigned int *ptr2, unsigned int *i)
{
*ptr1 += *i;
*ptr2 += *i;

}

The pointers could possibly refer to the same memory location and this causes the compiler to 
generate code which is less efficient. In this example, it must read the value *i from memory 
twice, once for each add, as it cannot be certain that changing the value of *ptr1 does not also 
change the value of *i.

If the function is instead declared as:

void foo(unsigned int *restrict ptr1, unsigned int *restrict ptr2, unsigned int 
*restrict i)

This means that the compiler can assume that the three pointers may not refer to the same 
location and optimize accordingly. The programmer must ensure that the pointers do not ever 
overlap.

19.3.6 Division and modulo

Not all ARM processors have hardware support for division. For these processors, C division 
typically calls a library routine which takes tens of cycles to run for divides of 32-bit integers,

Note
 Division is slower than multiplication even in hardware. In performance-critical code it is 
almost always worth replacing it if possible. This should be done as a trade-off against code 
maintainability.
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Where possible, divides should be avoided, or removed from loops. Division with a fixed 
divisor is faster than dividing two variable quantities. The compiler can replace a divide by a 
shift-multiply pair in this case. (A 32 × 32 multiply by fixed constant, then shift right to adjust 
the most significant word).

Modulo arithmetic is another case to be aware of, as this will also use division library routines. 

The code

minutes = (minutes + 1) % 60;

will run significantly faster on machines with no hardware divide, if coded as

if (++minutes == 60) minutes=0;

which substitutes a two cycle add and compare in place of a call to a library function.

19.3.7 Extern data

Accessing external variables requires the processor to execute a series of load instructions to 
acquire the address of the variable through a base pointer and then read the actual variable value. 
If multiple variables are defined as members of a structure, they can share a base pointer, saving 
cycles and instructions. It is therefore good practice to define the variables inside the same 
struct.

19.3.8 Inline or embedded assembler

In some cases, it can be a worthwhile optimization to use assembly code, in addition to C. The 
general principle here is for the programmer to code in a high level language, use a profiler to 
determine which sections will produce the most benefit if optimized and then inspect the 
compiler-produced assembly code to look for possible improvements.

If a code section is identified as being a performance bottleneck, one should not immediately 
reach for the assembly language manual. Improvements to the algorithm should first be sought 
and then compiler optimizations tried before considering use of assembly code. Even then, it is 
often the case that poor performance is due to cache misses and memory access delays rather 
than the actual assembly code.

The ARM Compiler and GCC (and most other C compilers) uses the –s flag to tell the compiler 
to produce assembly code output. The –fverbose-asm command line option can also be useful in 
gcc. Interleaved source and assembler can be produced by the ARM Compiler with the 
--interleave option.

Chapter 16 Porting, of this book gives further information about the use of an inline assembler.

19.3.9 Complex addressing modes

It is often better to avoid complex addressing modes. In cases where the address to be used for 
a load or store requires a complex calculation, dual-issue of instructions is not possible. Only 
the addressing mode which uses a base register plus an offset (specified either by a register or 
an immediate value) with an optional shift left by an immediate value of two is fast. Other, less 
commonly used, addressing modes can be executed more quickly by splitting into two 
instructions which might be dual-issued. For example, MOV R2, R1 LSL#3; LDR R2,[R0, R2] can be 
faster than LDR R2, [R0, R1 LSL #3]. LDRH and LDRB have no extra penalty, but LDRSH and LDRSB 
have a single cycle load-use penalty, but no early forwarding path and can therefore incur 
additional latency if a subsequent instruction uses the loaded value. 
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19.3.10 Unaligned access

Unaligned LDRs have an extra cycle penalty compared with aligned loads, but unaligned LDRs 
which cross cache-lines have many cycles of additional penalty. In general, stores are less likely 
to stall the system compared to loads. STRB and STRH have similar performance to STR, due to the 
merging write buffer. As there are four slots in the load/store unit, more than four consecutive 
pending loads will always cause a pipeline stall. 

19.3.11 Linker optimizations

Some code optimizations can be performed at the link, rather than the compile stage of the build, 
for example, unused section elimination and linker feedback. Multi-file optimization can be 
carried out across multiple C files, and unused sections can be removed. Similarly, multi-file 
compilation enables the compiler to perform optimization across multiple files instead of on 
individual files.
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Chapter 20 
Writing NEON Code

Support for NEON is provided in the ARM Compiler toolchain and in GNU tools. When writing 
NEON assembly code with the GNU tools, you must use the -mfpu=neon option to specify that the 
hardware supports NEON. In the ARM Compiler, you specify a target which supports NEON, for 
example, by using --cpu=Cortex-A7.
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20.1 NEON C Compiler and assembler
Code targeted at NEON hardware can be written in C or in assembly language and a range of 
tools and libraries is available to support this.

In many cases, it may be preferable to use NEON code within a larger C/C++ function, rather 
than in a separate file to be processed by the assembler. This can be done using the intrinsics, 
described in Section 20.1.3.

20.1.1 Vectorization

A vectorizing compiler can take your C or C++ source code and parallelize it in a way which 
enables efficient usage of NEON hardware. This means you can write portable C code, while 
still obtaining the levels of performance made possible by NEON. The C language does not 
specify parallelizing behavior, so it can be necessary to provide hints to the compiler about this. 
For example, it may be necessary to use the __restrict keyword when defining pointers. This 
has the effect of guaranteeing that pointers will not overlap regions of memory. It can also be 
necessary to ensure that the number of loop iterations is a multiple of four or eight. Automatic 
vectorization is specified with the GCC option -ftree-vectorize (along with –mfpu=neon). Using 
the ARM Compiler, you must specify optimization level –O2 (or –O3), -Otime and –-vectorize.

20.1.2 NEON libraries

There is much free open source software which makes use of NEON, for example:

• OpenMAX, a set of APIs for processing audio, video, and still images. It is part of a 
standard created by the Khronos group. There is a free ARM implementation of the 
OpenMAX DL layer for NEON at  http://www.khronos.org/openmax/

• ffmpeg, a collection of codecs for many different audio and video standards under LGPL 
license at http://ffmpeg.org/

• Eigen3, a linear algebra, matrix math C++ template library at eigen.tuxfamily.org/

• Pixman, a 2D graphics library (part of Cairo graphics) at http://pixman.org/

• x264, a rights-free GPL H.264 video encoder at 
http://www.videolan.org/developers/x264.html

• Math-neon at http://code.google.com/p/math-neon/

20.1.3 Intrinsics

NEON C/C++ intrinsics are available in armcc, GCC/g++, and llvm. They use the same syntax, 
so source code that uses intrinsics can be compiled by any of these compilers.

NEON intrinsics are a way to write NEON code that is more easily maintained than NEON 
assembler instructions, while still keeping control of the NEON instructions which are 
generated. There are new data types that correspond to NEON registers (both D-registers and 
Q-registers) containing different sized elements, allowing C variables to be created that map 
directly onto NEON registers. These variables are passed to NEON intrinsic functions. The 
compiler will generate NEON instructions directly instead of performing an actual subroutine 
call.

NEON intrinsics provide low-level access to NEON instructions but with the compiler doing 
some of the hard work normally associated with writing assembly language, such as:

• Register allocation.
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• Code scheduling, or re-ordering instructions to get highest performance. The C compilers 
can be told which processor is being targeted, and they can reorder code to ensure the 
minimum number of stalls.

The main disadvantage with intrinsics is that it is not possible to get the compiler to output 
exactly the code you want, so there is still some possibility of improvement when moving to 
NEON assembler code.

20.1.4 NEON types in C

The ARM C Language Extensions document contains a full list of NEON types. The format is:

<basic type>x<number of elements>_t

There are also further types, which combine two, three or four of each of the above, into a larger 
struct type. These types are used to map the registers accessed by NEON load/store operations, 
which can load/store up to four registers with a single instruction. For example:

struct int16x4x2_t
{
int16x4_t val[2];

}<var_name>;

These types are only used by loads, stores, transpose, interleave and de-interleave instructions; 
to perform operations on the actual data, the individual registers would be selected using, for 
example, <var_name>.val[0] and <var_name>.val[1] in the example above.

20.1.5 Variables and constants

In this section we show some example code to access variable or constant data using NEON.

Declaring a variable

Declaring a new variable is as simple as declaring any variable in C:

Table 20-1 NEON type definitions

64-bit type (D-register) 128-bit type (Q-register)

int8x8_t int8x16_t

int16x4_t int16x8_t

int32x2_t int32x4_t

int64x1_t int64x2_t

uint8x8_t uint8x16_t

uint16x4_t uint16x8_t

uint32x2_t uint32x4_t

uint64x1_t uint64x2_t

float16x4_t float16x8_t

float32x2_t float32x4_t

poly8x8_t poly8x16_t

poly16x4_t poly16x8_t
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uint32x2_t vec64a, vec64b;  // create two D-register variables

Using constants

Using constants is straightforward. The following code will replicate a constant into each 
element of a vector:

uint8x8 start_value = vdup_n_u8(0);

To load a general 64-bit constant into a vector, use:

uint8x8 start_value = vreinterpret_u8_u64(vcreate_u64(0x123456789ABCDEFULL));

Moving results back to normal C variables

To access a result from a NEON register, we can either store it to memory using VST, or move it 
back to ARM using a get lane type operation:

result = vget_lane_u32(vec64a, 0); // extract lane 0

This MRC operation can have some performance impact, particularly on the Cortex-A8 
processor.

Accessing two D-registers of a Q-register

This can be done using vget_low and vget_high, as below:

vec64a = vget_low_u32(vec128); // split 128 bit vector 
vec64b = vget_high_u32(vec128); // into 2x 64 bit vectors 

Casting NEON variables between different types

NEON intrinsics are strongly typed, so they must be cast between vectors of different types. 
This is done using vreinterpret, which doesn’t actually generate any code, but just enables you 
to cast the NEON types:

uint8x8_t byteval;
uint32x2_t wordval;
byteval = vreinterpret_u8_u32(wordval);

Note that the destination type, u8 is listed first after vreinterpret.

20.1.6 Generating NEON instructions from C/C++ code

To generate NEON vector instructions from C/C++ code, the following ARM compiler options 
must be specified:

• A target --cpu that has NEON capability, such as the Cortex-A9 or Cortex-A15 
processors.

• --vectorize to enable NEON vectorization.

• --O2 (default) or --O3 optimization level.

• --Otime to optimize for performance rather than code size.

In addition, use --diag_warning=optimizations to obtain useful diagnostics from the compiler on 
what it could or could not optimize/vectorize.

For example:

armcc --cpu Cortex-A9 --vectorize -O3 -Otime --diag_warning_optimizations source.c
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20.1.7 NEON assembler and ABI restrictions

For the very highest performance, hand-coded NEON assembler is the best approach for 
experienced programmers. This requires familiarity with the pipeline and cycle timings of the 
specific ARM processor that is being used, to ensure maximum throughput. Both GNU 
Assembler (gas) and ARM armasm support assembly of NEON instructions.

When writing assembler functions, you must be aware of the ARM EABI which defines how 
registers can be used.

The ARM EABI (Embedded Application Binary Interface) specifies which registers are used to 
pass parameters, return results, or must be preserved. This specifies the usage of 32 D-registers 
in addition to the ARM integer registers and is summarized in Table 20-2.

Typically, data values are not actually passed to a NEON subroutine, so the best order to use 
NEON registers is D0-D7, then D15-D31 (then finally D8-D15 only if saved). See also VFP and 
NEON register usage on page 17-4. 

20.1.8 Detecting NEON

As NEON hardware can be omitted from a processor implementation, it may be necessary to 
test for its presence. 

Build-time NEON selection

This is the easiest way to select NEON. In armcc (RVCT 4.0 and later), or GCC, the predefined 
macro __ARM_NEON__ is defined when a suitable set of processor and FPU options is provided to 
the compiler. The armasm equivalent predefined macro is TARGET_FEATURE_NEON.

This could be used to have a C source file which has both NEON and non-NEON optimized 
versions.

Run-time NEON detection

To detect NEON at run-time requires help from the operating system, since the ARM 
architecture intentionally does not expose processor capabilities to user-mode applications.

Under Linux, /proc/cpuinfo contains this information in human-readable form.

On Tegra2 (a dual-core Cortex-A9 processor with FPU), cat /proc/cpuinfo reports:

…
Features    : swp half thumb fastmult vfp edsp thumbee vfpv3 vfpv3d16
…

The ARM quad-core Cortex-A9 processor with NEON gives a slightly different result:

…
Features        : swp half thumb fastmult vfp edsp thumbee neon vfpv3
…

Table 20-2 ARM EABI NEON register use

D0-D7 Argument registers / return value (can 
be corrupted if not required)

D8-D15 preserved by called functions

D15-D31 not preserved by called functions
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As the /proc/cpuinfo output is text based, it is often preferred to look at the auxiliary vector 
/proc/self/auxv. This contains the kernel hwcap in a binary format. The /proc/self/auxv file can 
be easily searched for the AT_HWCAP record, to check for the HWCAP_NEON bit (4096).

Some Linux distributions (for example, Ubuntu 09.10, or later) take advantage of NEON 
transparently. The ld.so linker script is modified to read the hwcap via glibc, and add an 
additional search path for NEON-enabled shared libraries. In the case of Ubuntu, a new search 
path /lib/neon/vfp contains NEON-optimized versions of libraries from /lib. 
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20.2 Optimizing NEON assembler code
To obtain best performance from hand-written NEON code, it is necessary to be aware of some 
underlying hardware features. In particular, the programmer should be aware of pipelining and 
scheduling issues, memory access behavior and scheduling hazards. We will briefly describe 
each of these here.

20.2.1 Memory access optimizations

It is likely NEON will be used to process large amounts of data, such as digital images. One 
important optimization is to make sure the algorithm is accessing the data in the most 
cache-friendly way possible. It is also important to consider the number of active memory 
locations. Under Linux, each 4KB page will require a separate TLB entry.  A typical 
optimization is to arrange the algorithm to process image data in suitably sized tiles in order to 
maximize the cache and TLB hit rate. In general, the memory optimization considerations 
described in Chapter 19 will also apply to NEON code.

The instructions which support interleaving and de-interleaving can provide significant scope 
for performance improvements. VLD1 loads registers from memory, with no de-interleaving. 
However, the other VLD operations allow us to load, store and de-interleave structures 
containing two, three or four equally sized 8, 16 or 32-bit elements. VLD2 loads two or four 
registers, de-interleaving even and odd elements. This could be used, for example, to split left 
and right channel stereo audio data as in Figure 20-1. Similarly, VLD3 could be used to split 
RGB pixels into separate channels and correspondingly, VLD4 might be used with ARGB or 
CMYK images.

Figure 20-1 Labeled example of load de-interleaving

Figure 20-1 shows loading two NEON registers with VLD2.16, from memory pointed to by R1. 
This produces four 16-bit elements in the first register, and four 16-bit elements in the second, 
with adjacent paired left and right values separated out to each register.
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20.2.2 Alignment

The NEON architecture provides full unaligned support for NEON data access. However, the 
instruction opcode contains an alignment hint which permits implementations to be faster when 
the address is aligned and a hint is specified.

The base address specified as [<Rn>:<align>]

Note
 It is a programming error to specify a hint, but to then use an incorrectly aligned address. This 
will result in a data abort.

An alignment hint can be one of :64, :128 or :256 bits depending on the number of D-regs. The 
ARM Architecture Reference Manual uses an “@” symbol to describe this, but this acts as a 
comment marker in GNU assembler and so should not be used.

20.2.3 Scheduling

To get the very best performance with NEON, you should be aware of how to schedule code for 
the specific ARM processor you are using. Careful hand-scheduling is recommended to get the 
best out of any NEON assembler code you write, especially for performance-critical 
applications such as video codecs. 

If writing C or NEON intrinsics, the compiler (GCC or armcc) will automatically schedule code 
from NEON intrinsics or vectorizable C source code, but it can still help to make the source code 
as friendly as possible to scheduling optimizations. 

Result-use scheduling

This is the main performance optimization when writing NEON code. NEON instructions 
typically issue in one cycle, but the result is not always ready in the next cycle except for the 
simplest NEON instructions, such as VADD and VMOV.

In some cases there can be a considerable latency, particularly VMLA multiply-accumulate (five 
cycles for an integer; seven cycles for a floating-point). Code using these instructions should be 
optimized to avoid trying to use the result value before it is ready, otherwise a stall will occur. 
Despite having a few cycles result latency, these instructions do fully pipeline so several 
operations can be in flight at once.

The resulting latency is the same between the Cortex-A8 and Cortex-A9 processors for the 
majority of instructions. The Cortex-A5 and Cortex-A7 processors use a simplified NEON 
design more tailored to reduced power and area implementation, and most NEON instructions 
have a three-cycle result latency. The Cortex-A15 processor has significantly higher 
performance, with 128-bit data paths for NEON and the ability to issue multiple operations per 
cycle.
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20.3 NEON power saving
Not all code can benefit from NEON. It depends to a large extent how data-intensive an 
application is and whether the algorithm can operate on multiple values in parallel. In a typical 
mobile device, NEON will be in a different power domain to the main processor, which allows 
it to be powered off when not in use. This can save significant power because NEON is often 
used intensively by applications (for example, real-time multi-media processing) or not at all. 
Mobile devices can spend significant amounts of time in standby with the clocked stopped, and 
it makes sense to ensure NEON is powered down at the same time.

The power saving mechanism is implemented by the OS, and is expected to be transparent to 
the user application. Typically the OS will turn off NEON after a period of non-activity, and turn 
it on again when there is an exception caused by attempting to execute a NEON instruction.

NEON power-down sequence (performed by the operating system):

1. Disable NEON (for example, by setting the Cortex-A9 processor ASEDIS to 1).

2. Remove power to the NEON region (SoC specific).

If a NEON instruction is executed when NEON is disabled, the processor will take an undefined 
instruction exception (as would any coprocessor if the coprocessor is disabled). The OS 
undefined instruction handler would detect that a NEON instruction (CP10 or CP11) has caused 
the exception and would execute the power-on sequence:

1. Restore power supply (SoC specific) and wait for the power to stabilize.

2. Enable NEON (for example, by setting the Cortex-A9 processor ASEDIS to 0).

3. Re-execute the instruction.

This on-demand control over NEON by the operating system means that use of NEON should 
be restricted to sufficiently large workloads and/or bursts for greater power efficiency.
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Chapter 21 
Introduction to Multi-processing

In the chapters that follow we look at systems with multiple processors and examine programming 
techniques for these. We distinguish between systems that contain multiple separate processor 
elements (a majority of today’s embedded systems) and true multi-processors, with multiple 
processors closely coupled together in hardware. We will introduce terminology to describe and 
categorize such systems, in terms of both hardware and software and we look at some example 
ARM implementations.

Multi-processing can be defined as running two or more sequences of instructions simultaneously 
within a device containing two or more processors. The concept of multi-processing has been a 
subject of research for a number of decades, and has seen widespread commercial use over the past 
15 years. Multi-processing is now a widely adopted technique in both systems intended for 
general-purpose application processors and in areas more traditionally defined as embedded 
systems. 

Multi-processing systems can deliver higher performance, due to the simple fact that more 
processing units are available. This allows multiple tasks to be executed in parallel, potentially 
reducing the amount of time required to perform the allocated task.

The overall energy consumption of a multi-core system can be significantly lower than that of a 
system based on a single processor core. Multiple cores allow execution to be completed faster and 
so some elements of the system might be completely powered down for longer periods. 
Alternatively, a system with multiple cores may be able to operate at a lower frequency than that 
required by a single processor to achieve the same throughput. A lower power silicon process or a 
lower supply voltage can result in lower power consumption and reduced energy usage. Note that 
most current systems do not allow the frequency of cores to be changed independently. However, 
each core can be dynamically clock gated, giving further power and energy savings.
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Multi-core systems also add flexibility and scalability to system designs. A system that contains 
one or two cores could be scaled up for more performance by adding further cores, without 
requiring redesign of the whole system or significant changes to software.

Having multiple cores at our disposal also allows more options for system configuration. For 
example, we might have a system which uses separate cores – one to handle a hard real-time 
requirement and another for an application requiring high, uninterrupted performance. These 
could be consolidated into a single multi-processor system.

A multi-core device is also likely to be more responsive than one with a single core. When 
interrupts are distributed between cores there will be more than one core available to respond to 
an interrupt and fewer interrupts per core to be serviced. Multiple cores will also allow an 
important background process to progress simultaneously with an important but unrelated 
foreground process.

Multi-core systems can also extract more performance from high latency memory systems (for 
example, DDR memory) by allowing a memory controller to queue up and optimize requests to 
the memory. Processors working on coherent data can benefit from reductions in linefills and 
evictions. When the data is not shared, it is likely that performance will be adversely affected. 
An L2 cache can mean improved utilization for shared memory regions (including file caches), 
shared libraries and kernel code. Additionally, if the number of cores is increased, then without 
a corresponding increase in memory bandwidth performance will also deteriorate.

In the past, much software was written to operate within the context of a single processor. Some 
operating systems provide support for time-slicing. this gives the illusion of multiple processes 
or tasks running simultaneously. It is important to clearly understand the difference between 
multi-threading (for example POSIX threads, or Java) and multi-processing. A multi-threaded 
application can be run on a single core, but only with multi-processing can the threads truly 
execute in parallel.

Migrating multi-threaded software from a single processor system to a multi-processing one can 
trigger problems with incorrect programs that could not be exposed by running the same 
program time-sliced on a single processor. It can also cause very infrequent bugs to become very 
frequently triggered. What it cannot do is to cause correctly written multi-threaded programs to 
misbehave – only expose previously unnoticed errors.
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21.1 Multi-processing ARM systems
From early in the history of the architecture, ARM processors were likely to be implemented in 
systems which contained other processors. This commonly meant a heterogeneous system, 
perhaps containing an ARM processor plus a separate DSP processor. Such systems have 
different software executing on different cores and the individual processors can have differing 
privileges and views of memory. Many widely used ARM systems (for example, TI’s OMAP 
series, or Freescale’s i.MX) are examples of this.

Figure 21-1 Example of a system with multiple processors

We can distinguish between systems which contain:

• a single processor

• multiple processors (such as that shown in Figure 21-1), which contain multiple 
independent processing elements

• a multi-core processor, which contain multiple cores capable of independent instruction 
execution, which can be externally viewed like a single unit, either by the system designer 
or by an operating system that can abstract the underlying resources from the application 
layer. In this chapter (and those which follow), we will focus on such processors.

ARM was among the first companies to introduce such multi-core processors to the 
System-on-Chip market, when it introduced the ARM11 MPCore processor in 2004. All the 
processors described in this book, with the exception of the Cortex-A8 processor are examples 
of such systems. 

An ARM MPCore processor can contain between one and four processing cores. Each core can 
be individually configured to take part (or not) in a data cache coherency management scheme. 
A Snoop Control Unit (SCU) device inside the processor has the task of automatically 
maintaining cache coherency, between cores within the processor without software intervention.

ARM MPCore processors include an integrated interrupt controller. Multiple external interrupt 
sources can be independently configured to target one or more of the individual processor cores. 
Furthermore, each core is able to signal (or broadcast) any interrupt to any other core or set of 
cores in the system, from software (software triggered Interrupts). These mechanisms allow the 
OS to share and distribute the interrupts across all cores and to coordinate activities using the 
low-overhead signaling mechanisms provided.

Memory System

Cortex-A9 ARM Mali-400 
MP GPU DSP
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Cortex-A MPCore processors also provide hardware mechanisms to accelerate OS kernel 
operations such as system wide cache and TLB maintenance operations. (This feature is not 
found in the ARM11 MPCore.)

In summary, each of the Cortex-A series MPCore processors have the following features:

• configurable between one and four cores (at design time)

• data cache coherency

• integrated interrupt controller

• local timers and watchdogs

• (optional) Accelerator Coherency Port (ACP). 

Figure 21-2 shows the structure of the Cortex-A9 MPCore processor, though a generalized form 
of this description also applies to other ARM MPCore processors. We will describe each of 
these features in more detail in the course of this chapter and those which follow.

Figure 21-2 Cortex-A9 MPCore processor
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21.2 Symmetric multi-processing
Symmetric multi-processing (SMP) is a software architecture which dynamically determines 
the roles of individual processors. Each core within the processor has the same view of memory 
and of shared hardware. Any application, process or task can run on any core and the operating 
system scheduler can dynamically migrate tasks between cores to achieve optimal system load.

We expect that readers will be familiar with the fundamental operating principles of an OS, but 
OS terminology will be briefly reviewed here. An application which executes under an 
operating system is known as a process. It performs many operations through calls to the system 
library, which provides certain functions from library code, but also acts a wrapper for system 
calls to kernel operations. 

For the purposes of describing SMP operation, we will use the term kernel to represent that 
portion of the operating system which contains exception handlers, device drivers and other 
resource and process management code. We will assume also the presence of a scheduler, which 
typically is called using a timer interrupt and which has the task of time-slicing the available 
cycles on processors between multiple tasks, dynamically determining the priority level of 
individual processes and deciding which process to run next. Individual processes have 
associated resources (including stack, heap and constant data areas) and properties (such as 
scheduling priority settings). The kernel view of a process is called a task.

Threads are separate tasks executing within the same process space, which allow separate parts 
of the application to execute in parallel on different cores. They also permit one part of an 
application to keep executing while another part is waiting for a resource.

In general, all threads within a process share a number of global resources (including the same 
memory map and access to any open file and resource handles). Threads also have their own 
local resources, including their own stacks and register usage, which will be saved and restored 
by the kernel on a context switch. The fact that these resources are local does not, however, 
mean that the local resources of any thread are guaranteed to be protected from incorrect 
accesses by other threads. Threads are scheduled individually and can have different priority 
levels even within a single process.

An SMP capable operating system provides an abstracted view of the available processor 
resources to the application. Multiple applications can run concurrently in an SMP system 
without re-compilation or source code changes. A conventional multitasking OS enables the 
system to perform several task or activities at the same time, in both single-core and multi-core 
processors. There is, however, a key distinction. In the single (uniprocessor) case, multitasking 
is performed through time-slicing of a single processor, giving the illusion of many tasks being 
performed at the same time. In the multi-core system, we can have true concurrency; multiple 
task are actually carried out at the same time, in parallel, on separate cores. The role of managing 
the distribution of such tasks across the available cores is performed by the operating system.

To provide the best possible energy usage, it may be desirable for the OS to distribute the 
concurrent tasks evenly across the available processors. This enables us to maximize the 
benefits of Dynamic Voltage and Frequency Scaling (DVFS) power management techniques, 
since, typically, DVFS applies to the whole multi-core cluster. Such activity is known as load 
balancing. It attempts to ensure that there is an even spread of workloads across all available 
cores. To do this, it must be able to dynamically re-prioritize tasks and have the ability to 
monitor the workload of each core.

Interrupt handling can also be load balanced. By default all interrupts on ARM processors are 
sent to CPU0. This allows for using user space software to rebalance interrupts. Under Linux 
this can be performed by the irqbalance daemon, http://irqbalance.org/. Irqbalance monitors 
the interrupt handling load on each core and tries to shift interrupts around, using the 
irq_set_affinity system call, to achieve an even load across the system. This is not as trivial a 
task as it might first appear. For example, a single device might have more than one interrupt 
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output, or separate devices might be feeding data into the same kernel subsystems. Both these 
situations, if ignored, could lead to a lot of data being shuffled back and forth between cores by 
the cache coherency hardware. To combat this, irqbalance tries to make clever decisions about 
which interrupts should be grouped together on a specific core. However, it provides additional 
facilities for controlling this behavior if the default parameters are not optimal for your system. 
It is possible to manually configure interrupt targets for load balancing, for example, you may 
want to do this for interrupts associated with an individual peripheral. On ARM and Intel 
processors, the default in-kernel behavior is NOT to do interrupt load balancing.

The scheduler in an SMP system can dynamically reprioritize tasks. This dynamic task 
prioritization allows other tasks to run while the current task sleeps. In Linux, for example, tasks 
whose performance is bound by I/O activity can have their priority decreased in favor of tasks 
whose performance is limited by processor activity. The I/O-bound task will typically schedule 
I/O activity and then sleep pending such activity.
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21.3 Asymmetric multi-processing
We need to distinguish between SMP (Symmetric) and AMP (Asymmetric) multi-processing. 
In an AMP system, the programmer statically assigns individual roles to a core within a 
processor, so that in effect, we have separate cores, each performing separate jobs, within each 
processor. This can be referred to as a function-distribution software architecture and typically 
means that we have separate operating systems running on the individual cores. The system can 
appear to the programmer as a single-core system with dedicated accelerators for certain critical 
system services. In general AMP does not refer to systems in which tasks or interrupts are 
associated with a particular core.

In an AMP system, each task can have a different view of memory and there is no scope for a 
core which is highly loaded to pass work to one which is lightly loaded. There is no need for 
hardware cache coherency in such systems, although there will typically be mechanisms for 
communication between the cores through shared resources, possibly requiring dedicated 
hardware. The Cortex-A9 processor cache coherence management hardware described in Cache 
coherency on page 22-2, can help reduce the overheads associated with sharing data between 
the systems.

Reasons for implementing an AMP system using a multi-core processor might include security, 
need for guaranteeing meeting of real-time deadlines, or because individual cores are dedicated 
to perform specific tasks.

There are classes of systems that have both SMP and AMP features. This means that we have 
two or more cores running an SMP operating system, but the system has additional elements 
which do not operate as part of the SMP system. The SMP sub-system can be regarded as one 
element within the AMP system. Cache coherency is implemented between the SMP cores, but 
not necessarily between SMP cores and AMP elements within the system. In this way, 
independent subsystems can be implemented within the same multi-core processor.

It is entirely possible (and normal) to build AMP systems in which individual processors are 
running different operating systems (these are called Multi-OS systems). 

The selection of software MP model is determined by the characteristics of the applications 
running in the system. In networking systems, for example, it can be convenient to provide a 
separation between control-plane (AMP) and data-plane (SMP) sections of the system. In other 
systems, it may be desirable to isolate those parts of the system which require hard real-time 
response from applications which require raw processor performance and to implement these 
on separate processors. 

Note
 Where synchronization is required between these separate processors, it can be provided 
through message passing communication protocols, for example, the Multicore Association API 
(MCAPI). These can be implemented by using shared memory to pass data packets and by use 
of software triggered interrupts to implement a so-called door-bell mechanism.
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SMP Architectural Considerations

An SMP system will by definition have shared memory between the processors. To maintain the 
desired level of abstraction to application software, the hardware must take care of providing a 
consistent and coherent view of memory for the programmer.

Changes to shared regions of memory must be visible to all processors without any explicit 
software coherency management. Likewise, any updates to the memory map (for example due to 
demand paging, allocation of new memory or mapping a device into the current virtual address 
space) of either the kernel or applications must be consistently presented to all processors.

The ARM MPCore technology provides a number of features that reduce some of the overheads 
traditionally associated with writing software for SMP systems. This chapter describes these 
features, as well as going through other important aspects of system software running on an ARM 
MPCore processor.
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22.1 Cache coherency
Cache coherency is vitally important in an SMP system. It means that changes to data held in 
the cache of one processor are visible to the other processors, making it impossible for 
processors to see stale copies of data (the old data from before it was changed by the first 
processor).

This activity is handled in ARM MPCore systems by a device known as the Snoop Control Unit 
(SCU). This device maintains coherency between the cores’ L1 data caches. Since executable 
code changes much less frequently, this functionality is not extended to the L1 instruction 
caches. The coherency management is implemented using a MESI-based protocol, optimized to 
decrease the number of external memory accesses. In order for the coherency management to 
be active for a memory access, all of the following must be true:

• The SCU is enabled, through its control register located in the private memory region. See 
Private memory region on page 22-12. (The SCU has configurable access control, 
allowing restriction of which processors can configure it.)

• The core performing the access is configured to participate in the inner Shareable domain 
(configured by the operating system at boot time, by setting the somewhat misleadingly 
named SMP bit in the CP15:ACTLR, Auxiliary Control Register).

• The MMU is enabled.

• The page being accessed is marked as Normal Shareable, with a cache policy of 
write-back, write-allocate. Device and Strongly-ordered memory, however, are not 
cacheable, and write-through caches behave just like uncached memory from the point of 
view of the core.

Note that the SCU can only maintain coherency within the MP block. If there are additional 
processors or other bus masters in the system, explicit software synchronization is required 
when these share memory with the MP block. Alternatively, the Accelerated Coherency Port 
can be used (described in Accelerator Coherency Port (ACP) on page 22-3)

22.1.1 MESI protocol

There are a number of standard ways by which cache coherency schemes can operate. As 
mentioned in Cache coherency, ARM MPCore processors use a modified version of the MESI 
protocol. Let’s take a look at how that works and then describe some of the modifications made 
to it for performance reasons:

The SCU marks each line in the cache with one of the following attributes: M (Modified), E 
(Exclusive), S (Shared) or I (Invalid). These are described below:

Modified The most up-to-date version of the cache line is within this cache. No other copies 
of the memory location exist within other caches. The contents of the cache line 
are no longer coherent with main memory.

Exclusive The cache line is present in this cache and coherent with main memory. No other 
copies of the memory location exist within other caches.

Shared The cache line is present in this cache and coherent with main memory. Copies of 
it can also exist in other caches in the coherency scheme.

Invalid The cache line is invalid.
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Now let’s look at the standard implementation of the protocol. The rules are as follows:

• A write can only be done if the cache line is in the Modified or Exclusive state. If it is in 
the Shared state, all other cached copies must be invalidated first. A write moves the line 
into the Modified State.

• A cache can discard a Shared line at any time, changing to the Invalid state. A Modified 
line is written back first.

• If a cache holds a line in the Modified state, reads from other caches in the system will get 
the updated data from the cache. This is conventionally done by first writing the data to 
main memory and then changing the cache line to the Shared state, before performing a 
read.

• A cache that has a line in the Exclusive state must move the line to the Shared state when 
another cache reads that line.

• The Shared state may not be precise. If one cache discards a Shared line, another cache 
may not be aware that it could now move the line to Exclusive status.

ARM MPCores also implement optimizations that can copy clean data and move dirty data 
directly between participating L1 caches, without having to access (and wait for) external 
memory.

22.1.2 MOESI protocol

The Cortex-A5 MPCore processor implements a slightly different coherency protocol. It uses 
the MOESI protocol, which introduces a fifth state for a shareable line in an L1 data cache. This 
is Owned, which describes a line that is dirty and in possibly more than one cache. A cache line 
in the owned state holds the most recent, correct copy of the data. Only one core can hold the 
data in the owned state. The other cores can hold the data in the shared state. 

22.1.3 Accelerator Coherency Port (ACP) 

The Accelerator Coherency Port (ACP) is an optional feature of the Cortex-A9 and Cortex-A5 
processors. It provides an AXI slave interface into the snoop control unit of the processor. (The 
AXI bus interface is defined in ARM's AMBA specification.)

This slave interface can be connected to an external uncached AXI master, such as a DMA 
engine, for example, and is able to initiate both read and write memory transfers to the ACP. It 
enables such a device to snoop the L1 caches of all cores, avoiding the need for synchronization 
through external memory. A cached device can also be connected, but this requires manual 
coherency management through software.

The behavior of accesses performed on the ACP is as follows:

• addresses used by the ACP are physical addresses that can be snooped by the SCU to be 
fully coherent

• ACP reads can hit in any processor’s L1 D-cache

• writes on the ACP invalidate any stale data in L1 and write-through to L2. 

The ACP allows an external device to see processor-coherent data without knowledge of where 
the data is in the memory hierarchy. Memory transfers are automatically coherent in the same 
way as happens between the processor’s L1 D-caches.

Use of the ACP can both increase performance and save power, as there will be reduced traffic 
to external memory and faster execution.
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Programmers writing device drivers which use ACP do not need to be concerned with 
coherency issues, as no cache cleaning or invalidation is required to ensure coherency. However, 
the use of memory barriers (DMB) or external cache synchronization operations can still be 
necessary, if a particular ordering must be enforced.
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22.2 TLB and cache maintenance broadcast
An individual processor can broadcast TLB and cache maintenance operations to other 
processors in the inner Shareable coherency domain. This can be required whenever shared page 
tables are modified, for example. This behavior may need to be enabled by the programmer. For 
example, in the Cortex-A9 processor, this is controlled by the FW bit in the Auxiliary Control 
Register (ACTLR). Maintenance operations can only be broadcast and received when the 
processor is configured to participate in the inner Shareable domain (using the SMP bit in 
ACTLR). Only inner Shareable operations are broadcast, for example:

• invalidate TLB entry by virtual address

• clean or invalidate data cache line by virtual address

• invalidate instruction cache line by virtual address.

Maintenance broadcasting was not available in the ARM11 MPCore, requiring broadcasting of 
the above operations to be implemented in software.

Some care is needed with cache maintenance activity in multi-core systems which include a 
L2C-310 L2 cache (or similar). Cleaning or invalidating the L1 cache and L2 cache will not be 
a single atomic operation. A processor may therefore perform cache maintenance on a particular 
address in both L1 and L2 caches only as two discrete steps. If another processor were to access 
the affected address between those two actions, a coherency problem can occur. Such problems 
can be avoided by following two simple rules.

• when cleaning, always clean the innermost (L1) cache first and then clean the outer 
cache(s) 

• when invalidating, always invalidate the outermost cache first and the L1 cache last.
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22.3 Handling interrupts in an SMP system
ARM MPCore processors include an integrated interrupt controller, which is an implementation 
of the GIC architecture (see Generic Interrupt Controller on page 13-4 for further details). This 
controller provides 32 private interrupts per core, of which the lower 16 are Software Generated 
Interrupts (SGI) that can be generated only through software operations, and the rest are Private 
Peripheral Interrupts (PPI). It also provides a configurable number of Shared Peripheral 
Interrupts (SPI) – up to 224 in current MPCore implementations). It supports interrupt 
prioritization, pre-emption and routing to different cores.

In an ARM MPCore processor, the GIC control registers are memory mapped and located 
within the Private memory region, see Private memory region on page 22-12.

The Interrupt Processor Targets registers configure which cores individual interrupts are routed 
to. They are ignored for private interrupts. 

The registers controlling the private interrupts (0-31) are banked, so that each core can have its 
own configuration for these. This includes priority configuration and the enabling or disabling 
of individual interrupts.

The Software Generated Interrupt (SGI) Register can assert a private software generated 
interrupt on any core, or a groups of cores. The priority of a software interrupt is determined by 
the priority configuration of the receiving core, not the one that sends the interrupt. The interrupt 
acknowledge register bits [12:10] will provide the ID of the core that made the request. The 
target list filter field within this register provides shorthand for an SGI to be sent to all 
processors, all but self or to a target list.

For a software generated interrupt in an MPCore processor, the Interrupt Acknowledge Register 
also contains a bitfield holding the ID of the core that generated it. When the interrupt service 
routine has completed, it must write-back the value previously read from the Interrupt 
Acknowledge Register into the End Of Interrupt Register. For an SGI, this must also match the 
ID of the signalling core.

In both AMP and SMP systems, it is likely that cores will need to trigger interrupts on other 
cores (or themselves) - a so called softirq.

These Inter-Processor Interrupts can be used for kernel synchronization operations, or for 
communicating between AMP processors. For operations requiring more information passed 
than a raised interrupt, you can use a shared buffer to store messages. Before the core can receive 
an interrupt, some initialization steps are required both in the distributor and in the processor 
interface.
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22.4 Exclusive accesses
In an SMP system, data accesses frequently have to be restricted to one modifier at any 
particular time. This can be true of peripheral devices, but also for global variables and data 
structures accessed by more than one thread or process. Furthermore, library code which is used 
by multiple threads must be designed to ensure that concurrent access or execution is possible 
– it must be reentrant. 

Note
 A computer program is reentrant if it can be interrupted in the middle of its execution and then 
be called again before the previous version has completed.

Protection of such shared resources is often through a method known as mutual exclusion. The 
section of code which is being executed by a core while accessing such a shared resource is 
known as the critical section.

In a single processor system, mutual exclusion can be achieved by disabling interrupts when 
inside critical sections. This is not sufficient in a multi-core system, as disabling interrupts on 
one core will not prevent others from entering the critical section. It is also not ideal since 
interrupts cannot be disabled from within User mode. Of course, there are other problems with 
this technique, including reduced responsiveness to real-time events, particularly if the critical 
section is long.

In a multi-core system, we can use a spinlock – effectively a shared flag with an atomic 
(indivisible) mechanism to test and set its value. We perform this operation in a tight loop to 
wait until another thread (or core) clears the flag. We require hardware assistance in the form of 
special assembly language instructions to implement this. Most application developers do not 
need to understand the low-level implementation detail, but should instead become familiar 
with the lock and unlock calls available in their OS or threading library API. Nevertheless, in 
the next section, we will examine how this is implemented on the ARM architecture.

Three assembly language instructions relating to exclusive access are provided in the ARM 
processor architecture (in ARMv6 onwards). Variants of these instructions which operate on 
byte, halfword, word or doubleword sized data are also provided. The instructions rely on the 
ability of the core or memory system to tag particular addresses to be monitored for exclusive 
access by that core, using an exclusive access monitor.

• LDREX (Load Exclusive) performs a load of memory, but also tags the physical address to 
be monitored for exclusive access by that processor.

• STREX (Store Exclusive) performs a conditional store to memory, succeeding only if the 
target location is tagged as being monitored for exclusive access for that core. This 
instruction returns the value of 1 in a general purpose register if the store does not take 
place, and a value of 0 if the store is successful.

• CLREX (Clear Exclusive) clears any exclusive access tag for that processor.

Load Exclusive and Store Exclusive operations must be performed only on Normal memory 
(see Normal memory on page 11-5) and have slightly different effect depending on whether the 
memory is marked as Shareable or not. If the core reads from Shareable memory with an LDREX, 
the load happens and that physical address is tagged to be monitored for exclusive access by that 
processor. If any other processor writes to that address and the memory is marked as Shareable, 
the tag is cleared.
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If the memory is not Shareable then any attempt to write to the tagged address by the one that 
tagged it results in the tag being cleared. If the processor does a further LDREX to a different 
address, the tag for the previous LDREX address is cleared. Each processor can only have one 
address tagged.

STREX can be considered as a conditional store. The store is performed only if the physical 
address is still marked as exclusive access (this means it was previously tagged by this core and 
no other core has since written to it). STREX returns a status value showing if the store succeeded. 
STREX always clears the exclusive access tag.

The use of these instructions is not limited to multi-core systems. In fact, they are frequently 
employed in single processor systems, to implement synchronization operations between 
threads running on the same processor. 

Let’s take a very simple example (Example 22-1) of how the load and store exclusive operations 
can be used to implement a spinlock.

Example 22-1 Example spin lock implementation with LDREX and STREX

MOV   R1, #0 @ the LOCK value
LDR     R2, <spinlock_addr> 

spin_lock:
LDREX  R0, [R2] @ load value
CMP    R0, R1 @ if not locked already
STREXNE R0, R1, [R2] @ try to claim the lock
CMPNE   R0, #1 @ check if we succeeded
BEQ     spin_lock @ retry if failed

In this code, we perform an LDREX (exclusive load) from the memory address which holds the 
lock value (address held in R2). This does two things. It returns the value of the lock into register 
R0. It also tags the address as being exclusively accessed. We then check to see if the value at 
the address is equal to 0 (the value we have chosen to represent that the lock is in a locked state). 
If it is not, we proceed to try to claim the lock. We execute the STREX (exclusive store) 
instruction. This first checks that the address is still marked as exclusive. If it is, this means that 
we check that no other thread on this processor, or on another, has touched the address in the 
time since the read was done and the address was tagged as exclusive. If this check succeeds 
then the memory location is updated and the exclusive access tag is cleared. In this case the 
value 0 is written, indicating that the resource is now locked. The register R0 is used to hold the 
value returned by the STREX instruction. If R0 is 1 then the STREX failed. The BEQ at the end covers 
both cases (that is, LDREX returned a value of 0 indicating the lock is taken or that STREX returned 
a 1 indicating that someone touched the lock since we read a non-zero value in the LDREX).

It should be clear from this that LDREX and STREX provide the necessary primitives to allow us to 
build complex synchronization objects. Now let’s take a look at how the exclusive tagging 
actually works. 

In hardware, the processor includes a device named the local monitor. This monitor observes 
the processor. When the core performs an exclusive load access, it records that fact in the local 
monitor. When it performs an exclusive store, it checks that a previous exclusive load was 
performed and fails the exclusive store if this was not the case. The architecture enables 
individual implementations to determine the level of checking performed by the monitor. The 
processor can only tag one physical address at a time. An LDREX from a particular address should 
be followed shortly after by an STREX to the same location, before an LDREX from a different 
address is performed. This is because the local monitor does not need to store the address of the 
exclusive tag (although it can do, if the processor implementer decides to do this). The 
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architecture enables the local monitor to treat any exclusive store as matching a previous LDREX 
address. For this reason, use of the CLREX instruction to clear an existing tag is required upon 
context switches. 

Where exclusive accesses are used to synchronize with external masters outside the processor, 
or to regions marked as Sharable even between cores in the same processor, it is necessary to 
implement a global monitor within the hardware system. This acts as a wrapper to one or more 
memory slave devices and is independent of the individual processors. This is specific to a 
particular SoC and may or may not exist in any particular system. An LDREX/STREX sequence 
performed to a memory location which has no suitable exclusive access monitor will fail, with 
the STREX instruction always returning 1.

Finally, let’s look at the specific case of Linux – the arch/arm/include/asm/spinlock.h file, 
which includes two functions arch_spin_lock() and arch_spin_unlock(). The first of these 
contains the inline assembly sequence shown in Example 22-2.

Example 22-2 Linux spinlock code

static inline void arch_spin_lock(arch_spinlock_t *lock)
{

unsigned long tmp;

 __asm__ __volatile__(
"1:     ldrex   %0, [%1]\n"
"       teq     %0, #0\n"
#ifdef CONFIG_CPU_32v6K
"       wfene\n"
#endif
"       strexeq %0, %2, [%1]\n"
"       teqeq   %0, #0\n"
"       bne     1b"

: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");

smp_mb();
}

As you can see, this is very similar to the code in Example 22-1 on page 22-8, a key difference 
being that Linux running on an MPCore processor can put a core which is waiting for a lock to 
become available into standby state, to save power. Of course, this relies on the other processor 
telling us when it has finished with the lock to wake this processor up, using the SEV instruction. 
More information on WFE and SEV can be found in Chapter 25 Power Management).

The smb_mb() macro at the end of the sequence is required to ensure that external observers see 
the lock acquisition before they see any modifications of the protected resource, and also to 
ensure that accesses to the region before the acquisition, have completed before the lock holder 
reads from it. See Linux use of barriers on page 11-11 for more information on the barrier 
macros used in the Linux kernel.
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22.5 Booting SMP systems
Initialization of the external system may need to be synchronized between cores. Typically, only 
one of the cores in the system needs to run code which initializes the memory system and 
peripherals. Similarly, the SMP operating system initialization typically runs on only one core 
– the primary core. When the system is fully booted, the remaining cores are brought online and 
this distinction between the primary core and the others (secondary cores) is lost.

If all of the cores come out of reset at the same time, they will normally all start executing from 
the same reset vector. The boot code will then read the processor ID to determine which core is 
the primary. The primary core will perform the initialization described above and then signal to 
the secondary ones that everything is ready. An alternative method is to hold the secondary cores 
in reset while the primary core does the initialization. This requires hardware support to 
co-ordinate the reset.

In an AMP system, the bootloader code will determine the suitable start address for the 
individual cores, based on their processor ID (as each processor will be running different code). 
Care may be needed to ensure correct boot order in the case where there are dependencies 
between the various applications running on different cores.

22.5.1 Processor ID

Booting provides a simple example of a situation where particular operations need to be 
performed only on a specific core. Other operations need to perform different actions dependent 
on the core on which they are executing. 

The CP15:MPIDR Multiprocessor Affinity Register provides a processor identification 
mechanism in a multiprocessor system.

This register was introduced in version 7 of the ARM architecture, but was in fact already used 
in the same format in the ARM11 MPCore. In its basic form, it provides up to three levels of 
affinity identification, with 8 bits identifying individual blocks at each level. In less abstract 
terms, you could say that there is:

• one 8-bit field showing which core you are executing on within an MPCore processor

• one 8-bit field showing which MPCore processor you are executing on within a cluster of 
MPCore processors

• one 8-bit field showing which cluster of MPCore processors you are executing on within 
a cluster of clusters of MPCore processors.

This information can also be of value to an operating system scheduler, as an indication of the 
order of magnitude of the cost of migrating a process to a different core, processor or cluster.

The format of the register was slightly extended with the ARMv7-A multiprocessing extensions 
implemented in the Cortex-A9 and Cortex-A5 processors. This extends the previous format by 
adding an identification bit to reflect that this is the new register format, and also adds the U bit 
which indicates whether the current core is the only core a uniprocessor implementation or not.

22.5.2 SMP boot in Linux

The boot process for the primary core is as described in Boot process on page 14-5. The method 
for booting the secondary cores can differ somewhat depending on the SoC being used. The 
method that the primary core invokes in order to get a secondary core booted into the operating 
system is called boot_secondary() and needs to be implemented for each mach type that supports 
SMP. Most of the other SMP boot functionality is extracted out into generic functions in 
linux/arch/arm/kernel.
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The method below describes the process on an ARM Versatile Express development board 
(mach-vexpress).

While the primary core is booting, the secondary cores will be held in a standby state, using the 
WFI instruction. It will provide a startup address to the secondary cores and wake them using an 
Inter-Processor Interrupt (IPI), meaning an SGI signalled through the GIC (see Handling 
interrupts in an SMP system on page 22-6). Booting of the secondary cores is serialized, using 
the global variable pen_release. Conceptually, we can think of the secondary cores being in a 
holding pen and being released one at a time, under control of the primary core. The variable 
pen_release is set by the kernel code to the ID value of the processor to boot and then reset by 
that core when it has booted. When an inter-processor interrupt occurs, the secondary core will 
check the value of pen_release against their own ID value using the MPIDR register.

Booting of the secondary processor will proceed in a similar way to the primary. It enables the 
MMU (setting the TTB register to the new page tables already created by the primary). It 
enables the interrupt controller interface to itself and calibrates the local timers. It sets a bit in 
cpu_online_map and calls cpu_idle(). The primary processor will see the setting of the 
appropriate bit in cpu_online_map and set pen_release to the next secondary processor.
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22.6 Private memory region
In the Cortex-A5, and Cortex-A9 MPCore processors, all of the internal peripherals are mapped 
to the private address space. This is an 8KB region location within the memory map at an 
address determined by the hardware implementation of the specific device used (this can be read 
using the CP15 Configuration Base Address Register).

The registers in this region are fixed in little-endian byte order, so some care is needed if the 
CPSR E bit is set when accessing it. Some locations within the region exist as banked versions, 
dependent on the processor ID. The Private memory region is not accessible through the 
Accelerator Coherency Port. Table 22-1 shows the layout of this Private memory region.

22.6.1 Timers and watchdogs

We looked at the SCU and interrupt control functions in Cache coherency on page 22-2. In 
addition, each core in an ARM MPCore implements a standard timer and a watchdog, both 
private to that core.

These can be configured to trigger after a number of processor cycles, using a 32-bit start value 
and an 8-bit pre-scale. They can be operated using interrupts, or by periodic polling (supported 
with the timer/watchdog Interrupt Status Registers). They stop counting while the core is in 
debug state. The timer can be configured in single-shot or auto-reload mode. The watchdog can 
be operated in classic watchdog fashion, where it asserts the core reset signal (for that specific 
core) on timeout. Alternatively, it can be used as a second timer.

Revision 1 and later of the Cortex-A9 processor, and all versions of the Cortex-A5 processor 
also include a global timer, shared between all cores, but with banked comparator and 
auto-increment registers for each core. It is a single, incrementing 64-bit counter, accessible 
only through 32-bit accesses. It can be configured to trigger an interrupt when the comparator 
value is reached. The auto-increment feature causes the processor comparator register to be 
incremented after each match. This is typically used by the OS scheduler, to trigger the 
scheduler on each core, at different times.

Table 22-1 Private memory region layout

Base Address offset Function

0x0000 Snoop Control Unit (SCU)

0x0100 Interrupt controller CPU Interface

0x0200 Global Timer

0x0600 Local Timer/Watchdog

0x1000 Interrupt Controller Distributor
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Chapter 23 
Parallelizing Software

In Chapter 21 Introduction to Multi-processing, we described how an SMP system can allow us to 
run multiple threads efficiently and concurrently across multiple processors. In this case, the 
parallelization is, in effect, handled on our behalf by the OS scheduler.

In many cases, however, this is insufficient and the programmer must take steps to rewrite code to 
take advantage of speed-ups available through parallelization. An obvious example is where a 
single application requires more performance than can be delivered by a single processor. More 
commonly, we can have the situation where an application requires much more performance than 
all of the others within a system, when it is said to be dominant. This prevents efficient energy 
usage, as we cannot perform optimal load-balancing. An unbalanced load distribution does not 
allow efficient dynamic voltage and frequency scaling.

The operating system cannot automatically parallelize an application. It is limited to treating that 
application as a single scheduling unit. In such cases, the application itself has to be split into 
multiple smaller tasks by the programmer. Of course, this means each of these tasks must be able 
to be independently scheduled by the OS, as separate threads. A thread is a part of a program that 
can be run independently and concurrently with other parts of a program. If the programmer 
decomposes an application into smaller execution entities which can be separately scheduled, the 
OS can spread the threads of the application across multiple processors. 
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23.1 Decomposition methods
The best approach to decomposition of an application into smaller tasks capable of parallel 
execution depends on the characteristics of the original application. Large data-processing 
algorithms can be broken down into smaller pieces by sub-division into a number of similar 
threads which execute in parallel on smaller portions of a dataset. This is known as data 
decomposition.

Consider the example of color-space conversion, from RGB to YUV. We start with an array of 
pixel data. The output is a similar array giving chrominance and luminance data for each pixel. 
Each output value is calculated by performing a small number of multiplies and adds. Crucially, 
the output Y, U and V values for each pixel depend only upon the input R, G and B values for 
that pixel. There is no dependency on the data values of other pixels. Therefore, the image can 
be divided into smaller blocks and we can perform the calculation using any number of instances 
of our code. This does not require any change to our original algorithm – simply changes to the 
amount of data supplied to each thread. 

We split the image into stripes (1/N arrays, where we have N threads) and each thread works on 
a stripe. The level of detail of the stripes can be an important consideration (it is clearly better 
for cacheability if each thread works on a contiguous block of pixels in array order). The code 
does not have to be modified to take care of scheduling – it is the operating system which takes 
care of it. Color space conversion would be a task where the NEON unit could significantly 
improve performance. Splitting the task across several processors can provide further 
parallelization gains than using NEON instructions alone.

A different approach is that of task decomposition. Here, we identify areas of code which are 
independent of each other and capable of being executed concurrently. This is a little more 
difficult, as we need now to think about the discrete operations being carried out and the 
interactions between them. A simple example might be the start-up sequence of a program. One 
task might be to check that the user has a valid license for the software. Another task might be 
to display a start-up banner with a copyright message. These are independent tasks with no 
dependency on each other and can be performed in separate threads. Again, no change is 
required to the source code which carries out these isolated tasks. We have to supply them to the 
OS kernel Scheduler as separate execution threads.

Of course, not all algorithms are able to be handled through data or task decomposition. Instead, 
we must analyze the program with the aim of identifying functional blocks. These are 
independent pieces of code with defined inputs and outputs that have some scope to be 
parallelized. Such functional blocks often depend upon input from other blocks (they have a 
serial dependency), but do not have a corresponding dependency upon time (a temporal 
dependency). This is (in some respects) analogous to the hardware pipelining employed in the 
processor itself.

The software for an MPEG video encoder provides a good example of this. Input data, in the 
form of an analog video signal is sampled and processed through a pipeline of discrete 
functional blocks. First, both inter-frame and intra-frame redundancies are removed. Then, 
quantization takes place to reduce the number of bits required to represent the video. After this, 
motion vector compensation takes place, run length compression and finally the encoded 
sub-stream is stored.

At the same time that data from one frame is being run-length compressed and stored, we can 
also start to process the next frame. Within a frame, the motion vector compensation process can 
be parallelized. We can use multiple parallel threads to operate on a frame (an example of data 
decomposition).
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When decomposing an application using these techniques, we must consider the overheads 
associated with task creation and management. An appropriate level of granularity is required 
for best performance. If we make our datasets too small, too big, or have too many datasets, it 
can reduce performance. In our example of color-space conversion, it would not be sensible to 
have a separate thread for each pixel, even though this is logically possible.
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23.2 Threading models
When an algorithm has been analyzed to determine potential changes which can be made for 
parallelization, the programmer must modify code to map the algorithm to smaller, threaded 
execution units. There are two widely-used threading models, the workers’ pool model and the 
fork-join model, not to be confused with the UNIX fork system call. The latter creates (spawns) 
a new thread whenever one is needed (that is, threads are created on-demand.) The operating 
system then schedules the various threads across the available processors. 

Each of the newly spawned threads is typically considered to be either a detached thread, or a 
joinable thread. A detached thread executes in the background and terminates when it has 
completed, without any message to the parent process. Of course, communication to or from 
such processes can be implemented manually by the programmer, through the available 
signaling mechanisms, or using global variables. A joinable thread, in contrast, will 
communicate back to the main thread, at a point set by the programmer. The parent process 
might have to wait for all joinable threads to return before proceeding with the next execution 
step. 

In the fork-join model, individual threads have explicit start and end conditions. There is an 
overhead associated with managing their creation and destruction and latencies associated with 
the synchronization point. This means that threads must be sufficiently long-lived to justify 
these costs.

If we know that some execution threads will be repeatedly required to consume input data, we 
can instead use the workers’ pool threading model. Here, we create a pool of worker threads at 
the start of the application. The pool can consist of multiple instances of the same algorithm, 
where the distributor (also called producer or boss) will dispatch the task to the first available 
worker (consumer) thread. Alternatively, the workers’ pool can contain several different data 
processing operators and data-items will be tagged to show which worker should consume the 
data.

The number of worker threads can be changed dynamically to handle peaks in the workload. 
Each worker thread performs a task until it is finished, then interrupts the boss to be assigned 
another task. Alternatively, the boss can periodically poll workers to see whether one is ready 
to receive another task. The work queue model is similar. The boss places tasks in a queue, and 
workers check the queue and take tasks to perform. A further variant is to have multiple bosses, 
sharing the pool of workers. The boss threads place tasks onto a queue, from where they are 
taken by the worker threads.

In each of these models, it should be understood that the amount of work to be performed by a 
thread can be variable and unpredictable. Even for threads which operate on a fixed quantity of 
data, it can be the case that data dependencies cause different execution times for similar 
threads. There is always likely to be some synchronization overhead associated with the need 
for a parent thread to wait for all spawned threads to return (in the fork-join model) or for a pool 
of workers to complete data consumption before execution can be resumed.
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23.3 Threading libraries
We have looked at how to make our target application capable of concurrent execution. We must 
now consider actual source code modifications. This is normally done using a threading library, 
normally utilizing multi-threading support available in the OS. When modifying existing code, 
we must take care to ensure that all shared resources are protected by proper synchronization. 
This includes any libraries used by the code, as all libraries are not reentrant. In some cases, 
there can be separate reentrant libraries for use in multi-threaded applications. A library which 
is designed to be used in multi-threaded applications is called thread-safe. If a library is not 
known to be thread-safe, only one thread should be allowed to make calls to the library 
functions.

The most commonly used standard in this area is POSIX threads (Pthreads), a subset of the 
wider POSIX standard. POSIX (IEEE std. 1003) is the Portable Operating System Interface, a 
collection of OS interface standards. Its goal is to assure interoperability and portability of code 
between systems. Pthreads defines a set of API calls for creating and managing threads. 
Pthreads libraries are available for Linux, Solaris, and Windows.

There are several other multi-threading frameworks, such as OpenMP, which can simplify 
multi-threaded development by providing high-level primitives, or even automatic 
multi-threading. OpenMP is a multi-platform, multi-language API that supports shared memory 
multi-processing through a set of libraries and compiler directives plus environment variables 
which affect run-time behavior. 

Pthreads provides a set of C primitives which allow us to create, manage, and terminate threads 
and to control thread synchronization and scheduling attributes. Let us examine, in general 
terms, how we can use Pthreads to build multi-threaded software to run on our SMP system. 
We’ll deal with the following types:

• pthread_t – thread identifier

• pthread_mutex_t – mutex

• sem_t - semaphore.

We need to modify our code to include the appropriate header files.

#include <pthread.h>
#include <semaphore.h>

We must link our code using the pthread library with the switch -lpthread.

To create a thread, we must call pthread_create(), a library function which requires four 
arguments. The first of these is a pointer to a pthread_t, which is where we will store the thread 
identifier. The second argument is the attribute, which can point to a structure which modifies 
the thread's attributes (for example scheduling priority), or be set to NULL if no special 
attributes are required. The third argument is the function the new thread will start by executing. 
The thread will be terminated should this function return. The fourth argument is a void * 
pointer supplied to the thread. This can receive a pointer to a variable or data structure 
containing relevant information to the thread function. 

A thread can complete either by returning, or calling pthread_exit(). Both will terminate the 
thread. A thread can be detached, using pthread_detach(). A detached thread will automatically 
have its associated data structures (but not explicitly allocated data) released on exit. 

For a thread that has not been detached, this resource cleanup will happen as part of a 
pthread_join() call from another thread. The library function pthread_join() enables us to 
make a thread stall and wait for completion of another thread. Take care, as so-called zombie 
threads can be created by joining a thread which has already completed. It is not possible to join 
a detached thread (one which has called pthread_detach()).
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Mutexes are created with the pthread_mutex_init() function. The functions 
pthread_mutex_lock() and pthread_mutex_unlock() are used to lock or unlock a mutex. 
pthread_mutex_lock() blocks the thread until the mutex can be locked. pthread_mutex_trylock() 
checks whether the mutex can be claimed and returns an error if it cannot, rather than just 
blocking. A mutex can be deleted when no longer required with the pthread_mutex_destroy() 
function.

Semaphores are created in a similar way, using sem_init() – one key difference being that we 
must specify the initial value of the semaphore. sem_post() and sem_wait() are used to increment 
and decrement the semaphore.

The GNU tools for ARM processors support full thread-local storage using the Native POSIX 
Thread library (NPTL), which enables efficient use of POSIX threads with the Linux kernel. 
There is a one-to-one correspondence between threads created with pthread_create() and kernel 
tasks

Example 23-1 provides a simple example of using the Pthreads library.

Example 23-1 Pthreads code

void *thread(void *vargp);
int main(void)
{
pthread_t tid;
pthread_create(&tid, NULL, thread, NULL);
/* Parallel execution area */
pthread_join(tid, NULL);
return 0;

}
/* thread routine */
void *thread(void *vargp)
{
/* Parallel execution area */
printf(“Hello World from a POSIX thread!\n”); 
return NULL;

}

23.3.1 Inter-thread communications

Semaphores can be used to signal to another thread. A simple example would be where one 
thread produces a buffer containing shared data. It could use a semaphore to indicate to another 
thread that the data can now be processed.

For more complex signaling, a message passing protocol can be needed. Threads within a 
process use the same memory space, so an easy way to implement message passing is by posting 
in a previously agreed-upon mailbox and then incrementing a semaphore.

23.3.2 Threaded performance

There are a few general points to consider when writing a multi-threaded application:

• Each thread has its own stack space and care may be needed with the size of this if large 
numbers of threads are in use.

• Multiple threads contending for the same mutex or semaphore creates contention and 
wasted processor cycles. There is a large body of research on programming techniques to 
reduce this performance loss.
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• There is an overhead associated with thread creation. Some applications avoid this by 
creating a thread pool at startup. These threads are used on demand and then returned to 
the thread pool for later re-use, rather than being closed completely.

23.3.3 Thread affinity

Thread affinity refers to the practice of assigning a thread to a particular processor or processors. 
When the scheduler wants to run a particular thread, it will use only the selected processor(s) 
even if others are idle (this can be quite a problem if too many threads have an affinity set to a 
specific processor). By default, threads are able to run on any core in an SMP system. 

ARM DS-5 Streamline is able to reveal a thread's affinity by using a display mode called X-ray 
mode. This mode can be used to visualize how tasks are divided up by the kernel and shared 
amongst several processors. See DS-5 Streamline on page 18-4.
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23.4 Synchronization mechanisms in the Linux kernel
When porting software from a uniprocessor environment to run on multiple processors, there 
can be situations where we need to modify code to enforce a particular order of execution or to 
control parallel access to shared peripherals or global data. The Linux kernel (like other 
operating systems) provides a number of different synchronization primitives for this purpose. 
Most such primitives are implemented using the same architectural features as application-level 
threading libraries like Pthreads. Understanding which of these is best suited for a particular 
case will give software performance benefits. Serialization and multiple threads contending for 
a resource can cause suboptimal use of the increased processing throughput provided by the 
multiple processors. In all cases, minimizing the size of the critical section provides best 
performance.

23.4.1 Completions

Completions are a feature provided by the Linux kernel, which can be used to serialize task 
execution. They provide a lightweight mechanism with limited overhead that essentially 
provides a flag to signal completion of an event between two tasks. The task which is waiting 
can sleep until it receives the signal, using wait_for_completion (struct completion *comp) and 
the task that is sending the signal typically uses either complete (struct completion *comp), 
which will wake up one waiting process, or complete_all (struct completion *comp) which 
wakes all processes which are waiting for the event. Kernel version 2.6.11 added support for 
completions which can time out and for interruptible completions.

23.4.2 Spinlocks

A spinlock provides a simple binary locking mechanism, designed for protection of critical 
sections. It implements a busy-wait loop. A spinlock is a generic synchronization primitive that 
can be accessed by any number of threads. More than one thread might be spinning for obtaining 
the lock. However, only one thread can obtain the lock. The waiting task executes spin_lock 
(spinlock_t *lock) and the signaling task uses spin_unlock(spinlock_t *lock). Spinlocks do 
not sleep and disable pre-emption.

23.4.3 Semaphores

Semaphores are a widely used method to control access to shared resources, and can also be 
used to achieve serialization of execution. They provide a counting locking mechanism, which 
can cope with multiple threads attempting to lock. They are designed for protection of critical 
sections and are useful when there is no fixed latency requirement. However, where there is a 
significant amount of contention for a semaphore, performance will be reduced. The Linux 
kernel provides a straightforward API with functions down(struct semaphore *sem) and 
up(struct semaphore *sem); to lower and raise the semaphore.

Unlike spinlocks, which spin in a busy wait loop, semaphores have a queue of pending tasks. 
When a semaphore is locked, the task yields, so that some other task can run. Semaphores can 
be binary (in which case they are also mutexes) or counting. 

23.4.4 Lock-free synchronization

The use of lock-free data structures, such as circular buffers, is widespread and can avoid the 
overheads associated with spinlocks or semaphores. The Linux kernel also provides two 
synchronization mechanisms which are lock-free, the Read-Copy-Update (RCU) and seqlocks. 
Neither of these mechanisms is normally used in device drivers.
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If you have multiple readers and writers to a shared resource, using a mutex may not be very 
efficient. A mutex would prevent concurrent read access to the shared resource because only a 
single thread is allowed inside the critical section. Large numbers of readers might delay a writer 
from being able to update the shared resource. RCUs can help in the case where the shared 
resource is mainly accessed by readers. Reader threads execute with little synchronization 
overhead. A thread which writes the shared resource has a much higher overhead, but is 
executed relatively infrequently. The writer thread must make a copy of the shared resource 
(access to shared resources must be done though pointers). When the update is complete, it 
publishes the new data structure, so that it is visible to all readers. The original copy is preserved 
until the next context switch on all processors. This guarantees that all current read operations 
can complete. RCUs are more complex to use than standard mutexes and are typically used only 
when traditional solutions are not suitable. Examples include shared file buffers or networking 
routing tables and garbage collection. 

Seqlocks are also intended to provide quick access to shared resources, without use of a lock. 
They are optimized for short critical sections. Readers are able to access the shared resource 
with no overhead, but must explicitly check and re-try if there is a conflict with a write. Writes, 
of course, still require exclusive access to the shared resource. They were originally developed 
to handle things like system time – a global variable which can be read by many processes and 
is written only by a timer-based interrupt (on a frequent basis, of course!) The timer write has a 
high priority and a hard deadline, in order to be accurate. Using a seqlock instead of a mutex 
enables many readers to share access, without locking out the writer from accessing the critical 
section.
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Issues with Parallelizing Software

In this chapter, we will consider some of the problems and potential difficulties associated with 
making software concurrent. You might also at this point wish to revisit the explanation of barrier 
use in the Linux kernel described in Linux use of barriers on page 11-11.

Amdahl’s Law defines the theoretical maximum speedup achievable by parallelizing an application. 
The maximum speedup is given by the formula:

Max speedup = 1/ ((1-P) + (P/N))

where:

P = parallelizable proportion of program, 

N = Number of processors.

This is, of course, an abstract, academic view. In practice, this provides a theoretical maximum 
speedup, as there are a number of overheads associated with concurrency. Synchronization 
overheads occur when a thread must wait for another task or tasks before it can continue execution. 
If a single task is slow, the whole program must wait. In addition, we will have critical sections of 
code, where only a single task is able to run at a time. We may also have occasions when all tasks 
are contending for the same resource or where no other tasks can be scheduled to run by the OS.
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24.1 Thread safety and reentrancy
Functions which can be used concurrently by more than one thread concurrently must be both 
thread-safe and reentrant. This is particularly important for device drivers and for library 
functions.

For a function to be reentrant, it must fulfill the following conditions:

• all data must be supplied by the caller

• the function must not hold static or global data over successive calls

• the function cannot return a pointer to static data

• the function cannot itself call functions which are not reentrant.

For a function to be thread-safe, it must protect shared data with locks. (This means that the 
implementation needs to be changed by adding synchronization blocks to protect concurrent 
accesses to shared resources, from different threads.) Reentrancy is a stronger property, this 
means that not every thread-safe function is reentrant.

There are number of common library functions which are not reentrant. For example, the 
function ctime() returns a pointer to static data which is over-written on each call.
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24.2 Performance issues
There are several multi-core specific issues relating to performance of threads:

Bandwidth The connection to external memory is shared between all processors within the 
MPCore. The individual cores run at speeds far higher than the external memory 
and so are potentially limited (in I/O intensive code) by the available bandwidth. 

Thread dependencies and priority inversion 
The execution of a higher priority thread can be stalled by a lower priority thread 
holding a lock to some shared data. Alternatively, an incorrect split in thread 
functionality can lead to a situation where no benefit is seen because the threads 
have fully serialized dependencies.

Cache contention and false sharing 
If multiple threads are using data which reside within the same coherent cache 
lines, there can be cache line migration overhead even if the actual variables are 
not shared.

24.2.1 Bandwidth concerns

Bandwidth issues can be optimized in a number of ways. Clearly, the code itself must be 
optimized using the techniques described in Chapter 19, to minimize cache misses and therefore 
reduce the bandwidth utilization. 

Another option is to pay attention to thread allocation. The kernel scheduler does not pay any 
attention to data usage by threads; instead it makes use of priority to decide which threads to 
run. The programmer may be able to provide hints which allow more efficient scheduling 
through the use of thread affinity. 

24.2.2 Thread dependencies

In real systems we can have threads with higher or lower priority which both access a shared 
resource. This gives scope for some potential difficulties. The term starvation is used to describe 
the situation where a thread is unable to get access to a resource after repeated attempts to claim 
it.

Priority inversion is said to occur when a lower priority task has a lock on a resource that a 
higher priority requires in order to be able to execute. In other words, a lower priority task 
prevents the higher priority task from executing. Priority inheritance resolves this by 
temporarily raising the priority of the task which has the lock to the highest level. This causes 
that task to execute as quickly as possible and relinquish the shared resource as soon as it can.

Operating systems (particularly real time operating systems) have ways to avoid such problems 
automatically. One method is not to allow lower-priority threads from directly accessing 
resources needed by higher-priority threads, they may need to use a higher-priority proxy thread 
to perform the operation. A similar approach is to temporarily increase the priority of the 
low-priority thread while it is holding the critical resource, ensuring that the scheduler will not 
pre-empt execution of that thread while in the critical selection.

A program that relies on threads executing in a particular sequence to work correctly may have 
a race condition. Single-core real-time systems often implicitly rely on tasks being executed in 
a priority based order. Tasks will then execute to completion, without pre-emption. Later tasks 
can rely on earlier tasks having completed. This can cause problems if such software is moved 
to a multi-core system without careful checking for such assumptions. A lower-priority task can 
run at the same time as a higher-priority task and the expected execution order of the original 
single-core system is no longer guaranteed. There are number of ways to resolve this. A simple 
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approach is to set task affinity to make those tasks run on the same processor. This requires little 
change to the legacy code, but does break the symmetry of the system and remove scope for load 
balancing. A better approach is to enforce serial execution through the use of the kernel 
synchronization mechanisms, which gives the programmer explicit control over the execution 
flow and better SMP performance, but does require the legacy code to be modified.

24.2.3 Cache thrashing

Processors implementing ARM architecture version 6 and later, including all ARM MPCore 
processors, use physically tagged caches which remove the need for flushing caches on context 
switch. In an SMP system, it is possible for tasks to migrate between the different processors in 
the system. The scheduler starts a task on a processor and it runs for a certain period and is then 
replaced by a different task. When that task is restarted at a later time by the scheduler, this could 
be on a different processor. This means that the task does not get the potential benefit of cache 
data already being present in the processor cache. Memory intensive tasks which quickly fill 
data cache might thrash each others’ cached data. This has an impact on both performance 
(slower execution due to higher number of cache misses) and system energy usage (due to 
additional interaction with external memory). The ARM MPCore processor optimizations for 
cache line migration mitigate the effects of this. In addition, the OS scheduler can try to reduce 
the problem by aiming to keep tasks on the same processor. As we have seen, the programmer 
can also do this by setting processor affinity to threads and processes.

24.2.4 False sharing

This is a problem of systems with shared coherent caches and is effectively a form of 
involuntary memory contention. It can happen when a processor (or other block) regularly 
accesses data that is never changed by another processor and this data shares a cache line with 
data that will be altered by another processor. The MESI protocol can end up migrating data that 
is not truly shared between different parts of the memory system, costing clock cycles and 
power. Even though there is no actual coherency to be maintained, the MESI protocol 
invalidates the cache line, forcing it to be re-loaded on each write. However, the cache-to-cache 
migration capability of ARM MPCore processors reduces the overhead. Therefore, 
programmers should avoid having processors operating on independent data that is stored 
within the same cache line and increasing the level of detail for inner loop parallelization.

24.2.5 Deadlock and livelock

When writing code that includes critical sections, it is important to be aware of common 
problems that can break correct execution of the program:

• Deadlock is the situation where two (or more) threads are each waiting for another thread 
to release a resource. Such threads are effectively blocked, waiting for a lock that can 
never be released.

• Livelock occurs when multiple threads are able to execute, without blocking indefinitely 
(the deadlock case), but the system as a whole is unable to proceed, due to a repeated 
pattern of resource contention.

Both deadlocks and livelocks can be avoided either by correct software design, or by use of 
lock-free software techniques.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 24-4
ID071612 Non-Confidential



Issues with Parallelizing Software 
24.3 Profiling in SMP systems
ARM MPCores contain additional performance counter functions, which allow counting of the 
following SMP cache events:

• coherent linefill missed in all processors

• coherent linefill hit in other processor caches.

ARM DS-5 Streamline configures a default set of hardware performance counters that are a 
best-fit for optimizing applications. See DS-5 Streamline on page 18-4 for more information.
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Chapter 25 
Power Management

Many ARM systems are mobile devices, powered by batteries. In such systems, optimization of 
power usage (in fact, it would be more accurate to look at total energy usage) is a key design 
constraint. Programmers often spend significant amounts of time trying to save battery life in such 
systems. Power-saving can also be of concern even in systems which do not use batteries. For 
example, we may wish to minimize energy usage for reduction of electricity costs to the consumer 
or for environmental reasons. 

Built into ARM processors are many hardware design methods aimed at reducing power usage. In 
this chapter, we will focus on the features available to the programmer to reduce processor power 
consumption. Before we do so, let’s review the components of processor energy usage. 

Energy usage can be divided into two components – dynamic and static. Both are important. Static 
power consumption occurs whenever the processor logic or RAM blocks have power applied to 
them. In general terms, the leakage currents (any current that flows when the ideal current is zero) 
are proportional to the total silicon area – the bigger the chip, the more the leakage. The proportion 
of power consumption due to leakage gets significantly higher as we move to more advanced 
manufacturing process – they are much worse on fabrication geometries of 130nm and below. 
Dynamic power consumption occurs due to transistors switching and is a function of the processor 
clock speed and the numbers of transistors which change state per cycle. Clearly, higher clock 
speeds and more complex processors will consume more power.
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25.1 Power and clocking
One way in which we can reduce energy usage is to remove power, which removes both 
dynamic and static currents (sometimes called power gating) or to stop the clock of the 
processor which removes dynamic power consumption only and can be referred to as clock 
gating.

ARM processors typically support a number of levels of power management, as follows:

• Run (Normal operation)

• Standby 

• Shutdown

• Dormant.

In this chapter, we will examine each of these in turn and understand how power can be saved 
at each level. We will also look at the latency associated with switching between each of these 
modes. For certain operations, there is a requirement to save and restore state before and after 
removing power and both the time taken to do this and power consumed by this extra work can 
be an important factor in software selection of the appropriate power management activity.

The SoC device which includes the ARM processor can have further low power states, with 
names such as “STOP” and “Deep sleep.” These refer to the ability for the hardware Phase 
Locked Loop (PLL) and voltage regulators to be controlled by power management software.

25.1.1 Standby mode

In the standby mode of operation, the core is left powered-up, but most of its clocks are stopped, 
or clock-gated. This means that almost all parts of the processor are in a static state and the only 
power drawn is due to leakage currents and the clocking of the small amount of logic which 
looks out for the wake-up condition.

This mode is entered using either the WFI (Wait For Interrupt) or WFE (Wait For Event) 
instructions, which we’ll take a more detailed look at in a moment. We recommend use of a Data 
Sychronization Barrier (DSB) instruction before WFI or WFE, to ensure that pending memory 
transactions complete before changing state.

If a debug channel is active, it will remain active. The processor stops execution until a wakeup 
event is detected. The wakeup condition is dependent on the entry instruction. For WFI an 
interrupt or external debug request will wake the processor. For WFE, a number of specified 
events exist, including another processor in an MP system executing the SEV instruction. A 
request from the Snoop Control Unit (SCU) can also wake up the clock for a cache coherency 
operation in an MP system. This means that the cache of a processor which is in standby state 
will continue to be coherent with caches of other processors. A processor reset will always force 
the processor to exit from the standby condition.

Various forms of dynamic clock gating can also be implemented in hardware. For example the 
SCU, GIC, timers, CP15, instruction pipeline or NEON blocks can be automatically clock gated 
when an idle condition is detected, to save power.

Standby mode can be entered and exited quickly (typically in two-clock-cycles). It therefore has 
an almost negligible affect on the latency and responsiveness of the processor.
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25.1.2 Dormant mode

In dormant mode, the actual processor logic is powered down, but the cache RAMs are left 
powered up. Often the RAMs will be held in a low-power retention state where they hold their 
contents but are not otherwise functional. This provides a far faster restart than complete 
shutdown, as live data and code persists in the caches. Again, in a multi-processor system, 
individual processors can be placed in dormant mode.

In an MPCore system which allows individual processors within the SMP cluster to go into 
dormant mode, there is no scope for maintaining coherency while the processor has its power 
removed. Such processors must therefore first isolate themselves from the coherence domain. 
They will clean all dirty data before doing this and will typically be woken up via another 
processor telling the external logic to re-apply power. The woken processor will then need to 
restore the original processor state before rejoining the coherency domain. As the memory state 
may have changed while the processor was in dormant mode, it might well need to invalidate 
the caches anyway. Dormant mode is therefore much more likely to be useful in a single 
processor environment rather than in a multi-processor set-up. This is due to the additional 
expense of leaving and rejoining the coherency domain. In an MPCore cluster, dormant mode 
is typically likely to be used only by the last processor when the other processors have already 
been shutdown.

25.1.3 Assembly language power instructions

ARM assembly language includes instructions which can be used to place the processor in a low 
power state. The architecture defines these instructions as hints – the processor is not required 
to take any specific action when it executes them. In the Cortex-A processor family, however, 
these instructions are implemented in a way which shuts down the clock to almost all parts of 
the processor. This means that the power consumption of the processor is significantly reduced 
– only static leakage currents will be drawn, and there will be no dynamic power consumption.

The WFI instruction has the effect of suspending execution until the processor is woken up by 
one of the following conditions:

• an IRQ interrupt (even if CPSR I-bit is set)

• an FIQ interrupt (even if CPSR F-bit is set)

• an asynchronous abort

• a Debug Entry request (even if JTAG Debug is disabled).

In the event of the processor being woken by an interrupt when the relevant CPSR interrupt flag 
is disabled, the processor will implement the next instruction after WFI. On older versions of the 
ARM architecture, the wait for interrupt function (also called standby mode) was accessed using 
a CP15 operation, rather than a dedicated instruction.

The WFI instruction is widely used in systems which are battery powered. For example, mobile 
telephones can place the processor in standby mode many times a second, while waiting for the 
user to press a button. 

WFE is similar to WFI. It suspends execution until an event occurs. This can be one the events listed 
above, or an additional possibility – an event signaled by another processor in an MPCore. Other 
processors can signal events by executing the SEV instruction. SEV signals an event to all 
processors in a multi-processor system. We will describe WFE further when we look at 
multi-processor systems.
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25.1.4 Dynamic Voltage and Frequency Scaling

Many systems operate under conditions where their workload is very variable. It would be 
useful to have the ability to reduce or increase the processor performance to match the expected 
processor workload. If we could clock the processor more slowly when it is less busy, we could 
save dynamic power consumption. The dynamic power consumption has a linear correlation 
with clock frequency, but a quadratic relationship with voltage (it is proportional to the square 
of the supply voltage).

If the processor is running more slowly, it is also the case that its supply voltage can be reduced 
somewhat. This hardware approach is called Dynamic Voltage and Frequency Scaling (DVFS). 
The advantage of reducing supply voltage is that it reduces both dynamic and static power. 
Compared to the alternative of running fast, then entering standby, then running fast and so 
forth, the approach of running slowly at a lower supply can save energy. To do this successfully 
requires two difficult engineering problems to be solved. The SoC needs a way in which 
software running on the ARM processor can reliably modify the clock speed and supply voltage 
of the processor, without causing problems in the system. (This needs things like voltage 
level-shifters and split power supplies on chip to cope with the variable supply, plus 
synchronizers between voltage domains to cope with timing changes.) Of equal importance is 
the ability of software running in the system to make accurate predictions about future 
workloads to set the voltage and clock speed accordingly.
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Chapter 26 
Security

The term security is used in the context of computer systems to cover a wide variety of features. 
For the purposes of this chapter, we will use a narrower definition. A secure system means one 
which protects assets (resources which need protecting, for example passwords, or credit card 
details) from a range of plausible attacks to prevent them from being copied or damaged or made 
unavailable (denial of service). Confidentiality is a key security concern for assets such as 
passwords and cryptographic keys. Defense against modification and proof of authenticity is vital 
for security software and on-chip secrets used for security. Examples of secure systems might 
include entry of Personal Identification Numbers (PINs) for such things as mobile payments, digital 
rights management, and e-Ticketing. 

Security is harder to achieve in today’s world of open systems where a wide range of software can 
be downloaded onto a platform. This gives the potential for malevolent or untrusted code to tamper 
with the system. 

ARM processors include specific hardware extensions to allow construction of secure systems. 
Creating secure systems is outside the scope of this book. In the remainder of this chapter, we 
present the basic concepts behind the ARM Security Extensions (TrustZone). If your system is one 
which makes use of these extensions, you should be aware that this imposes some restrictions on 
the operating system and on unprivileged code (in other words, code which is not part of the secure 
system). TrustZone is of little or no use without memory system support.

It should, of course, be emphasized, that no security is absolute!
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26.1 TrustZone hardware architecture
The TrustZone hardware architecture aims to provide resources that enable a system designer to 
build secure systems. It does this through a range of components and infrastructure additions. 
Low-level programmers need to have some awareness of the restrictions placed on the system 
by the TrustZone architecture, even if they are not intending to make use of the security features.

In essence, system security is achieved by dividing all of the device’s hardware and software 
resources, so that they exist in either the Secure world for the security subsystem, or the Normal 
world for everything else. System hardware ensures that no Secure world resources can be 
accessed from the Normal world. A secure design places all sensitive resources in the Secure 
world, and has robust software running which can protect assets against a wide range of possible 
attacks.

Note that the use of the term Non-Secure is used in the ARM Architecture Reference Manual as 
a contrast to Secure state, but this does not imply that there is a security vulnerability associated 
with this state. We will refer to this as Normal operation here. The use of the word world is to 
emphasize the relationship between the Secure world and other states the device is capable of.

The additions to the processor enable a single physical processor to execute code from both the 
Normal world and the Secure world in a time-sliced fashion. The memory system is similarly 
divided. An additional bit, indicating whether the access is Secure or Non-Secure (the NS bit) 
is added to all memory system transactions, including cache tags and access to system memory 
and peripherals. This can be considered as an additional address bit, giving a 32-bit physical 
address space for the Secure world and a completely separate 32-bit physical address space for 
the Normal world. 

Figure 26-1 Switching between Normal and Secure worlds

As the processor cores execute code from the two worlds in a time-sliced fashion, context 
switching between them is done using an additional core mode (like the existing modes for IRQ, 
FIQ etc.) called Monitor mode. A limited set of mechanisms by which the physical processor 
can enter Monitor mode from the Normal world is provided. Entry to monitor can be through a 
dedicated instruction, the Secure Monitor Call (SMC) instruction, or by hardware exception 
mechanisms. IRQ, FIQ and external aborts can all be configured to cause the processor to switch 
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into Monitor mode. In each case, this will appear as an exception to be dealt with by the Monitor 
mode exception handler. Figure 26-1 on page 26-2 provides a conceptual summary of this 
switching.

Figure 26-2 shows how, in many systems, FIQ is reserved for use by the secure world (it 
becomes, in effect, a non-maskable secure interrupt). An IRQ which occurs when in the Normal 
world is handled in the normal way, described in the chapters on exception handling. An FIQ 
which occurs while executing in the Normal world is vectored directly to Monitor mode. 
Monitor mode handles the transition to Secure world and transfers directly to the Secure world 
FIQ handler. If the FIQ occurs when in the Secure world, it is handled through the Secure vector 
table and routed directly to the Secure world handler. IRQs are typically disabled during 
execution in the Secure world.

Figure 26-2 Banked out registers

The software handler for Monitor mode is implementation specific, but will typically save the 
state of the current world and restore the state of the world being switched to, much like a normal 
context switch.

The NS bit in the Secure Configuration Register (SCR) in CP15 indicates which world the 
processor is currently in. In Monitor mode, the processor is always executing in the Secure 
world, regardless of the value of the SCR NS-bit, which is used to signal which world you were 
previously in. The NS-bit also enables code running in Monitor mode to snoop security banked 
registers, to see what is in either world.

TrustZone hardware also effectively provides two virtual MMUs, one for each virtual processor. 
This enables each world to have a local set of translation tables, with the Secure world mappings 
hidden and protected from the Normal world. The page table descriptions include a NS bit, 
which is used to determine whether accesses are made to the secure or non-secure physical 
address space. Although the page table entry bit is still present, the Normal virtual processor 
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hardware does not use this field, and memory accesses are always made with NS = 1. The Secure 
virtual processor can therefore access either Secure or Normal memory. Cache and TLB 
hardware permits Normal and Secure entries to co-exist.

It is good practice for code which modifies page table entries and which does not care about 
TrustZone based security, to always set the page table NS-bit to zero. This means that it will be 
equally applicable when the code is executing in the Secure or Normal worlds.

The ability to direct aborts, IRQ and FIQ directly to the monitor, enables trusted software to 
route the interrupt request accordingly, which permits a design to provide secure interrupt 
sources immune from manipulation by the Normal world software. Similarly, the Monitor mode 
routing means that from the point of view of Normal world code, an interrupt that occurs during 
Secure world execution appears to occur in the last Normal world instruction that occurred 
before the Secure world was entered.

A typical implementation is to use FIQ for the Secure world and IRQ for the Normal world. 
Exceptions are configured to be taken by the current world (whether Secure or Normal), or to 
cause an entry to the monitor. The monitor has its own vector table. As a result of this, the 
processor has three sets of exception vector tables. It has a table for the Normal world, one for 
the Secure world, and one for Monitor mode.

The hardware must also provide the illusion of two separate cores within CP15. Sensitive 
configuration CP15 registers can only be written by Secure world software. Other settings are 
normally banked in the hardware, or by the Monitor mode software, so that each world sees its 
own version. 

Implementations which use TrustZone will typically have a light-weight kernel (Trusted 
Execution Environment) which hosts services (for example, encryption) in the Secure world. A 
full OS runs in the Normal world and is able to access the secure services via SMC. In this way, 
the Normal world gets access to functions of the service, without any ability to see keys or other 
protected data.

26.1.1 Multi-processor systems with security extensions

Each processor in a multi-core system has the programmer’s model features described for 
uniprocessors earlier in this book. Any number of the processors in the cluster can be in the 
Secure world at any point in time, and processors are able to transition between the worlds 
independently of each other. The Snoop Control Unit is aware of security settings. Additional 
registers are provided to control whether Normal world code can modify SCU settings. 
Similarly, the generic interrupt controller which distributes prioritized interrupts across the 
Multi-processor cluster must also be modified to be aware of security concerns.

Theoretically, the Secure world OS on an SMP system could be as complicated as the Normal 
world OS. However, this is highly undesirable when aiming for security. In general, it is 
expected that a Secure world OS will actually only execute on one core of an SMP system (with 
security requests from the other cores being routed to this chosen core). This does provide some 
bottleneck issues. To some extent these will be balanced by the Normal world OS performing 
load balancing against the core that it will see as busy for unknown reasons. Beyond that this 
limitation has to be seen as one of the compromises that can be reached to hit a particular target 
level of security.

26.1.2 Interaction of Normal and Secure worlds

If you are writing code in a system which contains some secure services, it can be useful to 
understand how these are used. As we have seen, a typical system will have a light-weight 
kernel, Trusted Execution Environment (TEE) hosting services (for example, encryption) in the 
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Secure world. This interacts with a full OS in the Normal world, which can access the secure 
services using the SMC call. In this way, the Normal world is able to have access to functions 
of the service, without getting to see keys (for example).

Generally applications developers won’t directly interact with TrustZone (or TEEs or Trusted 
Services). Instead, one makes use of a high level API (for example, it might be called 
reqPayment()) provided by a Normal world library. The library would be provided by the same 
vendor as the Trusted Service (for example, a credit card company), and would handle the low 
level interactions. Figure 26-3 shows this interaction and illustrates the flow from user 
application calling the API, which makes an appropriate OS call, which then passes to the 
TrustZone driver code, which passes execution into the TEE, through the Secure monitor.

Figure 26-3 Interaction with TrustZone

It is common to share data between the Secure and Normal worlds. For example, in the Secure 
world you might have a signature checker. The Normal world can request that the Secure world 
verifies the signature of a downloaded update, using the SMC call. The Secure world needs access 
to the memory used by the Normal world to store the package. The Secure world can use the 
NS-bit in its page table descriptors to ensure that it used non-secure accesses to read the data. 
This is important because data relating to the package might already be in the caches, due to the 
accesses done by the Normal world. These accesses with addresses marked as non-secure. As 
mentioned previously the security attribute can be thought of as an additional address bit. If the 
core used secure access to try to read the package, it would not hit on data already in the cache.

If you are a Normal world programmer, in general, you can ignore something happening in the 
Secure world, as its operation is hidden from you. One side effect is that interrupt latency can 
increase slightly, if an interrupt goes off in the Secure world, but this increase is small compared 
to the overall latency on a typical OS. 

If you do need to access a secure application, you will need a driver-like function to talk to the 
Secure world OS and Secure applications, but the details of creating that Secure world OS and 
applications are beyond the scope of this book. Programmers writing code for the Normal world 
only need to know the particular protocol for the secure application being called.
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Finally, the TrustZone System also controls availability of debug provision. Separate hardware 
over full JTAG debug and trace control is separately configurable for Normal and Secure 
software worlds, so that no information about the Secure system leaks.
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Chapter 27 
Virtualization

Modern compute subsystems are powerful but often under utilized. The domains that these systems 
address increasingly require multiple software environments working simultaneously on the same 
physical processor systems. Software applications and their environments may need to be 
completely separated for reasons of robustness, differing requirements for real-time behavior, or 
simply to have them isolated from each other. This is done by providing virtual processors for the 
software to execute on.

Implementing such virtual processors in an efficient fashion needs both dedicated hardware 
extensions (to accelerate switching between virtual machines) and software hypervisors. The 
volume of legacy software that needs to be ported to new hardware may make it more expedient to 
provide a virtual machine matching the legacy OS requirements than to port the OS and drivers to 
new hardware and OS versions. The Virtualization Extensions to the ARMv7 architecture provide 
a standard hardware accelerated implementation allowing the creation of high performance 
hypervisors. Writing a hypervisor is outside the scope of this book, as such software is typically 
produced by specialized teams. In this chapter, we will provide an overview of how the 
Virtualization Extensions work and the effects of this on OS and application code, in a fashion 
similar to our previous discussion of the TrustZone Security Extensions. The ARM Cortex-A15 
processor is the first device implementing the Virtualization Extensions.

The term hypervisor actually dates back to the 1960s and was first used by IBM to describe 
software running on mainframes. Today’s hypervisors are conceptually very similar and may be 
thought of as operating at a level higher than the supervisor or operating system. They typically 
allow multiple instances of one or more different operating systems, called Guest Operating 
Systems (Guest OS), to run on the system. The hypervisor provides a virtual system to each of the 
Guest operating systems and monitors their execution. The Guest OS does not typically need to be 
aware that it is running under a hypervisor or that other operating systems may be using the system. 
The term Virtual Machine Monitor (VMM) is sometimes used to describe a hypervisor. There are 
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two types of hypervisors being deployed on ARM. Type1 is as described with each Virtual 
Machine (VM) containing Guest OS. In Type 2, the hypervisor is an extension of the Host OS 
with each subsequent Guest OS contained in a separate VM. 

One possible use of virtual machine hypervisors is in so-called cloud computing solutions, 
where software may be partitioned into client or server devices or where large amounts of data 
or content exist. This scenario is likely to increase the amount of addressable physical memory 
required in the system. For this reason, the Virtualization Extensions require that the processor 
also implement the Large Physical Address Extension (LPAE) which was described in 
Chapter 10. This allows each of the multiple software environments, as well as different 
processes within, to access separate windows of physical addresses. LPAE provides an 
additional level of MMU translation table, so that each 32-bit virtual memory address can be 
mapped within a 40-bit physical memory range. In this scenario, this permits software to 
allocate enough physical memory to each virtual machine, even when total demands on memory 
exceed the range of 32-bit addressing. It would also be possible for a single operating system 
kernel to handle up to 40 bits of physical address space, with up to 4GB available at any given 
time. In theory, this can mean up to ~3GB per process.
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27.1 ARMv7-A Virtualization Extensions
The ARMv7-A architecture Virtualization Extensions add a number of additional features to the 
programmer’s model of the processor. These are:

• A hypervisor mode, in addition to the existing privileged modes. 

• An additional memory translation stage is added. Previously, the MMU would translate 
the processor’s virtual address to a physical address. Now, the virtual address is translated 
to an intermediate physical address (using the mappings provided by the OS itself). This 
intermediate physical address is then translated to a physical address, with access to real 
memory being supervised by the hypervisor.

• Hardware interrupts can be configured such that they are directed to the hypervisor. 
Registers are provided to hold virtual interrupts – called guest IRQs.

27.1.1 Privilege model in ARMv7-A Virtualization Extensions

The ARMv7-A Virtualization Extensions introduce a privilege model a little different to that of 
previous processors. The Cortex-A15 processor has three different levels of privilege: 

• PL0 (referred to as Unprivileged elsewhere in this book). This the privilege level of User 
mode. 

• PL1 (referred to as Privileged elsewhere in this book). This is the privilege level of SVC, 
Undef, Abort, FIQ, IRQ, System and Monitor modes.

• PL2 (new level for processors which implement the Virtualization Extensions). This is the 
privilege level of Hyp mode.

These privilege levels are separate from the TrustZone Secure and Normal (Non-secure) 
settings.

27.1.2 Hypervisor mode

Hypervisor mode operates at the PL2 level of privilege. It has access to its own versions of R13 
(SP) and SPSR. It uses the User mode link register for storing function return addresses, but has 
a dedicated register, called ELR_hyp, to store the exception return address. Hyp mode is 
available only in the Normal state and provides facilities for virtualization, which are only 
accessible in this mode. Figure 27-1 shows a representation of systems with and without 
virtualization.

Figure 27-1 Hypervisor layer

App 1 App 2 App 1 App 1App 2 App 2

Operating System

Hardware

Guest OS 1 Guest OS 2

Hardware

Virtualizer Software (or Hypervisor)

System without virtualization System with virtualization

Virtual Machine 2Virtual Machine 1
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 27-3
ID071612 Non-Confidential



Virtualization 
When the processor is operating in Hyp mode, it uses Hyp mode vector entries, which are taken 
from a dedicated vector table belonging to the hypervisor. Hypervisor mode is entered through 
a special exception process called Hyp trap entry which makes use of the previously reserved 
0x14 address within the vector table (see Table 12-1 on page 12-5). A dedicated register (the Hyp 
Syndrome Register) gives information to the hypervisor about the exception or other reason for 
entering the hypervisor (a trapped CP15 operation, for example).

27.1.3 Memory translation

The memory translation process in a processor which implements the Virtualization Extensions 
can be thought of as comprising four different MMUs (although the underlying hardware is 
likely to be a single actual block):

• A Normal world PL1&0 Stage 1 MMU. The operation of this MMU is typically under 
control of the Guest OS which may use two sets of translation tables, defined by the 
Normal world copies of TTBR1 and TTBR0, and controlled by the Normal world copy of 
TTBCR. This MMU supports both the Short-descriptor and Long-descriptor formats.

• A Normal world PL1&2 Stage 2 MMU. This performs translation between the 
Intermediate Physical Address (IPA) and the Physical Address (PA). The VTTBR defines 
the translation table for this MMU under control by the VTCR register. This MMU 
supports only the long-descriptor format.

• A Normal worldPL2 Stage 1 MMU. This performs the virtual to physical address 
translations used for the hypervisor software itself. It is controlled by the HTCR and its 
translation table is located by the setting of the HTTBR. This MMU supports only the 
long-descriptor format.

• A Secure MMU used in secure state at both PL0 and PL1. Its operation is controlled by 
two sets of translation tables, whose use is governed by the secure versions of TTBCR, 
TTBR0 and TTBR1. This produces a physical address from a virtual address. This MMU 
supports both the short-descriptor and long-descriptor formats.

The MMU translation process now has two stages. The first stage translates to a physical 
address – either an Intermediate Physical Address when two stages are used or directly to a 
physical address when only one-stage translation is required. The second translation stage is 
used to translate an IPA to a PA.

Writers of device drivers that pass the physical address of buffers to other bus masters, such as 
DMA controllers or communications subsystems, will need to ensure that the other bus masters 
receive the correct physical address information when the driver is virtualized.
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27.2 Hypervisor exception model
Asynchronous exceptions (IRQ, FIQ and asynchronous or asynchronous aborts) may be routed 
to Hypervisor mode. This behavior may be selected through dedicated control bits in the Hyp 
Configuration Register (HCR). A further bit in this register allows synchronous exceptions 
(undef, SVC or precise aborts) to also be routed to the Hypervisor Trap entry. The hypervisor 
may also be called through the HVC instruction. If this is performed while in privilege level PL1, 
it causes a hypervisor trap exception and entry into hypervisor mode. If performed when already 
in hypervisor mode, it causes an HVC exception.

The concept of virtual exceptions is introduced to the architecture – we have a virtual abort, a 
virtual IRQ and a virtual FIQ, each corresponding to their physical equivalent. These are taken 
in their conventional exception mode (that is, a virtual abort is taken in Abort mode, and so on). 
This concept is useful only when the corresponding physical exception is routed to Hyp mode. 
This means that the hypervisor has control of masking and generating a virtual exception. A real 
physical exception occurs, and is routed to the hypervisor software, which then signals the 
virtual exception to the current Guest OS. The Guest OS handles the exception as it would do 
for an equivalent physical exception and does not need to be aware that the hypervisor has been 
involved. The virtual exception is signalled through the virtual GIC, or by using dedicated HCR 
bits. When exceptions are routed to the hypervisor in this fashion, the CPSR A, I and F bits no 
longer mask physical exceptions, instead they mask the handling of virtual exceptions within 
the Guest OS.
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27.3 Relationship between virtualization and ARM Security Extensions
We discussed the concept of privilege levels, PL0, PL1 and PL2, in Privilege model in ARMv7-A 
Virtualization Extensions on page 27-3. Figure 27-2 illustrates how in the Normal world, we 
have PL0 (User mode), PL1 (for exception modes) and PL2 for the hypervisor, while in the 
Secure world, we have only PL0 and PL1, with secure monitor mode at PL1.

Figure 27-2 Privilege levels and security
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Chapter 28 
Introducing big.LITTLE

This chapter gives an introduction to ARM big.LITTLE technology, which provides new options 
for matching compute capacity to work load by appropriately distributing the load between 
different processors.

Traditionally, it has not been possible to design a processor capable of both high performance and 
high energy efficiency. Solutions typically involve integrating processors with different 
micro-architectures optimized for performance and energy efficiency respectively. For example a 
high performance application processor coupled with a low power ASIC.

This solution is often referred to as Heterogeneous Multiprocessing (HMP), and has been used for 
some time. Heterogeneous computing involves putting a number of specialized processors together 
– applications processors and graphics processors, for example – and sharing out tasks to each 
processor for the work that suits it best. 

The ARM solution to this problem is to couple a high performance, low power processor design 
with a lower power, energy efficient processor while still retaining full Instruction Set Architecture 
(ISA) compatibility. This solution provides a wider dynamic range of power and performance 
control than would be possible using designs with only one type of processor.
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28.1 big.LITTLE configuration
The ARM big.LITTLE design uses a Cortex-A7 processor as the LITTLE component and a 
Cortex-A15 processor as the big component, as in Figure 28-1. These two processors are 
implementations of the same version of the ARM architecture, but with different performance 
levels. The two processors are architecturally identical, implementing the ARMv7-A 
architecture, including Virtualization and LPAE. An application compiled for one processor will 
execute in an architecturally consistent way on the other processor.

Figure 28-1 A big.LITTLE system

The Cortex-A7 processor is capable of handling most low intensity tasks such as audio 
playback, web-page scrolling, operating system events, and other always on, always connected 
tasks. As such, it is likely that the Cortex-A7 cluster is where the software stack will remain until 
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Introducing big.LITTLE 
28.2 Structure of a big.LITTLE system
To support a big.LITTLE configuration requires a Cache Coherent Interconnect (CCI), such as 
the CoreLink CCI-400, that maintains cache memory coherency between the two processors, as 
well as IO coherency for components such as a graphics processor. In addition, such a system 
also requires a shared generic interrupt controller, such as the CoreLink GIC-400, allowing 
interrupts to be migrated between any cores in the clusters. Firmware takes care of task 
switching so the process is invisible to the operating system and applications. A typical system 
is shown in Figure 28-2.

Figure 28-2 Basic big.LITTLE system

As a fully coherent system can create a significant volume of coherent transactions, the 
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Introducing big.LITTLE 
28.3 Execution models in big.LITTLE
Since the same application can be made to run on a Cortex-A7 or Cortex-A15 processor without 
modification, this opens up the possibility to map applications to the right processor on an 
opportunistic basis. This fact is the basis for a number of execution models, namely:

• big.LITTLE migration models

• big.LITTLE MP operation on page 28-9

As the name suggests, migration models enable the capture and restoration of software context 
from one processor type to another

The MP operation model enables the software stack to be distributed across processors in both 
clusters. All processors may be in operation simultaneously (although in practice this is 
unlikely).

28.3.1 big.LITTLE migration models

Migration models are further divided into two types, namely:

• Cluster migration on page 28-6

• CPU migration on page 28-7

Cluster migration involves software context switching of the complete cluster while CPU 
migration involves software context switching of individual cores within the processor. The 
software stack only ever runs on a single cluster in the case of cluster migration. In CPU 
migration, each core in a cluster is paired with its counterpart on the other cluster and the 
software context is migrated opportunistically between clusters on a per-core basis. CPU 
migration is a finer grained form of cluster migration.

These execution models have different trade-offs in terms of ease of adoption and flexibility of 
operation.

Migration models are a natural extension to power-performance management techniques such 
as DVFS, (see Dynamic Voltage and Frequency Scaling on page 25-4). A migration action is 
similar to a DVFS operating point transition. Operating points on a processor’s DVFS curve will 
be traversed in response to load variations. When the current processor (or cluster) has attained 
the highest operating point, if the software stack requires more performance, a processor (or 
cluster) migration action is effected (see Figure 28-3 on page 28-5). Execution then continues 
on the other processor (or cluster) with the operating points on this processor (or cluster) being 
traversed. When performance isn’t needed, execution can switch back.
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Figure 28-3 Processor DVFS curves

In a big.LITTLE system these operating points are applied both to the Cortex-A15 and 
Cortex-A7 processors. When the Cortex-A7 processor is executing the OS can tune the 
operating points as it would for an existing platform with a single applications processor. When 
the Cortex-A7 processor is at its highest operating point (Figure 28-3), if more performance is 
required a switch is invoked that transfers the OS and applications to the Cortex-A15 processor. 
Further DVFS tuning takes place on the Cortex-A15 processor if required, as the operating load 
increases.

Migration requires rapid context switching capability. Coherency is clearly a critical enabler in 
achieving a fast task migration time as it allows the state that has been saved on the outbound 
(migrated from) processor to be snooped and restored on the inbound (migrated to) processor 
rather than going via main memory. Additionally, for Cluster migration, (or for CPU migration 
when all processors have been switched) because the L2 cache of the outbound processor is 
coherent it can remain powered up after a task migration to improve the cache warming time of 
the inbound processor through snooping of data values. However, since the L2 cache of the 
outbound processor cannot be allocated, it will eventually need to be cleaned and powered off 
to save leakage power. The switching sequence is described in Figure 28-4 on page 28-6.
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Figure 28-4 Migration process
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Figure 28-5 Cluster switching

The system will consider the overall performance loading on the currently active cluster. 
Typically this would be the load of the processor that is busiest in the cluster. If the load warrants 
a change from big to LITTLE, or vice versa, the system synchronizes all the cores and then 
transfers all compute context to the other cluster. As part of this process, the system software on 
every processor has to save its state whilst still operating on the old (outbound) cluster. When 
the new (inbound) cluster boots up, the operating systems need to restore their state on each 
processor. Once the inbound cluster has restored context, the outbound cluster is switched off.

The mode works most efficiently with a symmetric big.LITTLE system (with same number of 
cores in the two clusters). An asymmetric system would require additional system software 
involvement to scale execution down to the least common number of processors before a switch 
could take place and while this is very much possible, it will increase the switching latency.

Cluster migration can be implemented alongside existing power management functionality 
(such as idle management) with about the same complexity.

28.3.3 CPU migration

CPU migration involves the use of both clusters at the same time with restrictions on which 
processors are switched on at any given moment. In CPU migration, each processor on the 
LITTLE cluster is paired with a processor on the big cluster. Processors are divided in CPU pairs 
(CPU0 on the Cortex-A15 and Cortex-A7 processors, CPU1 on the Cortex-A15 and Cortex-A7 
processors and so on). When using CPU migration only one CPU per CPU pair can be used at 
any one time. 
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Figure 28-6 CPU migration
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28.4 big.LITTLE MP operation
Since a big.LITTLE system is fully coherent through the CCI-400, another approach is to allow 
both Cortex-A15 and Cortex-A7 processors to be powered on and simultaneously executing 
code. This is called big.LITTLE MP (which is essentially Heterogeneous Multi-Processing). 
This is the most sophisticated and flexible mode for a big.LITTLE system, involving scaling a 
single execution environment across both clusters. In this use model, a Cortex-A15 processor is 
powered on and executing simultaneously with a Cortex-A7 processor if there are threads that 
need such a level of processing performance. If not, only the Cortex-A7 processor needs to be 
powered on. Since processors are not explicitly matched, asymmetric topologies are simpler to 
support with MP operation.

With big.LITTLE MP, the operating system requires a higher degree of customization to extract 
maximum benefit from the design. For example, the scheduler subsystem will need to be aware 
of the power-performance capabilities of the different processors and will need to map tasks to 
suitable processors. Here the operating system runs on all processors in all clusters, which may 
be operating simultaneously. There is no explicit switching of complete software context, as in 
the two migration modes. Instead, the operating system migrates tasks between processors in 
the two clusters. Since the scheduler is involved in the directed placement of suitable tasks on 
suitable processors, this is a complex mode. The OS attempts to map tasks to processors that are 
best suited to running those tasks, and will power off unused, or under-used processors.

Multi-processor support in the Linux kernel assumes that all processors have identical 
performance capabilities and therefore a task can be allocated to any available processor. 
Supporting full big.LITTLE MP requires significant changes to the scheduling and power 
management components of Linux. 
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Chapter 29 
Debug

Debugging is a key part of software development and is often considered to be the most time 
consuming (and therefore expensive) part of the process. Bugs can be difficult to detect, reproduce 
and fix and it can be difficult to predict how long it will take to resolve a defect. The cost of 
resolving problems grows significantly when the product is delivered to a customer. In many cases, 
when a product has a small time window for sales, if the product is late, it can miss the market 
opportunity. Therefore, the debug facilities provided by a system are a vital consideration for any 
developer.

Many embedded systems using ARM processors have limited input/output facilities. This means 
that traditional desktop debug methods (such as use of printf()) may not be appropriate. In such 
systems in the past, developers might have used expensive hardware tools like logic analyzers or 
oscilloscopes to observe the behavior of programs. The processors described in this book have 
caches and are part of a complex system-on-chip containing memory and many other blocks. There 
may be no processor signals which are visible off-chip and therefore no ability to monitor behavior 
by connecting up a logic analyzer (or similar). For this reason, ARM systems typically include 
dedicated hardware to provide wide-ranging control and observation facilities for debug. 
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29.1 ARM debug hardware
Cortex-A series processors provide hardware features which enable debug tools to provide 
significant levels of control over processor activity and to non-invasively collect large amounts 
of data about program execution. We can sub-divide the hardware features into two broad 
classes, invasive and non-invasive.

Invasive debug provides facilities which enable us to stop programs and step through them line 
by line (either at the C source level, or stepping through assembly language instructions). This 
can be by means of an external device which connects to the processor using the chip JTAG pins, 
or (less commonly) by means of debug monitor code in system ROM. JTAG stands for Joint 
Test Action Group and refers to the IEEE-1149.1 specification, which was originally designed 
to standardize testing of electronic devices on boards, but is now widely re-used for processor 
debug connection. A JTAG connection typically has five pins – two inputs, plus a clock, a reset 
and an output.

The debugger gives the ability to control execution of the program, allowing us to run code to 
a certain point, halt the processor, step through code and resume execution. We can set 
breakpoints on specific instructions (causing the debugger to take control when the processor 
reaches that instruction). These work using one of two different methods. Software breakpoints 
work by replacing the instruction with the opcode of the BKPT instruction. Obviously, these can 
only be used on code which is stored in RAM, but have the advantage that they can be used in 
large numbers. The debug software must keep track of where it has placed software breakpoints 
and what opcodes were originally located at those addresses, so that it can put the correct code 
back when we wish to execute the breakpointed instruction. Hardware breakpoints use 
comparators built into the processor and stop execution when execution reaches the specified 
address. These can be used anywhere in memory, as they do not require changes to code, but the 
hardware provides limited numbers of hardware breakpoint units (typically four in the Cortex-A 
family). Debug tools can support more complex breakpoints (for example stopping on any 
instruction in a range of addresses, or only when a specific sequence of events occurs or 
hardware is in a specific state). Data watchpoints give debugger control when a particular data 
address or address range is read or written. These can also be called data breakpoints.

Upon hitting a breakpoint, or when single-stepping, we can inspect and change the contents of 
ARM registers and memory. A special case of changing memory is code download. Debug tools 
typically enable the user to change our code, recompile and then download the new image to the 
system.

29.1.1 Debug events

A debug event is some part of the process being debugged that causes the system to notify the 
debugger. Debug events can be synchronous or asynchronous. Breakpoints, the BKPT instruction, 
and Watchpoints are all synchronous debug events. When any of these events occur, the 
processor can respond in one of a number of ways:

• It can ignore the debug event.

• It can takes a debug exception.

• It will enter one of two debug modes, depending on the setup of the Debug Status and 
Control Register (DSCR):
— Monitor debug mode.
— Halt Debug mode.

Both of these are examples of invasive debug.
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Halt debug mode

In Halt Debug mode, a debug event causes the processor to enter Debug state. The processor is 
halted and isolated from the rest of the system. This means that the debugger displays memory 
as seen by the processor, and the effects of memory management and cache operations will 
become visible. 

In Debug state, the processor stops executing instructions from the location indicated by the 
program counter, and is instead controlled through the external debug interface, in particular 
using the Debug Instruction Transfer Register (DBGITR). This enables an external agent, such 
as a debugger, to interrogate processor context and control all subsequent instruction execution. 
Both the processor and system state can be modified. Because the processor is stopped, no 
interrupts will be handled until execution is restarted by the debugger.

Monitor debug-mode

In Monitor debug-mode, a debug event causes a debug exception to occur, either related to the 
instruction execution that generates a Prefetch Abort exception, or a data access that generates 
a Data Abort exception. Both of these must be handled by the software debug monitor. Since 
the processor is still operating, interrupts can still be serviced.
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29.2 ARM trace hardware
Non-invasive debug (often called trace in ARM documentation) enables observation of the 
processor behavior while it is executing. It is possible to record memory accesses performed 
(including address and data values) and generate a real-time trace of the program, seeing 
peripheral accesses, stack and heap accesses and changes to variables. For many real-time 
systems, it is not possible to use invasive debug methods. Consider, for example, an engine 
management system – while we may be able to stop the processor at a particular point, the 
engine will keep moving and we will not be able to do useful debug. Even in systems with less 
onerous real-time requirements, trace can be very useful. 

Trace is typically provided by an external hardware block connected to the processor. This is 
known as an Embedded Trace Macrocell (ETM) or Program Trace Macrocell (PTM) and is an 
optional part of an ARM processor based system. System-on-chip designers can omit this block 
from their silicon to reduce costs. These blocks observe (but do not affect) the processor 
behavior and are able to monitor instruction execution and data accesses. 

There are two main problems with capturing trace. The first is that with today’s very high 
processor clock speeds, even a few seconds of operation can mean trillions of cycles of 
execution. Clearly, to look at this volume of information would be extremely difficult. The 
second, related problem is that today’s processors can potentially perform one or more 64-bit 
cache accesses per cycle, and to record both the data address and data values can require a large 
bandwidth. This presents a problem in that typically, only a few pins might be provided on the 
chip and these outputs can be switched at significantly lower rates than the processor can be 
clocked. If the processor generates 100 bits of information every cycle at a speed of 1GHz, but 
the chip can only output four bits of trace at a speed of 200MHz, then there is a problem. To 
solve this latter problem, the trace macrocell will try to compress information to reduce the 
bandwidth needed. However, the main method to deal with these issues is to control the trace 
block so that only selected trace information is gathered. For example, we might trace only 
execution, without recording data values, or we might trace only data accesses to a particular 
peripheral or during execution of a particular function. 

In addition, it is common to store trace information in an on-chip memory buffer (the Embedded 
Trace Buffer (ETB)). This alleviates the problem of getting information off-chip at speed, but 
has an additional cost in terms of silicon area (and therefore price of the chip) and also provides 
a fixed limit on the amount of trace that can be captured.

The ETB stores the compressed trace information in a circular fashion, continuously capturing 
trace information until stopped. The size of the ETB varies between chip implementations, but 
a buffer of 8 or 16KB is typically enough to hold a few thousand lines of program trace. 

When a program fails, if the trace buffer is enabled, you can see a portion of program history. 
With this program history, it is easier to walk back through your program to see what happened 
just before the point of failure. This is particularly useful for investigating intermittent and 
real-time failures, which can be difficult to identify through traditional debug methods that 
require stopping and starting the processor. The use of hardware tracing can significantly reduce 
the amount of time needed to find these failures, as the trace shows exactly what was executed, 
what the timing was and what data accesses occurred.

29.2.1 CoreSight

The ARM CoreSight™ technology expands on the capabilities provided by the ETM. Again its 
presence and capabilities in a particular system are defined by the system designer. CoreSight 
provides a number of extremely powerful debug facilities. It enables debug of multi-processor 
systems (both asymmetric and SMP) which can share debug access and trace pins, with full 
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 29-4
ID071612 Non-Confidential



Debug 
control of which processors are being traced at which times. The embedded cross trigger 
mechanism enables tools to control multiple cores in a synchronized fashion, so that, for 
example when one core hits a breakpoint, all of the other cores will also be stopped. 

Commercial debug tools can use trace data to provide features such as real-time views of 
processor registers, memory and peripherals, allowing the user to step forward and backward 
through the program execution. Profiling tools can use the data to show where the program is 
spending its time and what performance bottlenecks exist. Code coverage tools can use trace 
data to provide call graph exploration. Operating system aware debuggers can make use of trace 
(and in some cases additional code instrumentation) to provide high level system context 
information. Here, we list some of the available CoreSight components and give a brief 
description of their purpose:

Debug Access Port (DAP) 
The DAP is an optional part of an ARM CoreSight system. Not every 
device will contain a DAP. It enables an external debugger to directly 
access the memory space of the system without having to put the processor 
into debug state. To read or write memory without a DAP might need the 
debugger to stop the processor and have it execute Load or Store 
instructions. The DAP gives an external debug tool access to all of the 
JTAG scan chains in a system (and therefore to all debug and trace 
configuration registers of the available processors). 

Embedded Cross Trigger (ECT) 
The ECT block is a CoreSight component which can be included within in 
a CoreSight system. Its purpose is to link together the debug capabilities 
of multiple devices in the system. For example, we can have two cores 
which run independently of each other. When we set a breakpoint on a 
program running on one core, it would be useful to be able to specify that 
when that core stops at the breakpoint, the other one should also be 
stopped (regardless of which instruction it is currently executing). The 
Cross Trigger Matrix and Interface within the ECT enable debug status 
and control information to be propagated between cores and trace 
macrocells.

AHB Trace Macrocell 
The AMBA AHB Trace Macrocell enables the debugger to have visibility 
of what is happening on the system memory bus. This information is not 
directly obtainable from the processor ETM, as the integer core is unable 
to determine whether data comes from a cache or external memory.

CoreSight Serial Wire 
CoreSight Serial Wire Debug gives a 2-pin connection using a Debug 
Access Port (DAP) which is equivalent in function to a 5-pin JTAG 
interface.

System Trace Macrocell (STM) 
This provides a way for multiple processors (and processes) to perform 
printf() style debugging. Software running on any master in the system 
is able to access STM channels without needing to be aware of usage by 
others, using very simple fragments of code. This enables timestamped 
software instrumentation of both kernel and user space code. The 
timestamp information gives a delta with respect to previous events and 
can be extremely useful.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. 29-5
ID071612 Non-Confidential



Debug 
Trace Memory Controller (TMC) 
As already described, adding additional pins to a packaged IC can 
significantly increase its cost. In situations where we have multiple cores 
(or other blocks capable of generating trace information) on a single 
device, it is likely that economics preclude the possibility of providing 
multiple trace ports. The CoreSight Trace Memory Controller can be used 
to combine multiple trace sources into a single bus. Controls are provided 
to enable prioritize and select between these multiple input sources. The 
trace information can be exported off-chip using a dedicated trace port, 
through the JTAG or serial wire interface or by re-using I/O ports of the 
SoC. Trace information can be stored in an ETB or in system memory.

Programmers should consult documentation specific to the device they are using to determine 
what trace capabilities are present and which tools are available to make use of them.
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29.3 Debug monitor
We have seen how the ARM architecture provides a wide range of features accessible to an 
external debugger. Many of these facilities can also be used by code running on the processor – 
a so called debug monitor, which is resident on the target system. Monitor systems can be 
inexpensive, as they may not need any additional hardware. However, they take up memory 
space in the system and can only be used if the target system itself is actually running. They are 
of little value on a system which does not at least boot correctly. The breakpoint and watchpoint 
hardware facilities of the processor are available to a debug monitor. When Monitor mode 
debug is selected, breakpoint units can be programmed by code running on the ARM processor. 
If a BKPT instruction is executed, or a hardware breakpoint unit matches, the system behaves 
differently in Monitor mode. Instead of stopping the processor under control of an external 
hardware debugger, the processor instead takes an abort exception and this can recognize that 
the abort was generated by a debug event and call the Monitor code.
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29.4 Debugging Linux applications
Linux is a multi-tasking operating system in which each process has its own process address 
space, complete with private page table mappings. This can make debug of some kinds of 
problems quite tricky. 

We can broadly define two different debug approaches used in Linux systems.

• Linux applications are typically debugged using a GDB debug server running on the 
target, communicating with a host computer, usually through Ethernet. The kernel 
continues to operate normally while the debug session takes place. This method of debug 
does not provide access to the built-in hardware debug facilities. The target system is 
permanently in a running state. The server receives a connection request from the host 
debugger and then receives commands and provides data back to the host.
The host debugger sends a load request to the GDB server, which responds by starting a 
new process to run the application being debugged. Before execution begins, it uses the 
system call ptrace() to control the application process. All signals from this process are 
forwarded to the GDB server. Any signals sent to the application will go instead to the 
GDB server, which can deal with the signal or forward it to the application being 
debugged. To set a breakpoint, the GDB server inserts code which generates the 
SIGTRAP signal at the desired location in the code. When this is executed, the GDB 
server is called and can then perform classic debugger tasks such as examining call stack 
information, variables or register contents.

• For kernel debug, a JTAG-based debugger is used. The system is halted when a breakpoint 
is executed. This is the easiest way to examine problems such as device driver loading or 
incorrect operation or the kernel boot failure. Another common method is through 
printk() function calls. The strace tool shows information about user system calls. Kgdb 
is a source-level debugger for the Linux kernel, which works with GDB on a separate 
machine and enables inspection of stack traces and view of kernel state (such as PC value, 
timer contents, and memory). The device /dev/kmem enables run-time access to the kernel 
memory.
Of course, a Linux-aware JTAG debugger can be used to debug threads. It is usually 
possible only to halt all processes; one cannot halt an individual thread or process and 
leave others running. A breakpoint can be set either for all threads, or it can be set only on 
a specific thread.
As the memory map depends on which process is active, software breakpoints can usually 
only be set when a particular process is mapped in.

The ARM DS-5 Debugger is able to debug Linux applications via gdbserver and Linux kernel 
and Linux kernel modules via JTAG. The debug and trace features of DS-5 are described in the 
next section.
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29.5 DS-5 debug and trace
The DS-5 Debugger takes care of downloading and connecting to the debug server. Developers 
need to specify the platform and the IP address. This reduces a complex task using several 
applications and a terminal to just a couple of steps in the IDE.

In addition, the DS-5 Debugger supports ARM CoreSight ETM, PTM and STM, to provide 
non-intrusive program trace that enables you to review instructions (and the associated source 
code) as they have occurred. It also provides the ability to debug time-sensitive issues which 
would otherwise not be picked up with conventional intrusive stepping techniques. The DS-5 
Debugger currently uses DSTREAM to capture trace on the ETB.

The DS-5 Debugger provides a powerful tool for debugging applications on both hardware 
targets and models using ARM architecture-based processors. You can have complete control 
over the flow of the execution so that you can quickly isolate and correct errors.

The following features are provided in the DS-5 Debugger:

• Loading images and symbols.

• Running images.

• Breakpoints and watchpoints.

• Source and instruction level stepping.

• Controlling variables and register values.

• Viewing the call stack.

• Support for handling exceptions and Linux signals.

• Debug of multi-threaded Linux applications.

• Debug of Linux kernel modules, boot code and kernel porting.

The debugger supports a comprehensive set of DS-5 Debugger commands that can be executed 
in the Eclipse IDE, script files, or a command-line console. In addition, there is a small subset 
of CMM-style commands sufficient for running target initialization scripts. (CMM is a scripting 
language supported by some third-party debuggers.) 

The DS-5 Debugger supports bare-metal debug via JTAG, Linux application debug via 
gdbserver, Linux kernel debug via JTAG, and Linux kernel module debug via JTAG. Debug and 
trace support for bare-metal SMP systems, including cross-triggering and core-dependent views 
and breakpoints, PTM trace, and up to 4 GB trace with DSTREAM. This support is described 
in the following sections.

29.5.1 Debugging Linux applications using DS-5

To debug a Linux application you can use a TCP or serial connection:

• To gdbserver running on a model that is pre-configured to boot ARM Embedded Linux.

• To gdbserver running on a hardware target.

This type of development requires gdbserver to be installed and running on the target.
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29.5.2 Debugging Linux kernel modules

Linux kernel modules provide a way to extend the functionality of the kernel, and are typically 
used for things such as device and filesystem drivers. Modules can either be built into the kernel 
or can be compiled as a loadable module and then dynamically inserted and removed from a 
running kernel during development without the need to frequently recompile the kernel. 
However, some modules must be built into the kernel and are not suitable for loading 
dynamically. An example of a built-in module is one that is required during kernel boot and must 
be available prior to the root filesystem being mounted.

You can use DS-5 to set source-level breakpoints in a module provided that the debug 
information is loaded into the debugger. Attempts to set a breakpoint in a module before it is 
inserted into the kernel results in the breakpoint being pended.

When debugging a module, you must ensure that the module on your target is the same as that 
on your host. The code layout must be identical, but the module on your target does not need to 
contain debug information.

Built in module

To debug a module that has been built into the kernel using DS-5, the procedure is the same as 
for debugging the kernel itself:

1. Compile the kernel together with the module.

2. Load the kernel image on to the target.

3. Load the related kernel image with debug information into the debugger.

4. Debug the module as you would for any other kernel code.

Loadable module

The procedure for debugging a loadable kernel module is more complex. From a Linux terminal 
shell you can use the insmod and rmmod commands to insert and remove a module. Debug 
information for both the kernel and the loadable module must be loaded into the debugger. 
When you insert and remove a module the DS-5 debugger automatically resolves memory 
locations for debug information and existing breakpoints.

To do this, the debugger intercepts calls within the kernel to insert and remove modules. This 
introduces a small delay for each action while the debugger stops the kernel to interrogate 
various data structures.

29.5.3 Debugging Linux kernels using DS-5

To debug a Linux kernel module you can use a debug hardware agent connected to the host 
workstation and the running target.

29.5.4 Debugging a multi-threaded applications using DS-5

The DS-5 Debugger tracks the current thread using the debugger variable, $thread. You can use 
this variable in print commands or in expressions. Threads are displayed in the Debug Control 
view with a unique ID that is used by the debugger and a unique ID from the Operating System 
(OS). For example:

Thread 1 (OS ID 1036)

where Thread 1 is the ID used by the debugger and OS ID 1036 is the ID from the OS.
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A separate call stack is maintained for each thread and the selected stack frame is shown in bold 
text. All the views in the DS-5 Debug perspective are associated with the selected stack frame 
and are updated when you select another frame.

Figure 29-1 Threading call stacks in the DS-5 Debug Control view

29.5.5 Debugging shared libraries

Shared libraries enable parts of your application to be dynamically loaded at runtime. You must 
ensure that the shared libraries on your target are the same as those on your host. The code layout 
must be identical, but the shared libraries on your target do not need to contain debug 
information.

You can set standard execution breakpoints in a shared library but not until it is loaded by the 
application and the debug information is loaded into the debugger. Pending breakpoints 
however, enable you to set execution breakpoints in a shared library before it is loaded by the 
application.

When a new shared library is loaded the DS-5 debugger re-evaluates all pending breakpoints, 
those with addresses that it can resolve, are set as standard execution breakpoints. Unresolved 
addresses remain as pending breakpoints.

The debugger automatically changes any breakpoints in a shared library to a pending breakpoint 
when the library is unloaded by your application.
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Figure 29-2 Adding shared libraries for debug using DS-5

29.5.6 Trace support in DS-5

DS-5 enables you to perform trace on your application or system. You can capture in real-time 
a historical, non-intrusive trace of instructions. Tracing is a powerful tool that enables you to 
investigate problems while the system runs at full speed. These problems can be intermittent, 
and are difficult to identify through traditional debugging methods that require starting and 
stopping the processor. Tracing is also useful when trying to identify potential bottlenecks or to 
improve performance-critical areas of your application.

Before the debugger can trace function executions in your application you must ensure that:

• You have a debug hardware agent, for example, an ARM DSTREAM unit with a 
connection to a trace stream.

• The debugger is connected to the debug hardware agent.

Trace view

When the trace has been captured the debugger extracts the information from the trace stream 
and decompresses it to provide a full disassembly, with symbols, of the executed code.

This view shows a graphical navigation chart that displays function executions with a 
navigational timeline. In addition, the disassembly trace shows function calls with associated 
addresses and if selected, instructions. Clicking on a specific time in the chart synchronizes the 
disassembly view.

In the left-hand column of the chart, percentages are shown for each function of the total trace. 
For example, if a total of 1000 instructions are executed and 300 of these instructions are 
associated with myFunction() then this function is displayed with 30%.
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In the navigational timeline, the color coding is a “heat” map showing the executed instructions 
and the amount of instructions each function executes in each timeline. The darker red color 
showing more instructions and the lighter yellow color showing less instructions. At a scale of 
1:1 however, the color scheme changes to display memory access instructions as a darker red 
color, branch instructions as a medium orange color, and all the other instructions as a lighter 
green color.

Figure 29-3 DS-5 Debugger Trace view

Trace-based profiling

Based on trace data received from a trace buffer such as the ETB, The DS-5 Debugger can 
generate timeline charts with information to help developers to quickly understand how their 
software executes on the target and which functions are using the processor the most. The 
timeline offers various zoom levels, and can display a heat-map based on the number of 
instructions per time unit or, at its highest resolution, provide per-instruction visualization 
color-coded by the typical latency of each group of instructions.
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Instruction Summary

A summary of the instructions available in ARM/Thumb assembly language is given in this 
Appendix.

For most instructions, further explanation can be found in Chapter 6. The optional condition code 
field (denoted by cond below) is described in Section 6.1.2 Conditional execution on page 6-3. The 
format of the flexible operand2 used by data processing operations is described in Section 6.2.1 
Operand 2 and the barrel shifter on page 6-7, while the various addressing mode options for loads 
and stores is given in Addressing modes on page 6-10.

This Appendix is intended for quick reference. If more detail about the precise operation of an 
instruction is required, please refer to the ARM Architecture Reference Manual, or to the official 
ARM documentation (for example the ARM Compiler Toolchain Assembler Reference) which can 
be found at http://infocenter.arm.com/help/index.jsp.
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A.1 Instruction Summary
Instructions are listed in alphabetic order, with a description of the syntax, operands and 
behavior of the instruction. Not all usage restrictions are documented here, nor do we show the 
associated binary encoding or any detail of changes associated with older architecture versions.

A.1.1 ADC

ADC (Add with Carry) adds together the values in Rn and Operand2, with the carry flag.

Syntax

ADC{S}{cond} {Rd}, Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.2 ADD

ADD adds together the values in Rn and Operand2 (or Rn and imm12).

Syntax

ADD{S}{cond} {Rd,} Rn, <Operand2>

ADD{cond} {Rd,} Rn, #imm12  (Only available in Thumb)

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

imm12 is in the range 0-4095.

A.1.3 ADR

ADR (Address) is an instruction which loads a program or register-relative address (short range). 
It generates an instruction which adds or subtracts a value to the PC (in the PC-relative case). 
Alternatively, it can be some other register for a label defined as an offset from a base register 
defined with the MAP directive (see the ARM tools documentation for more detail).
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Syntax

ADR{cond} Rd, label

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

label is a PC or register-relative expression. 

A.1.4 ADRL

ADRL (Address) is a pseudo-instruction which loads a program or register-relative address (long 
range). It always generates two instructions. 

Syntax

ADRL{cond} Rd, label

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

label is a PC-relative expression. The offset between label and the current location has some 
restrictions. 

The ADRL pseudo-instruction can generate a wider range of addresses than ADR.

A.1.5 AND

AND does a bitwise AND on the values in Rn and Operand2.

Syntax

AND{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.6 ASR

ASR (Arithmetic Shift Right) shifts the value in Rm right, by the number of bit positions specified 
and copies the sign bit into vacated bit positions on the left. Allowed shift values are in the range 
1-32. It can be considered as giving the signed value of a register divided by a power of two.
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Syntax

ASR{S}{cond} {Rd,} Rm, Rs
ASR{S}{cond} {Rd,} Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register which holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1-32.

A.1.7 B

B (Branch) transfers program execution to the address specified by label.

Syntax

B{cond}{.W} label

where:

cond is an optional condition code. See Section 6.1.2.

label is a PC-relative expression.

.W is an optional instruction width specifier to force the use of a 32-bit instruction in Thumb.

A.1.8 BFC

BFC (Bit Field Clear) clears bits in a register. A number of bits specified by width are cleared in 
Rd, starting at lsb. Other bits in Rd are unchanged.

Syntax

BFC{cond} Rd, #lsb, #width

where:

cond is an optional condition code. See Section 6.1.2

Rd is the destination register.

lsb specifies the least significant bit to be cleared.

width is the number of bits to be cleared.

A.1.9 BFI

BFI (Bit Field Insert) copies bits into a register. A number of bits in Rd specified by width, 
starting at lsb, are replaced by bits from Rn, starting at bit[0]. Other bits in Rd are unchanged.
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Instruction Summary 
Syntax

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register which contains the bits to be copied.

lsb specifies the least significant bit in Rd to be written to.

width is the number of bits to be copied.

A.1.10 BIC

BIC (bit clear) does an AND operation on the bits in Rn, with the complements of the 
corresponding bits in the value of Operand2.

Syntax

BIC{S}{cond} {Rd}, Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.11 BKPT

BKPT (Breakpoint) causes the processor to enter Debug state.

Syntax

BKPT #imm

where:

imm is an integer in the range 0 – 65535 (ARM) or 0 – 255 (Thumb). This integer is not used by 
the processor itself, but can be used by Debug tools.

A.1.12 BL

BL (Branch with Link) transfers program execution to the address specified by label and stores 
the address of the next instruction in the LR (R14) register.

Syntax

BL{cond} label

where:
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Instruction Summary 
cond is an optional condition code. See Section 6.1.2.

label is a PC-relative expression.

A.1.13 BLX

BLX (Branch with Link and eXchange) transfers program execution to the address specified by 
label and stores the address of the next instruction in the LR (R14) register. BLX can change the 
processor state from ARM to Thumb, or from Thumb to ARM. BLX label always changes the 
processor state from Thumb to ARM, or ARM to Thumb. BLX Rm will set the state based on bit[0] 
of Rm:

• Rm bit[0]=0 ARM state.

• Rm bit[0]=1 Thumb state.

Syntax

BLX{cond} label
BLX{cond} Rm

where:

cond is an optional condition code. See Section 6.1.2.

label is a PC-relative expression.

Rm is a register which holds the address to branch to.

A.1.14 BX

BX (Branch and eXchange) transfers program execution to the address specified in a register. BX 
can change the processor state from ARM to Thumb, or from Thumb to ARM. BX Rm will set the 
state based on bit[0] of Rm:

• Rm bit[0] = 0 ARM state.

• Rm bit[0] = 1 Thumb state. 

Syntax

BX{cond} Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rm is a register which holds the address to branch to.

A.1.15 BXJ

BXJ (Branch and eXchange Jazelle) enter Jazelle State or perform a BX branch and exchange to 
the address contained in Rm..

Syntax

BXJ{cond} Rm

where:
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. A-6
ID071612 Non-Confidential



Instruction Summary 
cond is an optional condition code. See Section 6.1.2.

Rm is a register which holds the address to branch to if entry to Jazelle fails.

A.1.16 CBNZ

CBNZ (Compare and Branch if Nonzero) causes a branch if the value in Rn is not zero. It does not 
change the PSR flags. There is no ARM or 32-bit Thumb versions of this instruction.

Syntax

CBNZ Rn, label

where:

label is a pc-relative expression. 

Rn is a register which holds the operand.

A.1.17 CBZ

CBZ (Compare and Branch if Zero) causes a branch if the value in Rn is zero. It does not change 
the PSR flags. There is no ARM or 32-bit Thumb versions of this instruction.

Syntax

CBZ Rn, label

where:

label is a PC-relative expression. 

Rn is a register which holds the operand.

A.1.18 CDP

CDP (Coprocessor Data Processing operation) performs a coprocessor operation. The purpose of 
this instruction is defined by the coprocessor implementer.

Syntax

CDP{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Section 6.1.2. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

A.1.19 CDP2

CDP2 (Coprocessor Data Processing operation) performs a coprocessor operation. The purpose 
of this instruction is defined by the coprocessor implementer.
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Instruction Summary 
Syntax

CDP2{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond is an optional condition code See Section 6.1.2. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

A.1.20 CHKA

CHKA (Check array) is a ThumbEE instruction. If the value in the first register is less than or equal 
to, the second, the IndexCheck handler is called. This instruction is only available in 16-bit 
ThumbEE and only when Thumb-2EE support is present.

Syntax

CHKA Rn, Rm 

where:

Rn holds the size of the array.

Rm contains the array index.

A.1.21 CLREX

CLREX (Clear Exclusive) moves a local exclusive access monitor to its open-access state.

Syntax

CLREX{cond}

where:

cond is an optional condition code. See Section 6.1.2.

A.1.22 CLZ

CLZ (Count Leading Zeros) counts the number of leading zeros in the value in Rm and returns the 
result in Rd. The result returned is 32 if no bits are set in Rm, or 0 if bit [31] is set.

Syntax

CLZ{cond} Rd, Rm 

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm is the register holding the operand.
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Instruction Summary 
A.1.23 CMN

CMN (Compare Negative) performs a comparison by adding the value of Operand2 to the value in 
Rn. The condition flags are changed, based on the result, but the result itself is discarded.

Syntax

CMN{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.24 CMP

CMP (Compare) performs a comparison by subtracting the value of Operand2 from the value in Rn. 
The condition flags are changed, based on the result, but the result itself is discarded.

Syntax

CMP{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.25 CPS

CPS (Change Processor State) can be used to change the processor mode or to enable or disable 
individual exception types.

Syntax

CPS #mode
CPSIE iflags{, #mode}
CPSID iflags{, #mode}

where:

mode is the number of a mode for the processor to enter.

IE Interrupt or Abort Enable.

ID Interrupt or Abort Disable.

iflags specifies one or more of:
• a = asynchronous abort.
• i = IRQ.
• f = FIQ.
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Instruction Summary 
A.1.26 DBG

DBG (Debug) is a hint operation, treated as a NOP by the processor, but can provide information to 
debug systems.

Syntax

DBG{cond} {option}

where:

cond is an optional condition code. See Section 6.1.2.

option is in the range 0-15.

A.1.27 DMB

DMB (Data Memory Barrier) requires that all explicit memory accesses in program order before 
the DMB instruction are observed before any explicit memory accesses in program order after the 
DMB instruction. See Chapter 11 for a detailed description.

Syntax

DMB{cond} {option}

where:

cond is an optional condition code. See Section 6.1.2.

option is covered in depth in Chapter 11.

A.1.28 DSB

DSB (Data Synchronization Barrier) requires that no further instruction executes until all explicit 
memory accesses, cache maintenance operations, branch prediction and TLB maintenance 
operations before this instruction complete. See Chapter 11 for a detailed description.

Syntax

DSB{cond} {option}

where:

cond is an optional condition code. See Section 6.1.2.

option is covered in depth in Chapter 11.

A.1.29 ENTERX

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state. 
It is not available in the ARM instruction set.

Syntax

ENTERX

A.1.30 EOR

EOR performs an Exclusive OR operation on the values in Rn and Operand2.
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Instruction Summary 
Syntax

EOR{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.31 ERET

ERET (Exception Return) loads the PC from the ELR-hyp and loads the CPSR from SPSR-hyp 
when executed in Hyp mode.

When executed in a Secure or Non-Secure PLI mode, ERET behaves as:

• MOVS PC, LR in the ARM instruction set.

• SUBS PC, LR, #0 in the Thumb instruction set.

Syntax

ERET{cond} {q}

where:

cond is the optional condition code. See Section 6.1.2.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N(narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W(wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. if 
both are available, it must select a 16-bit encoding.

A.1.32 HB

HB (Handler Branch) branches to a specified handler (available in ThumbEE only).

Syntax

HB{L} #HandlerID
HB{L}P #imm, #HandlerID

where:

L indicates that the instruction saves a return address in the LR.

P means that the instruction passes the value of imm to the handler in R8.

imm is an immediate value in the range 0-31 (if L is present), otherwise in the range 0-7.
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Instruction Summary 
HandlerID is the index number of the handler to be called, in the range 0-31 (if P is specified), 
otherwise in the range 0-255.

A.1.33 ISB

ISB (Instruction Synchronization Barrier) flushes the processor pipeline and ensures that context 
altering operations (such as ASID or other CP15 changes, branch prediction or TLB 
maintenance activity) before the ISB, are visible to the instructions fetched after the ISB.

See Chapter 11 for a detailed description of barriers.

Syntax

ISB{cond} {option}

where:

cond is an optional condition code. See Section 6.1.2.

option can be SY (full system), which is the default and so can be omitted.

A.1.34 IT

IT (If-then) makes up to four following instructions conditional (known as the IT block). The 
conditions can all be the same, or some can be the logical inverse of others. IT is a 
pseudo-instruction in ARM state.

Syntax

IT{x{y{z}}} {cond}

where:

cond is a condition code. See Section 6.1.2 which specifies the condition for the first instruction 
in the IT block. 

x, y and z specify the condition switch for the second, third and fourth instructions in the IT 
block, for example, ITTET.

The condition switch can be either:

• T (Then), which applies the condition cond to the instruction.

• E (Else), which applies the inverse condition of cond to the instruction.

A.1.35 LDC

LDC (Load Coprocessor Registers ) reads a coprocessor register from memory (or multiple 
registers, if L is specified).

Syntax

LDC{L}{cond} coproc, CRd, [Rn]
LDC{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
LDC{L}{cond} coproc, CRd, [Rn], #{-}offset
LDC{L}{cond} coproc, CRd, label

where:
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Instruction Summary 
L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but may not be more than 16 words.

cond is an optional condition code. See Section 6.1.2.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

Offset is a multiple of 4, in the range 0-1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.36 LDC2

LDC2 (Load Coprocessor Registers) reads a coprocessor register from memory (or multiple 
registers, if L is specified).

Syntax

LDC2{L}{cond} coproc, CRd, [Rn]
LDC2{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
LDC2{L}{cond} coproc, CRd, [Rn], #{-}offset
LDC2{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but may not be more than 16 words.

cond is an optional condition code. See Section 6.1.2.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

Offset is a multiple of 4, in the range 0 – 1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.37 LDM

LDM (Load Multiple registers) loads one or more registers from consecutive addresses in memory 
at an address specified in a base register.

Syntax

LDM{addr_mode}{cond} Rn{!},reglist{^}

where:

addr_mode is one of:

• IA – Increment address After each transfer. This is the default, and can be omitted.
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Instruction Summary 
• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).

• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). For 
example LDMFD is a synonym of LDMDB.

cond is an optional condition code. See Section 6.1.2.

Rn is the base register, giving the initial address for the transfer.

! if present, specifies that the final address is written back into Rn. 

Reglist is a list of one or more registers to be stored, enclosed in braces. It can contain register 
ranges. It must be comma separated if it contains more than one register or register range.

^ if specified (in a mode other than User or System) means one of two possible special actions 
will be taken:

• Data is transferred into the User mode registers instead of the current mode registers (in 
the case where Reglist does not contain the PC).

• If Reglist does contain the PC, the normal multiple register transfer happens and the 
SPSR is copied into the CPSR. This is used for returning from exception handlers. 

A.1.38 LDR

LDR (Load Register) loads a value from memory to an ARM register, optionally updating the 
register used to give the address. 

A variety of addressing options are provided. For full details of the available addressing modes, 
see Addressing modes on page 6-10.

Syntax

LDR{type}{T}{cond} Rt, [Rn {, #offset}] 
LDR{type}{cond} Rt, [Rn, #offset]! 
LDR{type}{T}{cond} Rt, [Rn], #offset 
LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}] 
LDR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! 
LDR{type}{T}{cond} Rt, [Rn], +/-Rm {, shift} 

where:

type can be any one of:
• B – unsigned Byte. (Zero extend to 32 bits on loads.)
• SB – signed Byte. (Sign extend to 32 bits.)
• H – unsigned Halfword. (Zero extend to 32 bits on loads.)
• SH – signed Halfword. (Sign extend to 32 bits.)

or omitted, for a Word load.

T specifies that memory is accessed as if the processor was in User mode (not available in all 
addressing modes).

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the base address for the memory operation.
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Instruction Summary 
! if present, specifies that the final address is written back into Rn.

offset is a numeric value.

Rm is a register holding an offset value to be applied.

shift is either a register or immediate based shift to apply to the offset value.

A.1.39 LDR (pseudo-instruction)

LDR (Load Register) pseudo-instruction loads a register with a 32-bit immediate value or an 
address. It generates either a MOV or MVN instruction (if possible), or a PC-relative LDR instruction 
that reads the constant from the literal pool.

Syntax

LDR{cond}{.W} Rt, =expr
LDR{cond}{.W} Rt, label_expr

where:

cond is an optional condition code. See Section 6.1.2.

.W specifies that a 32-bit Thumb instruction must be used. 

Rt is the register to load. 

expr is a numeric value.

label_expr is a label, optionally plus or minus a numeric value.

A.1.40 LDRD

LDRD (Load Register Dual) calculates an address from a base register value and a register offset, 
loads two words from memory, and writes them to two registers.

Syntax

LDRD{cond} Rt, Rt2, [{Rn},+/-{Rm}]{!}
LDRD{cond} Rt, Rt2, [{Rn}],+/-{Rm}

where:

cond is an optional condition code. See Section 6.1.2.

Rt is the first destination register. This register must be even-numbered and not R14.

Rt is the second destination register. This register must be <R(t+1)>. 

Rn is the base register. The SP or the PC can be used.

+/- is + or omitted if the value of <Rm> is to be added to the base register value (add == TRUE), 
or – if it is to be subtracted (add == FALSE).

Rm contains the offset that is applied to the value of <Rn> to form the address.

A.1.41 LDREX

LDREX (Load register exclusive). Performs a load from a location and marks it for exclusive 
access. Byte, halfword, word and doubleword variants are provided.
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Instruction Summary 
Syntax

LDREX{cond} Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
LDREXH{cond} Rt, [Rn]
LDREXD{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code. See Section 6.1.2.

Rt is the register to load. 

Rt2 is the second register for doubleword loads.

Rn is the register holding the address. 

offset is an optional value, allowed in Thumb only. 

A.1.42 LEAVEX

LEAVEX causes a change from ThumbEE state to Thumb state, or has no effect in Thumb state. It 
is not available in the ARM instruction set.

Syntax

LEAVEX

A.1.43 LSL

LSL (Logical Shift Left) shifts the value in Rm left by the specified number of bits, inserting zeros 
into the vacated bit positions.

Syntax

LSL{S}{cond} Rd, Rm, Rs
LSL{S}{cond} Rd, Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register which holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 0-31.

A.1.44 LSR

LSR (Logical Shift Right) shifts the value in Rm right by the specified number of bits, inserting 
zeros into the vacated bit positions.
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Instruction Summary 
Syntax

LSR{S}{cond} Rd, Rm, Rs
LSR{S}{cond} Rd, Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm is the register holding the operand to be shifted.

Rs is the register which holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1-32.

A.1.45 MCR

MCR (Move to Coprocessor from Register) writes a coprocessor register, from an ARM register. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Section 6.1.2. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.46 MCR2

MCR2 (Move to Coprocessor from Register) writes a coprocessor register, from an ARM register. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCR2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Section 6.1.2. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.
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Instruction Summary 
opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.47 MCRR

MCRR (Move to Coprocessor from Registers) transfers a pair of ARM register to a coprocessor. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCRR{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Section 6.1.2. 

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.48 MCRR2

MCRR2 (Move to Coprocessor from Registers) transfers a pair of ARM register to a coprocessor. 
The purpose of this instruction is defined by the coprocessor implementer.

Syntax

MCRR2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code. See Section 6.1.2. 

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.49 MLA

MLA (Multiply Accumulate) multiplies Rn and Rm, adds the value from Ra, and stores the least 
significant 32 bits of the result in Rd.

Syntax

MLA{S}{cond} Rd, Rn, Rm, Ra

where:
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Instruction Summary 
S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction. 

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.50 MLS

MLS (Multiply and Subtract) multiplies Rn and Rm, subtracts the result from Ra, and stores the least 
significant 32 bits of the final result in Rd.

Syntax

MLS{S}{cond} Rd, Rn, Rm, Ra

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction. 

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.51 MOV

MOV (Move) copies the value of Operand2 into Rd.

Syntax

MOV{S}{cond} Rn, <Operand2>
MOV{cond} Rd, #imm16

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction. 

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Operand2 is a flexible second operand. See Section 6.2.1.

imm16 is an immediate value in the range 0-65535.

A.1.52 MOVT

MOVT (Move Top) writes imm16 to Rd[31:16]. It does not affect Rd[15:0].
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Syntax

MOVT{cond} Rd, #imm16

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Operand2 is a flexible second operand. See Section 6.2.1.

imm16 is an immediate value in the range 0-65535.

A.1.53 MOV32

MOV32 is a pseudo-instruction which loads a register with a 32-bit immediate value or address. It 
generates two instructions, a MOV, MOVT pair.

Syntax

MOV32 Rd, expr

where:

Rd is the destination register. 

expr is a 32-bit constant, or address label.

A.1.54 MRC 

MRC (Move to Register from Coprocessor) reads a coprocessor register to an ARM register. The 
purpose of this instruction is defined by the coprocessor implementer.

Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond is an optional condition code. See Section 6.1.2. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.55 MRC2 

MRC2 (Move to Register from Coprocessor) reads a coprocessor register to an ARM register. The 
purpose of this instruction is defined by the coprocessor implementer.

Syntax

MRC2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}
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where:

cond is an optional condition code. See Section 6.1.2. 

Rt is the ARM register to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRn, CRm are coprocessor registers.

A.1.56 MRRC 

MRRC (Move to Registers from Coprocessor) transfers a value from a Coprocessor to a pair of 
ARM registers. The purpose of this instruction is defined by the Coprocessor implementer.

Syntax

MRRC{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code, See Section 6.1.2. MRRC instructions may not specify a 
condition code in ARM state.

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.

A.1.57 MRRC2 

MRRC2 (Move to Registers from Coprocessor) transfers a value from a Coprocessor to a pair of 
ARM registers. The purpose of this instruction is defined by the Coprocessor implementer.

Syntax

MRRC2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code, See Section 6.1.2. MRRC2 instructions may not specify a 
condition code in ARM state.

Rt and Rt2 are the ARM registers to be transferred.

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRm is a coprocessor register.

Opcode3 is an optional 4-bit coprocessor-specific opcode.
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A.1.58 MRS 

MRS (Move Status register or Coprocessor Register to General purpose register) can be used to 
read the CPSR/APSR, CP14 or CP15 Coprocessor registers.

Syntax

MRS{cond} Rd, psr
MRS{cond} Rn, coproc_register
MRS{cond} APSR_nzcv, DBGDSCRint
MRS{cond} APSR_nzcv, FPSCR

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

psr is one of: APSR, CPSR or SPSR.

coproc_register is the name of a CP14 or CP15 readable register. 

DBGDSCRint is the name of a CP14 register which can be copied to the APSR.

A.1.59 MSR

MSR (Move Status Register or Coprocessor Register from General Purpose Register) can be used 
to write all or part of the CPSR/APSR or CP14 or CP15 registers.

Syntax

MSR{cond} APSR_flags, Rm
MSR{cond} coproc_register
MSR{cond} APSR_flags, #constant
MSR{cond} psr_fields, #constant
MSR{cond} psr_fields, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rm and Rn are the source registers.

flags can be one or more of nzcvq (ALU flags) or g (SIMD flags).

coproc_register is the name of a CP14 or CP15 readable register.

constant is an 8-bit pattern rotated by an even number of bits within a 32-bit word. (Not 
available in Thumb.)

psr is one of: APSR, CPSR or SPSR.

fields is one or more of:
• c control field mask byte, PSR[7:0] 
• x extension field mask byte, PSR[15:8] 
• s status field mask byte, PSR[23:16] 
• f flags field mask byte, PSR[31:24].

A.1.60 MUL 

MUL (Multiply) Multiplies Rn and Rm, and stores the least significant 32 bits of the result in Rd.
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Syntax

MUL{S}{cond} {Rd,} Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.61 MVN

MVN (Move Not) performs a bitwise NOT operation on the operand2 value, and places the result 
into Rd.

Syntax

MVN{S}{cond} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.62 NOP

NOP (No Operation) does nothing.

Syntax

NOP{cond}

where:

NOP does not have to consume clock cycles. It can be removed by the processor pipeline. It is 
used for padding, to ensure following instructions align to a boundary. 

A.1.63 ORN 

ORN (OR NOT) performs an OR operation on the bits in Rn with the complement of the 
corresponding bits in the value of Operand2.

Syntax

ORN{S}{cond} {Rd,} Rn, <Operand2>

where:
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S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.64 ORR 

Performs an OR operation on the bits in Rn with the corresponding bits in the value of Operand2.

Syntax

ORR{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.65 PKHBT

PKHBT (Pack Halfword Bottom Top) combines bits[15:0] of Rn with bits[31:16] of the shifted 
value from Rm.

Syntax

PKHBT{cond} {Rd,} Rn, Rm{, LSL #leftshift}

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

leftshift is a number in the range 0-31.

A.1.66 PKHTB

PKHTB (Pack Halfword Top Bottom) combines bits[31:16] of Rn with bits[15:0] of the shifted 
value from Rm.

Syntax

PKHTB{cond} {Rd,} Rn, Rm {, ASR #rightshift}
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where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

rightshift is a number in the range 1-32.

A.1.67 PLD

PLD (Preload Data) is a hint instruction which can cause data to be preloaded into the cache.

Syntax

PLD{cond} [Rn {, #offset}]
PLD{cond} [Rn, +/-Rm {, shift}]
PLD{cond} label

where:

cond is an optional condition code. See Section 6.1.2. 

Rn is a base address. 

offset is an immediate value, which defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

label is a PC-relative expression.

A.1.68 PLDW

PLDW (Preload data with intent to write) is a hint instruction which can cause data to be preloaded 
into the cache. It is available only in processors which implement multi-processing extensions.

Syntax

PLDW{cond} [Rn {, #offset}]
PLDW{cond} [Rn, +/-Rm {, shift}]

where:

cond is an optional condition code. See Section 6.1.2. 

Rn is a base address. 

offset is an immediate value, which defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

A.1.69 PLI

PLI (Preload instructions) is a hint instruction which can cause instructions to be preloaded into 
the cache.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. A-25
ID071612 Non-Confidential



Instruction Summary 
Syntax

PLI{cond} [Rn {, #offset}]
PLI{cond} [Rn, +/-Rm {, shift}]
PLI{cond} label

where:

cond is an optional condition code. See Section 6.1.2. 

Rn is a base address. 

offset is an immediate value, which defaults to 0 if not specified.

Rm contains an offset value and must not be PC (or SP, in Thumb state).

shift is an optional shift.

label is a PC-relative expression.

A.1.70 POP

POP is used to pop registers off a full descending stack. POP is a synonym for LDMIA sp!, reglist.

Syntax

POP{cond} reglist

where:

cond is an optional condition code. See Section 6.1.2. 

reglist is a list of one or more registers, enclosed in braces.

A.1.71 PUSH

PUSH is used to push registers on to a full descending stack. PUSH is a synonym for STMDB sp!, 
reglist.

Syntax

PUSH{cond} reglist

where:

cond is an optional condition code. See Section 6.1.2. 

reglist is a list of one or more registers, enclosed in braces.

A.1.72 QADD

QADD (Saturating signed Add) does a signed addition and saturates the result to the signed range 
–231 ≤ x ≤ 231-1. If saturation occurs, the Q flag is set. 

Syntax

QADD{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Section 6.1.2. 
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Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.73 QADD8

QADD8 (Saturating signed bytewise Add) does a signed bytewise addition (4 adds) and saturates 
the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this instruction. 

Syntax

QADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.74 QADD16

QADD16 (Saturating signed bytewise Add) does a signed halfword-wise addition (2 adds) and 
saturates the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this 
instruction.

Syntax

QADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.75 QASX

QASX (Saturating signed Add Subtract eXchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and saturates the results to the signed range -215 
≤ x ≤ 215-1. The Q flag is not affected by this instruction.

Syntax

QASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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A.1.76 QDADD

QADD (Saturating signed Add) does a signed doubling addition and saturates the result to the 
signed range –231 ≤ x ≤ 231–1. If saturation occurs, the Q flag is set.

Syntax

QDADD{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is multiplied by 2, saturated and then added to the value in Rm. A second saturate 
operation is then performed.

A.1.77 QDSUB

QDSUB (Saturating signed Doubling Subtraction) does a signed doubling subtraction and saturates 
the result to the signed range –231 ≤ x ≤ 231–1. If saturation occurs, the Q flag is set.

Syntax

QDSUB{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is multiplied by 2, saturated and then subtracted from the value in Rm. A second 
saturate operation is then performed.

A.1.78 QSAX

QSAX (Saturating signed Subtract Add Exchange) exchanges the halfwords of Rm, then subtracts 
the top halfwords and adds the bottom halfwords and saturates the results to the signed range 
-215 ≤ x ≤ 215-1. The Q flag is not affected by this instruction.

Syntax

QSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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A.1.79 QSUB

QSUB (Saturating signed Subtraction) does a signed subtraction and saturates the result to the 
signed range -231 ≤ x ≤ 231-1. If saturation occurs, the Q flag is set.

Syntax

QDSUB{cond} {Rd,} Rm, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

The value in Rn is subtracted from the value in Rm. A saturate operation is then performed.

A.1.80 QSUB8

QSUB8 (Saturating signed bytewise Subtract) does bytewise subtraction (4 subtracts), with 
saturation of the results to the signed range -27 ≤ x ≤ 27-1. The Q flag is not affected by this 
instruction.

Syntax

QSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.81 QSUB16

QSUB16 (Saturating signed halfword Subtract) does halfword-wise subtraction (2 subtracts), with 
saturation of the results to the signed range -215 ≤ x ≤ 215-1. The Q flag is not affected by this 
instruction.

Syntax

QSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.82 RBIT

RBIT (Reverse bits) reverses the bit order in a 32-bit word.
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Syntax

RBIT{cond} Rd, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.83 REV

REV (Reverse) converts 32-bit big-endian data into little-endian data, or 32-bit little-endian data 
into big-endian data. 

Syntax

REV{cond} {Rd}, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.84 REV16

REV16 (Reverse byte order halfwords) converts 16-bit big-endian data into little-endian data, or 
16-bit little-endian data into big-endian data.

Syntax

REV16{cond} {Rd}, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the operand.

A.1.85 REVSH

REVSH (Reverse byte order halfword, with sign extension) does a reverse byte order of the bottom 
halfword, and sign extends the result to 32 bits. 

Syntax

REVSH{cond} Rd, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.
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Rn is the register holding the operand.

A.1.86 RFE

RFE (Return from Exception) is used to return from an exception where the return state was saved 
with SRS. If ! is specified, the final address is written back into Rn. 

Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode is one of: 

• IA – Increment address After each transfer. This is the default, and can be omitted.

• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).

• DB – Decrement address Before each transfer.

cond is an optional condition codes. See Section 6.1.2, and is allowed only in Thumb, using a 
preceding IT instruction.

Rn specifies the base register.

A.1.87 ROR

ROR (Rotate right Register) rotates a value in a register by a specified number of bits. The bits 
that are rotated off the right end are inserted into the vacated bit positions on the left. 

Syntax

ROR{S}{cond} {Rd,} Rm, Rs
ROR{S}{cond} {Rd,} Rm, imm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the operand.

Rm is the register holding the operand to be shifted.

Rs is the register which holds a shift value to apply to the value in Rm. Only the least significant 
byte of the register is used.

imm is a shift amount, in the range 1 – 31.

A.1.88 RRX

RRX (Rotate Right with extend) performs a shift right one bit on a register value. The old carry 
flag is shifted into bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.
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Syntax

RRX{S}{cond} {Rd,} Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm is the register holding the operand to be shifted.

A.1.89 RSB

RSB (Reverse Subtract) subtracts the value in Rn from the value of Operand2. This is useful 
because Operand2 has more options than Operand1 (which is always a register).

Syntax

RSB{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.90 RSC

RSC (Reverse Subtract with Carry) subtracts Rn from Operand2. If the carry flag is clear, the result 
is reduced by one.

Syntax

RSC{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.91 SADD8

SADD8 (Signed bytewise Add) does a signed bytewise addition (4 adds).
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Syntax

SADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.92 SADD16

SADD16 (Signed bytewise Add) does a signed halfword-wise addition (2 adds).

Syntax

SADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.93 SASX

SASX (Signed Add Subtract Exchange) exchanges halfwords of Rm, then adds the top halfwords 
and subtracts the bottom halfwords.

Syntax

SASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.94 SBC

SBC (Subtract with Carry) subtracts the value of Operand2 from the value in Rn. If the carry flag 
is clear, the result is reduced by one.

Syntax

SBC{S}{cond} {Rd,} Rn, <Operand2>

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2. 
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Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.95 SBFX

SBFX (Signed Bit Field Extract) writes adjacent bits from one register into the least significant 
bits of a second register and sign extends to 32 bits.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register which contains the bits to be extracted.

lsb specifies the least significant bit of the bitfield.

width is the width of the bitfield.

A.1.96 SDIV

SDIV (Signed Divide). divides a 32-bit signed integer register value by a 32-bit signed integer 
register value, and writes the result to the destination register. This instruction is not present in 
all variants of the ARMv7-A architecture.

Syntax

SDIV{cond}{q} {Rd,} Rn, Rm

where:

cond is the optional condition code. See section 6.1.2.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N (narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W (wide), specifies that the assembler must select a 32-bit encoding for the intruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. If 
both are available, it must select a 16-bit encoding.

Rd the destination register.

Rn is the register that contains the dividend.

Rm is the register that contains the divisor.

A.1.97 SEL

SEL (Select) selects bytes from Rn or Rm, depending on the APSR GE flags.

If GE[0] is set, Rd[7:0] comes from Rn[7:0], else from Rm[7:0]. 
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If GE[1] is set, Rd[15:8] comes from Rn[15:8], else from Rm[15:8]. 

If GE[2] is set, Rd[23:16] comes from Rn[23:16], else from Rm[23:16]. 

If GE[3] is set, Rd[31:24] comes from Rn[31:24], else from Rm[31:24].

Syntax

SEL{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register which contains the bits to be extracted.

Rm is the register holding the second operand.

A.1.98 SETEND

SETEND (Set endianness) selects little-endian or big-endian memory access. See Endianness on 
page 16-2 for more details.

Syntax

SETEND LE
SETEND BE

A.1.99 SEV

SEV (Send Event) causes an event to be signaled to all cores in an MPCore. See Power and 
clocking on page 25-2 for more detail.

Syntax

SEV{cond}

where:

cond is an optional condition code. See Section 6.1.2. 

A.1.100 SHADD8

SHADD8 (Signed halving bytewise Add) does a signed bytewise addition (4 adds) and halves the 
results.

Syntax

SHADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.
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A.1.101 SHADD16

SHADD16 (Signed halving bytewise Add) does a signed halfword-wise addition (2 adds) and 
halves the results.

Syntax

SHADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.102 SHASX

SHASX (Signed Halving Add Subtract Exchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and halves the results.

Syntax

SHASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.103 SHSAX

SHSAX (Signed Halving Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the 
top halfwords and adds the bottom halfwords and halves the results.

Syntax

SHSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.104 SHSUB8

SHSUB8 (Signed halving bytewise subtraction) does a signed bytewise subtraction (4 subtracts) 
and halves the results.

Syntax

SHSUB8{cond} {Rd,} Rn, Rm
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where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the registers holding the operands

A.1.105 SHSUB16

SHSUB16 (Signed Halving halfword-wise Subtract) does a signed halfword-wise subtraction (2 
subtracts) and halves the result.

Syntax

SHSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.106 SMC

SMC (Secure Monitor Call) is used by the ARM Security Extensions. This instruction was 
formerly called SMI. See Chapter 26 Security for more details.

Syntax

SMC{cond} #imm4

where:

cond is an optional condition code. See Section 6.1.2. 

imm4 is an immediate value in the range 0-15, which is ignored by the processor, but can be used 
by the SMC exception handler.

A.1.107 SMLAxy

The SMLAxy (Signed Multiply Accumulate; 32 <= 32 + 16 × 16) instruction multiplies the 16-bit 
signed integers from the selected halves of Rn and Rm, adds the 32-bit result to the value from Ra, 
and writes the result in Rd.

Syntax

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.
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Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register which holds the accumulate value.

A.1.108 SMLAD

SMLAD (Dual Signed Multiply Accumulate; 32 <= 32 + 16 × 16 + 16 × 16) multiplies the bottom 
halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn with the top halfword 
of Rm. It then adds both products to the value in Ra and writes the sum to Rd.

Syntax

SMLAD{X}{cond} Rd, Rn, Rm, Ra

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register which holds the accumulate value.

A.1.109 SMLAL

SMLAL (Signed Multiply Accumulate 64 <= 64 + 32 × 32) multiplies Rn and Rm (treated as signed 
integers) and adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo.

Syntax

SMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction. 

cond is an optional condition code. See Section 6.1.2. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.110 SMLALxy

SMLALxy (Signed Multiply Accumulate; 64 <= 64 + 16 × 16) multiplies the signed integer from 
the selected half of Rm by the signed integer from the selected half of Rn, and adds the 32-bit 
result to the 64-bit value in RdHi and RdLo.
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Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm.

cond is an optional condition code. See Section 6.1.2. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.111 SMLALD

SMLALD (Dual Signed Multiply Accumulate Long; 64 <= 64 + 16 × 16 + 16 × 16) multiplies the 
bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn with the top 
halfword of Rm and adds both products to the value in RdLo, RdHi and stores the result in RdLo 
and RdHi.

Syntax

SMLALD{X}{cond} RdLo, RdHi Rn, Rm

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication.

cond is an optional condition code. See Section 6.1.2. 

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.112 SMLAWy

SMLAW (Signed Multiply with Accumulate Wide; 32 <= 32 × 16 + 32) multiplies the signed 
integer from the selected half of Rm by the signed integer from Rn, adds the 32-bit result to the 
32-bit value in Ra, and writes the result in Rd.

Syntax

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y> can be either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top 
half (bits [31:16]) of Rm.

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. A-39
ID071612 Non-Confidential



Instruction Summary 
Rm is the register holding the second multiplicand.

Ra is the register which holds the accumulate value.

A.1.113 SMLSLD

SMLSLD (Dual Signed Multiply Subtract Accumulate Long; 64 <= 64 + 16 × 16 - 16 × 16) 
multiplies Rn[15:0] with Rm[15:0] and Rn[31:16] with Rm[31:16]. It then subtracts the second 
product from the first, adds the difference to the value in RdLo, RdHi, and writes the result to RdLo, 
RdHi.

Syntax

SMLSLD{X}{cond} RdLo, RdHi Rn, Rm

where:

{X} if present, means that the most and least significant halfwords of the second operand are 
swapped, before the multiplication. 

cond is an optional condition code. See Section 6.1.2. 

RdLo and RdHi are the destination registers and hold the value to be accumulated.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.114 SMMLA

SMMLA (Signed top word Multiply with Accumulate; 32 <= top word (32 × 32 + 32)) multiplies 
Rn and Rm, adds Ra to the most significant 32 bits of the product, and writes the result in Rd.

Syntax

SMMLA{R}{cond} Rd, Rn, Rm, Ra

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.115 SMMLS

SMMLS (Signed top word Multiply with Subtract; 32 <= top word (32 × 32 - 32)) multiplies Rn and 
Rm, subtracts the product from the value in Ra shifted left by 32 bits, and stores the most 
significant 32 bits of the result in Rd.
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Syntax

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

Ra is the register holding the accumulate value.

A.1.116 SMMUL

SMMUL (Signed top word Multiply; 32 <= top word (32 × 32 )) multiplies Rn and Rm, and writes 
the most significant 32 bits of the 64-bit result to Rd.

Syntax

SMMUL{R}{cond} Rd, Rn, Rm

where:

R, if present means that 0x80000000 is added before extracting the most significant 32 bits. This 
rounds the result. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.117 SMUAD

SMUAD (Dual Signed Multiply and Add products) multiplies Rn [15:0] with Rm [15:0] and Rn 
[31:16] with Rm [31:16]. It then adds the products and stores the sum to Rd.

Syntax

SMUAD{X}{cond} Rd, Rn, Rm

where:

X, if present means that the most and least significant halfwords of the second operand are 
exchanged before the multiplications occur. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.
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A.1.118 SMUSD 

SMUSD (Dual Signed Multiply and Subtract products) multiplies Rn [15:0] with Rm [15:0] and Rn 
[31:16] with Rm [31:16]. It then subtracts the products and stores the sum to Rd.

Syntax

SMUSD{X}{cond} Rd, Rn, Rm

where:

X, if present means that the most and least significant halfwords of the second operand are 
exchanged before the multiplications occur. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.119 SMULxy 

The SMULxy (Signed Multiply (32 <= 16 × 16) instruction multiplies the 16-bit signed integers 
from the selected halves of Rn and Rm, and places the 32-bit result in Rd.

Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

where:

<x> and <y> can be either B or T. B means use the bottom half (bits [15:0]) of a register, T means 
use the top half (bits [31:16]) of a register. <x> specifies which half of Rn to use, <y> does the 
same for Rm. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.120 SMULL

The SMULL (signed multiply long; 64 <= 32 × 32) instruction multiplies Rn and Rm (treated as 
containing as two’s complement signed integers) and places the least significant 32 bits of the 
result in RdLo, and the most significant 32 bits of the result in RdHi.

Syntax

SMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction. 

cond is an optional condition code. See Section 6.1.2. 
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RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.121 SMULWy

SMULWy (Signed Multiply Wide; 32 <= 32 × 16) multiplies the signed integer from the chosen half 
of Rm with the signed integer from Rn, and places the upper 32-bits of the 48-bit result in Rd.

Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half 
(bits [31:16]) of Rm. 

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.122 SRS

SRS (Store Return State) stores the LR and the SPSR of the current mode, at the address 
contained in the SP of the mode specified by modenum. The optional ! means that the SP value 
is updated. This is compatible with the normal use of the STM instruction for stack accesses.

Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

where:

addr_mode is one of: 
• IA – Increment address After each transfer. This is the default, and can be omitted.
• IB – Increment address Before each transfer (ARM only).
• DA – Decrement address After each transfer (ARM only).
• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). 

cond is an optional condition code. See Section 6.1.2.

modenum gives the number of the mode whose SP is used. 

A.1.123 SSAT

SSAT (Signed Saturate) performs a shift and saturates the result to the signed range -2sat-1 ≤ x ≤ 
2sat-1-1. If saturation occurs, the Q flag is set.
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Syntax

SSAT{cond} Rd, #sat, Rm{, shift}

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half 
(bits [31:16]) of Rm. 

cond is an optional condition code. See Section 6.1.2 

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32.

Rm is the register holding the second multiplicand.

shift is optional shift amount and can be either ASR #n where n is in the range (1 – 32 ARM state, 
1 – 31 Thumb state) or LSL #n where n is in the range (0-31).

A.1.124 SSAT16

SSAT16 (Signed Saturate, parallel halfwords) saturates each signed halfword to the signed range 
-2sat-1 ≤ x ≤ 2sat-1 -1. If saturation occurs, the Q flag is set.

Syntax

SSAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32.

Rn is the register holding the operand.

A.1.125 SSAX

SSAX (Signed Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the top 
halfwords and adds the bottom halfwords.

Syntax

SSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register.

Rm and Rn are the register holding the operands.

A.1.126 SSUB8

SSUB8 (Signed halving bytewise Subtraction) does a signed bytewise subtraction (4 subtracts).
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Syntax

SSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination registers.

Rm and Rn are the register holding the operands.

A.1.127 SSUB16

SSUB16 (Signed halfword-wise Subtract) does a signed halfword-wise subtraction (2 subtracts).

Syntax

SSUB16{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination registers.

Rm and Rn are the register holding the operands.

A.1.128 STC

STC (Store Coprocessor Registers) writes a coprocessor register to memory (or multiple 
registers, if L is specified).

Syntax

STC{L}{cond} coproc, CRd, [Rn]
STC{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
STC{L}{cond} coproc, CRd, [Rn], #{-}offset
STC{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but may not be more than 16 words.

cond is an optional condition code. See Section 6.1.2. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

offset is a multiple of four, in the range 0-1020, to be added or subtracted from Rn. If ! is present, 
the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.
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A.1.129 STC2

STC2 (Store Coprocessor registers) writes a coprocessor register to memory (or multiple 
registers, if L is specified).

Syntax

STC2{L}{cond} coproc, CRd, [Rn]
STC2{L}{cond} coproc, CRd, [Rn, #{-}offset]{!}
STC2{L}{cond} coproc, CRd, [Rn], #{-}offset
STC2{L}{cond} coproc, CRd, label

where:

L specifies that more than one register can be transferred (called a long transfer). The length of 
the transfer is determined by the coprocessor, but may not be more than 16 words.

cond is an optional condition code. See Section 6.1.2. 

coproc is the name of the coprocessor the instruction is for. This is usually of the form pn, where 
n is an integer in the range 0 to 15.

CRd is the coprocessor register to be stored.

Rn is the register holding the base address for the memory operation.

offset is a multiple of four, in the range 0 – 1020, to be added or subtracted from Rn. If ! is 
present, the address including the offset is written back into Rn.

label is a word-aligned PC-relative address label.

A.1.130 STM

STM (Store Multiple registers) writes one or more registers to consecutive addresses in memory 
to an address specified in a base register.

Syntax

STM{addr_mode}{cond} Rn{!},reglist{^}

where:

addr_mode is one of: 

• IA – Increment address After each transfer. This is the default, and can be omitted.

• IB – Increment address Before each transfer (ARM only).

• DA – Decrement address After each transfer (ARM only).

• DB – Decrement address Before each transfer.

It is also possible to use the corresponding stack oriented addressing modes (FD, ED, EA, FA). For 
example STMFD is a synonym of STMDB.

cond is an optional condition code. See Section 6.1.2. 

Rn is the base register, giving the initial address for the transfer.

! if present, specifies that the final address is written back into Rn. 

^ if specified (in ARM state and a mode other than User or System) means that data is transferred 
into or out of the User mode registers instead of the current mode registers.
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reglist is a list of one or more registers to be stored, enclosed in braces. It can contain register 
ranges. It must be comma separated if it contains more than one register or register range.

A.1.131 STR

STR (Store Register) stores a value to memory from an ARM register, optionally updating the 
register used to give the address. 

A variety of addressing options are provided. For full details of the available addressing modes, 
see Addressing modes on page 6-10.

Syntax

STR{type}{T}{cond} Rt, [Rn {, #offset}] 
STR{type}{cond} Rt, [Rn, #offset]! 
STR{type}{T}{cond} Rt, [Rn], #offset 
STR{type}{cond} Rt, [Rn, +/-Rm {, shift}] 
STR{type}{cond} Rt, [Rn, +/-Rm {, shift}]! 
STR{type}{T}{cond} Rt, [Rn], +/-Rm {, shift} 

where:

type can be any one of: 
• B – unsigned Byte (Zero extend to 32 bits on loads.)
• SB – signed Byte (Sign extend to 32 bits.)
• H – unsigned Halfword (Zero extend to 32 bits on loads.)
• SH – signed Halfword (Sign extend to 32 bits.)

or omitted, for a Word load. 

T specifies that memory is accessed as if the processor was in User mode (not available in all 
addressing modes). 

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the base address for the memory operation.

! if present, specifies that the final address is written back into Rn. 

offset is a numeric value.

Rm is a register holding an offset value to be applied.

shift is either a register or immediate based shift to apply to the offset value.

A.1.132 STRD

STRD (Store Register Dual) calculates an address from a base register value and a register offset, 
and stores two words from two registers to memory. It can use offset, post-indexed, or 
pre-indexed addressing.

Syntax

STRD{cond} Rt, Rt2, [Rn {,#+/-<imm>}]
STRD{cond} Rt, Rt2, [<Rn>, #+/-<imm>
STRD{cond} Rt, Rt2, [<Rn>, #+/-<imm>]!
STRD{cond} Rt, Rt2, [{Rn},+/-{Rm}]{!}
STRD{cond} Rt, Rt2, [{Rn}],+/-{Rm}
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where:

cond is an optional condition code. See Section 6.1.2.

Rt is the first source register. For an ARM instruction Rt must be even-numbered and not R14.

Rt is the second source register. For an ARM instruction Rt2 must be <R(t+1)>. 

Rn is the base register. The SP can be used. In the ARM instruction set for offset addressing only, 
the PC can be used. However, use of the PC is deprecated.

+/- is + or omitted if the value of <Rm> is to be added to the base register value (add = TRUE), 
or – if it is to be subtracted (add = FALSE). #0 and #-0 generate different instructions.

imm is the immediate offset used to form the address. imm can be omitted, meaning an offset of 0.

Rm contains the offset that is applied to the value of <Rn> to form the address.

A.1.133 STREX

STREX (Store register exclusive). Performs a store to a location marked for exclusive access, 
returning a status value if the store succeeded. Byte, halfword, word and doubleword variants 
are provided.

Syntax

STREX{cond} Rd, Rt, [Rn {, #offset}]
STREXB{cond} Rd, Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]
STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code. See Section 6.1.2. 

Rd is the destination register for the return status. 

Rt is the register to store.

Rt2 is the second register for doubleword stores.

Rn is the register holding the address.

offset is an optional value, allowed in Thumb only. 

A.1.134 SUB

SUB (Subtract) subtracts the value Operand2 from Rn (or subtracts imm12 from Rn).

Syntax

SUB{S}{cond} {Rd,} Rn, <Operand2>

SUB{cond}{Rd,}, Rn, #imm12 (Only available in Thumb)

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.
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Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

imm12 is in the range 0-4095. 

A.1.135 SVC

SVC (SuperVisor Call) causes an SVC exception (was called SWI in older documentation).

Syntax

SVC{cond} #imm

where:

cond is an optional condition code. See Section 6.1.2.

imm is an integer in the range 0 - 0xFFFFFF (ARM) or 0 - 0xFF (Thumb). This integer is not used 
by the processor itself, but can be used by exception handler code. 

A.1.136 SWP

SWP (Swap registers and memory) performs the following two actions. Data from memory is 
loaded into Rt. Rt2 is saved to memory, at the address given by Rn. Use of this instruction is 
deprecated and its use is disabled by default.

Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

B is an optional suffix. If specified, a byte is swapped. If not present, a word is specified.

Rt is the destination register. 

Rt2 is the source register and can be the same as Rt.

Rn is the register holding the address and cannot be the same as Rt or Rt2. 

A.1.137 SXT

SXT (Signed Extend) extracts the specified byte and extends to 32-bit.

Syntax

SXT<extend>{cond} {Rd,} Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.
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cond is an optional condition code. See Section 6.1.2.

Rd is the destination register. 

Rm is the register which contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.138 SXTA

SXTA (Signed Extend and Add) extracts the specified byte, adds the value from Rn and extends 
to 32-bit.

Syntax

SXTA<extend>{cond} {Rd,} Rn, Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register. 

Rn is the register holding the value to be added.

Rm is the register which contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.139 SYS

SYS (System coprocessor instruction) is used to execute special coprocessor instructions such as 
cache, branch predictor, and TLB operations. The instructions operate by writing to special 
write-only coprocessor registers.

Syntax

SYS{cond} instruction {,Rn}

where:

cond is an optional condition code. See Section 6.1.2.

instruction is a write-only system coprocessor register name.

Rn is the register holding the operand.

A.1.140 TBB

TBB (Table Branch Byte) causes a PC-relative forward branch using a table of single byte offsets. 
Rn provides a pointer to the table, and Rm supplies an index into the table. The branch length is 
twice the value of the byte returned from the table. The target of the branch table must be in the 
same execution state. There is no ARM or 16-bit Thumb version of this instruction.
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Syntax

TBB [Rn, Rm]

where:

Rn is the base register which holds the address of the table of branch lengths.

Rm is a register which holds the index into the table.

A.1.141 TBH

TBH (Table Branch Halfword) causes a PC-relative forward branch using a table of halfword 
offsets. Rn provides a pointer to the table, and Rm supplies an index into the table. The branch 
length is twice the value of the halfword returned from the table. The target of the branch table 
must be in the same execution state.

There is no ARM or 16-bit Thumb version of this instruction.

Syntax

TBH [Rn, Rm, LSL #1]

where:

Rn is the base register which holds the address of the table of branch lengths.

Rm is a register which holds the index into the table.

A.1.142 TEQ

TEQ (Test Equivalence) does a bitwise AND operation on the value in Rn and the value of 
Operand2. This is the same as an ANDS instruction, except that the result is discarded.

Syntax

TEQ{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See Section 6.2.1.

A.1.143 TST

TST (Test) does an Exclusive OR operation on the value in Rn and the value of Operand2. This is 
the same as an EORS instruction, except that the result is discarded.

Syntax

TST{cond} Rn, <Operand2>

where:

cond is an optional condition code. See Section 6.1.2.

Rn is the register holding the first operand.
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Operand2 is a flexible second operand. See Section 6.2.1.

A.1.144 UADD8

UADD8 (Unsigned bytewise Add) does an unsigned bytewise addition (4 adds).

Syntax

UADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.145 UADD16

UADD16 (Unsigned halfword-wise Add) does an unsigned halfword-wise addition (2 adds).

Syntax

UADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.146 UASX

UASX (Unsigned Add Subtract Exchange) exchanges halfwords of Rm, then adds the top halfwords 
and subtracts the bottom halfwords.

Syntax

UASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.147 UBFX

UBFX (Unsigned Bit Field Extract) writes adjacent bits from one register into the least significant 
bits of a second register and zero extends to 32 bits.

Syntax

UBFX{cond} Rd, Rn, #lsb, #width
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where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register which contains the bits to be extracted.

lsb specifies the least significant bit of the bitfield.

width is the width of the bitfield.

A.1.148 UDIV

UDIV (Unsigned Divide). divides a 32-bit unsigned integer register value by a 32-bit unsigned 
integer register value, and writes the result to the destination register. This instruction is not 
present in all variants of the ARMv7-A architecture.

Syntax

UDIV{cond}{q} {Rd,} Rn, Rm

where:

cond is the optional condition code. See Section 6.1.2.

q specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

• .N (narrow), specifies that the assembler must select a 16-bit encoding for the instruction.

• .W (wide), specifies that the assembler must select a 32-bit encoding for the instruction.

If neither .W nor .N are specified, the assembler can select either 16-bit or 32-bit encodings. If 
both are available, it must select a 16-bit encoding.

Rd the destination register.

Rn is the register that contains the dividend.

Rm is the register that contains the divisor.

A.1.149 UHADD8

UHADD8 (Unigned Halving bytewise Add) does an unsigned bytewise addition (4 adds) and halves 
the results.

Syntax

UHADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.150 UHADD16

UHADD16 (Unsigned Halving halfword-wise Add) does an unsigned halfword-wise addition (2 
adds) and halves the results.
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Syntax

UHADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.151 UHASX

UHASX (Unsigned Halving Add Subtract Exchange) exchanges halfwords of Rm, then adds the top 
halfwords and subtracts the bottom halfwords and halves the results.

Syntax

UHASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.152 UHSAX

UHSAX (Unsigned Halving Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the 
top halfwords and adds the bottom halfwords and halves the results.

Syntax

UHSAX{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.153 UHSUB8

UHSUB8 (Unsigned Halving bytewise Subtraction) does an unsigned bytewise subtraction (4 
subtracts) and halves the results.

Syntax

UHSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.
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Rm and Rn are the register holding the operands.

A.1.154 UHSUB16

UHSUB16 (Unsigned Halving halfword-wise Subtract) does an unsigned halfword-wise 
subtraction (2 subtracts) and halves the result.

Syntax

UHSUB16{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.155 UMAAL

UMAAL (Unsigned Multiply Accumulate Long; 64 <= 32 + 32 + 32 x 32) multiplies Rn and Rm 
(treated as unsigned integers) adds the two 32-bit values in RdHi and RdLo, and stores the 64-bit 
result to RdLo, RdHi.

Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

RdLo and RdHi are the destination accumulator registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.156 UMLAL

UMLAL (Unsigned Multiply Accumulate 64 <= 64 + 32 x 32) multiplies Rn and Rm (treated as 
unsigned integers) and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and 
RdLo.

Syntax

UMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

RdLo and RdHi are the destination accumulator registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.
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A.1.157 UMULL

UMULL (Unsigned Multiply; 64 <= 32 x 32) multiplies Rn and Rm (treated as unsigned integers) and 
stores the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the 
result in RdHi.

Syntax

UMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S (if specified) means that the condition code flags will be updated depending upon the result of 
the instruction.

cond is an optional condition code. See Section 6.1.2.

RdLo and RdHi are the destination registers.

Rn is the register holding the first multiplicand.

Rm is the register holding the second multiplicand.

A.1.158 UQADD8

UQADD8 (Saturating Unsigned bytewise Add) does an unsigned bytewise addition (4 adds) and 
saturates the results to the unsigned range 0 ≤ x ≤ 28-1. The Q flag is not affected by this 
instruction.

Syntax

UQADD8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.159 UQADD16

UQADD16 (Saturating Unsigned halfword-wise Add) does an unsigned halfword-wise addition (2 
adds) and saturates the results to the unsigned range 0 ≤ x ≤ 216-1. The Q flag is not affected by 
this instruction.

Syntax

UQADD16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the register holding the operands.
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A.1.160 UQASX

UQASX (Saturating Unsigned Add Subtract Exchange) exchanges halfwords of Rm, then adds the 
top halfwords and subtracts the bottom halfwords and saturates the results to the unsigned range 
0 ≤ x ≤ 216-1. The Q flag is not affected by this instruction.

Syntax

UQASX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.161 UQSAX

UQSAX (Saturating Unsigned Subtract Add Exchange) exchanges the halfwords of Rm, then 
subtracts the top halfwords and adds the bottom halfwords and saturates the results to the signed 
range 0 ≤ x ≤ 216-1. The Q flag is not affected by this instruction.

Syntax

QSAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.162 UQSUB8

UQSUB8 (Saturating Unsigned bytewise Subtract) does bytewise subtraction (4 subtracts), with 
saturation of the results to the unsigned range 0 ≤ x ≤ 28-1. The Q flag is not affected by this 
instruction.

Syntax

UQSUB8{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.163 UQSUB16

UQSUB16 (Saturating Unsigned halfword Subtract) does halfword-wise subtraction (two 
subtracts), with saturation of the results to the unsigned range 0 ≤ x ≤ 216-1. The Q flag is not 
affected by this instruction.
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Syntax

UQSUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.164 USAD8

USAD8 (Unsigned Sum of Absolute Differences) finds the 4 differences between the unsigned 
values in corresponding bytes of Rn and Rm and adds the absolute values of the 4 differences, and 
stores the result in Rd.

Syntax

USAD8{cond} Rd, Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand. 

Rm is the register holding the second operand. 

A.1.165 USADA8

USADA8 (Unsigned Sum of Absolute Differences Accumulate) finds the 4 differences between the 
unsigned values in corresponding bytes of Rn and Rm and adds the absolute values of the 4 
differences to the value in Ra, and stores the result in Rd.

See Sum of absolute differences on page 6-15 for more information.

Syntax

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the first operand. 

Rm is the register holding the second operand.

Ra is the register which holds the accumulate value.

A.1.166 USAT

USAT (Unsigned Saturate) performs a shift and saturates the result to the signed range 0 ≤ x ≤ 
2sat-1. If saturation occurs, the Q flag is set.
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Syntax

USAT{cond} Rd, #sat, Rm{, shift}

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 31.

Rm is the register holding the operand.

shift is optional shift amount and can be either ASR #n where n is in the range (1 – 32 ARM 
state, 1-31 Thumb state) or LSL #n where n is in the range (0 – 31).

A.1.167 USAT16

USAT16 (Unigned Saturate, parallel halfwords) saturates each unsigned halfword to the signed 
range 0 ≤ x ≤ 2sat -1. If saturation occurs, the Q flag is set.

Syntax

USAT16{cond} Rd, #sat, Rn

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 0 to 31.

Rn is the register holding the operand. 

A.1.168 USAX

USAX (Unsigned Subtract Add Exchange) exchanges halfwords of Rm, then subtracts the top 
halfwords and adds the bottom halfwords.

Syntax

USAX{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands.

A.1.169 USUB8

USUB8 (Unsigned bytewise Subtraction) does an unsigned bytewise subtraction (4 subtracts).

Syntax

USUB8{cond} {Rd,} Rn, Rm
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where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands. 

A.1.170 USUB16

USUB16 (Unsigned halfword-wise Subtract) does an unsigned halfword-wise subtraction (2 
subtracts).

Syntax

USUB16{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm and Rn are the registers holding the operands. 

A.1.171 UXT

UXT (Unsigned Extend) extracts the specified byte and zero extends to a 32-bit value.

Syntax

UXT<extend>{cond} {Rd,} Rm {,rotation}

where:

extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rm is the register which contains the value to be extended.

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.172 UXTA

UXTA (Unsigned Extend and Add) extracts the specified byte, adds the value from Rn and zero 
extends to a 32-bit value.

Syntax

UXTA<extend>{cond} {Rd,} Rn, Rm {,rotation}

where:
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extend must be one of:

• B16 – extends two 8-bit values to two 16-bit values.

• B – extends an 8-bit value to a 32-bit value.

• H – extends a 16-bit value to a 32-bit value.

cond is an optional condition code. See Section 6.1.2.

Rd is the destination register.

Rn is the register holding the value to be added.

Rm is the register which contains the value to be extended. 

rotation can be one of ROR #8, ROR #16 or ROR #24 (or can be omitted).

A.1.173 WFE

WFE (Wait for Event). If the Event Register is not set, WFE suspends execution until one of the 
following events occurs:

• an IRQ interrupt (even when CPSR I-bit is set)

• an FIQ interrupt (even when CPSR F-bit is set)

• an asynchronous abort (not when masked by the CPSR A-bit)

• Debug Entry request, even when debug is disabled.

• an Event signaled by another processor using the SEV instruction.

If the Event Register is set, WFE clears it and returns immediately.

Syntax

WFE{cond}

where:

cond is an optional condition code. See Section 6.1.2.

A.1.174 WFI

WFI (Wait For Interrupt) suspends execution until one of the following events occurs:

• An IRQ interrupt (even when CPSR I-bit is set).

• An FIQ interrupt (even when CPSR F-bit is set).

• An asynchronous abort (not when masked by the CPSR A-bit).

• Debug Entry request, even when debug is disabled.

If the Event Register is set, WFE clears it and returns immediately.

Syntax

WFI{cond}

where:
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cond is an optional condition code. See Section 6.1.2.

A.1.175 YIELD

YIELD indicates to the hardware that the current thread is performing a task that can be swapped 
out (for example, a spinlock). Hardware could use this hint to suspend and resume threads in a 
multithreading system.

Syntax

YIELD{cond}

where:

cond is an optional condition code. See Section 6.1.2.
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NEON and VFP Instruction Summary

This appendix provides a summary of the assembly language instructions available to the NEON 
and VFP programmer. It groups the instructions into the following classifications:

For each instruction, we provide a description of the syntax, operands and behavior. Not all usage 
restrictions are documented here, nor do we show the associated binary encoding. For most 
instructions, further explanation can be found in Chapter 8 and Chapter 20.

This appendix is intended for quick reference. If more detail about the precise operation of an 
instruction is required, please refer to the ARM Architecture Reference Manual, or to the official 
ARM documentation (for example the ARM Compiler Toolchain Assembler Reference) which can 
be found at http://infocenter.arm.com/help/index.jsp.

The NEON and VFP instructions are divided into a number of sections:

• NEON general data processing instructions on page B-6.

• NEON shift instructions on page B-13.

• NEON logical and compare operations on page B-17.

• NEON arithmetic instructions on page B-23.

• NEON multiply instructions on page B-32.

• NEON load and store element and structure instructions on page B-35.

• VFP instructions on page B-41.

• NEON and VFP pseudo-instructions on page B-47.
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Within each of these groups, instructions are listed alphabetically. Table B-1 shows an 
alphabetic listing of all NEON and VFP instructions, showing which section of this appendix 
describes them and which instruction sets support the instruction.

Table B-1 NEON (Advanced SIMD) and VFP instructions

Instruction Section Instruction set

V{Q}{R}SHL B2 Advanced-SIMD

V{Q}ABS B4 Advanced-SIMD

V{Q}ADD B4 Advanced-SIMD

V{Q}MOVN B1 Advanced-SIMD

V{Q}SUB B4 Advanced-SIMD

V{R}ADDHN B4 Advanced-SIMD

V{R}HADD B4 Advanced-SIMD

V{R}SHR{N} B2 Advanced-SIMD

V{R}SRA B2 Advanced-SIMD

V{R}SUBHN B4 Advanced-SIMD

VABA{L} B4 Advanced-SIMD

VABD{L} B4 Advanced-SIMD

VABS B7 VFP

VACGE B3 Advanced-SIMD

VACGT B3 Advanced-SIMD

VACLE B8 Advanced-SIMD

VACLT B8 Advanced-SIMD

VADD B7 VFP

VADDL B4 Advanced-SIMD

VADDW B4 Advanced-SIMD

VAND B3 Advanced-SIMD

B8 Advanced-SIMD

VBIC B3 Advanced-SIMD

VBIF B3 Advanced-SIMD

VBIT B3 Advanced-SIMD

VBSL B3 Advanced-SIMD

VCEQ B3 Advanced-SIMD

VCGE B3 Advanced-SIMD

VCGT B3 Advanced-SIMD
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VCLE B3 Advanced-SIMD

B8 Advanced-SIMD

VCLS B4 Advanced-SIMD

VCLT B3 Advanced-SIMD

B8 Advanced-SIMD

VCLZ B4 Advanced-SIMD

VCMP B7 VFP

VCNT B4 Advanced-SIMD

VCVT B1 Advanced-SIMD

B7 VFP

VCVTB B7 VFP

VCVTT B7 VFP

VDIV B7 VFP

VDUP B1 Advanced-SIMD

VEOR B3 Advanced-SIMD

VEXT B1 Advanced-SIMD

VFMA B5 Advanced-SIMD

B7 VFP

VFMS B5 Advanced-SIMD

B7 VFP

VFNMA B7 VFP

VFNMS B7 VFP

VHSUB B4 Advanced-SIMD

VLD B8 Advanced-SIMD, VFP

VLDM B6 Advanced-SIMD, VFP

VLDR B6 Advanced-SIMD, VFP

VMAX B4 Advanced-SIMD

VMIN B4 Advanced-SIMD

VMLA B7 VFP

VMLA{L} B5 Advanced-SIMD

VMLS B7 VFP

VMLS{L} B5 Advanced-SIMD

Table B-1 NEON (Advanced SIMD) and VFP instructions (continued)

Instruction Section Instruction set
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VMOV B1 Advanced-SIMD

B3 Advanced-SIMD

B7 VFP

B6 Advanced-SIMD, VFP

VMOV2 B8 Advanced-SIMD

VMOVL B1 Advanced-SIMD

VMRS B6 Advanced-SIMD, VFP

B6 Advanced-SIMD, VFP

VMUL B7 VFP

VMUL{L} B5 Advanced-SIMD

VMVN B1 Advanced-SIMD

B3 Advanced-SIMD

VNEG B7 VFP

VNMLA B7 VFP

VNMLS B7 VFP

VNMUL B7 VFP

VORN B3 Advanced-SIMD

B8 Advanced-SIMD

VORR B3 Advanced-SIMD

VPADAL B4 Advanced-SIMD

VPADD{L} B4 Advanced-SIMD

VPMAX B4 Advanced-SIMD

VPMIN B4 Advanced-SIMD

VPOP B6 Advanced-SIMD, VFP

VPUSH B6 Advanced-SIMD, VFP

VQ{R}DMULH B5 Advanced-SIMD

VQ{R}SHR{U}N B2 Advanced-SIMD

VQDMLAL B5 Advanced-SIMD

VQDMLSL B5 Advanced-SIMD

VQDMULL B5 Advanced-SIMD

VQMOVUN B1 Advanced-SIMD

VQSHL B2 Advanced-SIMD

VQSHLU B2 Advanced-SIMD

Table B-1 NEON (Advanced SIMD) and VFP instructions (continued)

Instruction Section Instruction set
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VRECPE B4 Advanced-SIMD

VRECPS B4 Advanced-SIMD

VREV B1 Advanced-SIMD

VRSQRTE B4 Advanced-SIMD

VRSQRTS B4 Advanced-SIMD

VSHL B2 Advanced-SIMD

VSHLL B2 Advanced-SIMD

VSLI B2 Advanced-SIMD

VSQRT B7 VFP

VSRI B2 Advanced-SIMD

VST B8 Advanced-SIMD, VFP

VSTM B6 Advanced-SIMD, VFP

VSTR B6 Advanced-SIMD, VFP

VSUB B7 VFP

VSUBL B4 Advanced-SIMD

VSUBW B4 Advanced-SIMD

VSWP B1 Advanced-SIMD

VTBL B1 Advanced-SIMD

VTBX B1 Advanced-SIMD

VTRN B1 Advanced-SIMD

VTST B3 Advanced-SIMD

VUZP B1 Advanced-SIMD

VZIP B1 Advanced-SIMD

Table B-1 NEON (Advanced SIMD) and VFP instructions (continued)

Instruction Section Instruction set
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B.1 NEON general data processing instructions
This section covers NEON data processing instructions, including those which extract or 
manipulate values in registers, perform type conversion or other operations.

B.1.1 VCVT (fixed-point or integer to floating-point)

VCVT (Vector Convert) converts each element in a vector and places the results in the destination 
vector. The possible conversions are:
• Floating-point to integer.
• Integer to floating-point.
• Floating-point to fixed-point.
• Fixed-point to floating-point.

Integer or fixed-point to floating-point conversions use round to nearest.

Floating-point to integer or fixed-point conversions use round towards zero.

Syntax

VCVT{cond}.type Qd, Qm {, #fbits}
VCVT{cond}.type Dd, Dm {, #fbits}

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

type specifies the data types for the elements of the vectors and can be:
• S32.F32 floating-point to signed integer or fixed-point.
• U32.F32 floating-point to unsigned integer or fixed-point.
• F32.S32 signed integer or fixed-point to floating-point.
• F32.U32 unsigned integer or fixed-point to floating-point.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

fbits specifies the number of fraction bits in the fixed point number, in the range 0-32. If fbits 
is not present, the conversion is between floating-point and integer.

B.1.2 VCVT (between half-precision and single-precision floating-point)

VCVT (Vector Convert), with half-precision extension, converts each element in a vector and 
places the results in the destination vector. The conversion can be:
• From half-precision floating-point to single-precision floating-point (F32.F16).
• Single-precision floating-point to half-precision floating-point (F16.F32).

This instruction is present only in NEON systems with the half-precision extension.

Syntax

VCVT{cond}.F32.F16 Qd, Dm
VCVT{cond}.F16.F32 Dd, Qm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)
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Qd and Dm specify the destination vector for the single-precision results and the half-precision 
operand vector.

Dd and Qm specify the destination vector for half-precision results and the single-precision 
operand vector.

B.1.3 VDUP

VDUP (Vector Duplicate) duplicates a scalar into every element of the destination vector. The 
source can be either a NEON scalar or an ARM register.

Syntax

VDUP{cond}.size Qd, Dm[x]
VDUP{cond}.size Dd, Dm[x]
VDUP{cond}.size Qd, Rm
VDUP{cond}.size Dd, Rm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is 8, 16, or 32.

Qd specifies the destination register for a quadword operation.

Dd specifies the destination register for a doubleword operation.

Dm[x] specifies the NEON scalar or Rm the ARM register.

B.1.4 VEXT

VEXT (Vector Extract) extracts 8-bit elements from the bottom end of the second operand vector 
and the top end of the first, concatenates them, and stores the result in the destination vector.

Syntax

VEXT{cond}.8 {Qd,} Qn, Qm, #imm
VEXT{cond}.8 {Dd,} Dn, Dm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3) An ARM VEXT 
instruction must be unconditional.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

imm gives the number of 8-bit elements to extract from the bottom of the second operand vector, 
between 0-7 for doubleword operations, or 0-15 for quadword operations.

VEXT can also be written as a pseudo-instruction. In this case, a datatype of 16, 32, or 64 can be 
used and #imm refers to halfwords, words, or doublewords, with a corresponding reduction in the 
permitted range.

If the value is 16, 32, or 64, the syntax is a pseudo-instruction for a VEXT instruction specifying 
the equivalent number of bytes. The assembler treats values greater than 8 in the following way:
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VEXT.16 D0, D1, #x is treated as VEXT.8 D0, D1, #(x*2)

VEXT.32 D0, D1, #x is treated as VEXT.8 D0, D1, #(x*4)

VEXT.64 Q0, Q1, #x is treated as VEXT.8 Q0, Q1, #(x*8).

B.1.5 VMOV

VMOV (Vector Bitwise Move) (immediate), places an immediate value into every element of the 
destination register.

Syntax

VMOV{cond}.datatype Qd, #imm
VMOV{cond}.datatype Dd, #im

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is I8, I16, I32, I64, or F32.

Qd or Dd specify the NEON register for the result.

imm is an immediate value of the type specified by datatype, which is replicated to fill the 
destination register.

B.1.6 VMVN 

VMVN (Vector Bitwise NOT) (immediate), places the bitwise inverse of an immediate integer 
value into every element of the destination register.

Syntax

VMVN{cond}.datatype Qd, #imm
VMVN{cond}.datatype Dd, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of I8, I16, I32, I64, or F32.

Qd or Dd specify the NEON register for the result.

imm is an immediate value of the type specified by datatype, which is replicated to fill the 
destination register.

B.1.7 VMOVL, V{Q}MOVN, VQMOVUN

VMOVL (Vector Move Long) takes each element in a doubleword vector and sign or zero-extends 
them to twice their original length. The results are stored in a quadword vector.

VMOVN (Vector Move and Narrow) copies the least significant half of each element of a quadword 
vector into the corresponding element of a doubleword vector.

VQMOVN (Vector Saturating Move and Narrow) copies each element of the operand vector to the 
corresponding element of the destination. The result element is half the width of the operand 
element, and values are saturated to the result width.
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VQMOVUN (Vector Saturating Move and Narrow, signed operand with Unsigned result) copies each 
element of the operand vector to the corresponding element of the destination. The result 
element is half the width of the operand element and values are saturated to the result width.

Syntax

VMOVL{cond}.datatype Qd, Dm
V{Q}MOVN{cond}.datatype Dd, Qm
VQMOVUN{cond}.datatype Dd, Qm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q specifies that the results are saturated.

datatype is one of:
• S8, S16, S32 for VMOVL.
• U8, U16, U32 for VMOVL.
• I16, I32, I64 for VMOVN.
• F32.U32 unsigned integer or fixed-point to floating-point.
• U16, U32, U64 for VQMOVN.

Qd and Dm specify the destination vector and the operand vector for VMOVL.

Dd and Qm specify the destination vector and the operand vector for V{Q}MOV{U}N.

B.1.8 VREV

VREV16 (Vector Reverse halfwords) reverses the order of 8-bit elements within each halfword of 
the vector and stores the result in the corresponding destination vector.

VREV32 (Vector Reverse words) reverses the order of 8-bit or 16-bit elements within each word 
of the vector, and stores the result in the corresponding destination vector.

VREV64 (Vector Reverse doublewords) reverses the order of 8-bit, 16-bit, or 32-bit elements 
within each doubleword of the vector, and stores the result in the destination vector.

Syntax

VREVn{cond}.size Qd, Qm
VREVn{cond}.size Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

n is one of 16, 32, or 64.

size is one of 8, 16, or 32, and must be less than n.

Qd and Qm specify the destination and operand registers for a quadword operation.

Dd and Dm specify the destination and operand registers for a doubleword operation.

B.1.9 VSWP

VSWP (Vector Swap) exchanges the contents of two vectors, which can be either doubleword or 
quadword.
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Syntax

VSWP{cond}{.datatype} Qd, Qm
VSWP{cond}{.datatype} Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd and Qm specify the vectors for a quadword operation.

Dd and Dm specify the vectors for a doubleword operation.

B.1.10 VTBL

VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values in a table 
and generate a new vector. Indexes which are out of range return 0.

Syntax

VTBL{cond}.8 Dd, list, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Dd specifies the destination vector.

Dm specifies the index vector.

list specifies the vectors containing the table. It is one of:
• {Dn}

• {Dn,D(n+1)}

• {Dn,D(n+1),D(n+2)}

• {Dn,D(n+1),D(n+2),D(n+3)}

• {Qn,Q(n+1)}

All of the registers in list must be in the range D0 – D31 or Q0 – Q15 and are not permitted to 
wrap around the end of the register bank.

B.1.11 VTBX

VTBX (Vector Table Extension) uses byte indexes in a control vector to look up byte values in a 
table and generate a new vector, but leaves the destination element unchanged when an out of 
range index is used.

Syntax

VTBX{cond}.8 Dd, list, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Dd specifies the destination vector.

Dm specifies the index vector.

list specifies the vectors containing the table. It is one of:
• {Dn}
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. B-10
ID071612 Non-Confidential



NEON and VFP Instruction Summary 
• {Dn,D(n+1)}

• {Dn,D(n+1),D(n+2)}

• {Dn,D(n+1),D(n+2),D(n+3)}

• {Qn,Q(n+1)}

All of the registers in list must be in the range D0 – D31 or Q0 – Q15 and are not permitted to 
wrap around the end of the register bank.

B.1.12 VTRN

VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 × 2 matrices, 
and transposes them.

Syntax

VTRN{cond}.size Qd, Qm
VTRN{cond}.size Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is one of 8, 16, or 32.

Qd and Qm specify the vectors for a quadword operation.

Dd and Dm specify the vectors, for a doubleword operation.

B.1.13 VUZP

VUZP (Vector Unzip) de-interleaves the elements of two vectors.

Syntax

VUZP{cond}.size Qd, Qm
VUZP{cond}.size Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is one of 8, 16, or 32.

Qd and Qm specify the vectors for a quadword operation.

Dd and Dm specify the vectors, for a doubleword operation.

B.1.14 VZIP

VZIP (Vector Zip) interleaves the elements of two vectors.

Syntax

VZIP{cond}.size Qd, Qm
VZIP{cond}.size Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)
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size is one of 8, 16, or 32.

Qd and Qm specify the vectors for a quadword operation.

Dd and Dm specify the vectors, for a doubleword operation.
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B.2 NEON shift instructions
This section covers NEON instructions which perform logical shift or insert operations.

B.2.1 VSHL, VQSHL, VQSHLU, and VSHLL (by immediate)

Vector Shift Left (by immediate) instructions take each element in a vector of integers, left shift 
them by an immediate value, and write the result to the destination vector. The instruction 
variants are:

• VSHL (Vector Shift Left) discards bits shifted out of the left of each element.

• VQSHL (Vector Saturating Shift Left) sets the sticky QC flag (FPSCR bit[27]) if saturation 
occurs.

• VQSHLU (Vector Saturating Shift Left Unsigned) sets the sticky QC flag (FPSCR bit[27]) if 
saturation occurs.

• VSHLL (Vector Shift Left Long) takes each element in a doubleword vector, left shifts them 
by an immediate value, and places the results in a quadword vector.

Syntax

V{Q}SHL{U}{cond}.datatype {Qd,} Qm, #imm
V{Q}SHL{U}{cond}.datatype {Dd,} Dm, #imm
VSHLL{cond}.datatype Qd, Dm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q indicates that results are saturated if they overflow.

U is only permitted if Q is also specified and indicates that the results are unsigned, even though 
the operands are signed.

datatype is one of:
• I8, I16, I32, I64 for VSHL.
• S8, S16, S32 for VSHLL, VQSHL, or VQSHLU.
• U8, U16, U32 for VSHLL or VQSHL.
• S64 for VQSHL or VQSHLU.
• U64 for VQSHL.

Qd and Qm are the destination and operand vectors for a quadword operation.

Dd and Dm are the destination and operand vectors for a doubleword operation.

Qd and Dm are the destination and operand vectors, for a long operation.

imm is the immediate value that sets the size of the shift and must be in the range:
• 1 to size(datatype) for VSHLL.
• 1 to (size(datatype) – 1) for VSHL, VQSHL, or VQSHLU.

A shift of 0 is permitted, but the code disassembles to VMOV or VMOVL.
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B.2.2 V{Q}{R}SHL 

VSHL (Vector Shift Left) (by signed variable) shifts each element in a vector by a value from the 
least significant byte of the corresponding element of a second vector, and stores the results in 
the destination vector. If the shift value is positive, the operation is a left shift. Otherwise, it is 
a right shift. The results can be optionally saturated, rounded, or both. The sticky QC flag is set 
if saturation occurs.

Syntax

V{Q}{R}SHL{cond}.datatype {Qd,} Qm, Qn.
V{Q}{R}SHL{cond}.datatype {Dd,} Dm, Dn.

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q indicates that results are saturated if they overflow.

R indicates that each result is rounded. If R is not specified, each result is truncated.

datatype is one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, and Qn specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dm, and Dn specify the destination, first operand and second operand registers for a 
doubleword operation.

B.2.3 V{R}SHR{N}, V{R}SRA

V{R}SHR{N} (Vector Shift Right) (by immediate value) right shifts each element in a vector by an 
immediate value and stores the results in the destination vector. The results can be optionally 
rounded, or narrowed, or both.

V{R}SRA (Vector Shift Right (by immediate value) and Accumulate) right shifts each element in 
a vector by an immediate value, and accumulates the results into the destination vector. The 
results can be optionally rounded.

Syntax

V{R}SHR{cond}.datatype {Qd,} Qm, #imm
V{R}SHR{cond}.datatype {Dd,} Dm, #imm
V{R}SRA{cond}.datatype {Qd,} Qm, #imm
V{R}SRA{cond}.datatype {Dd,} Dm, #imm
V{R}SHRN{cond}.datatype Dd, Qm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R indicates that the results are rounded. If R is not present, the results are truncated.

datatype is one of:
• S8, S16, S32, S64 for V{R}SHR or V{R}SRA.
• U8, U16, U32, U64 for V{R}SHR or V{R}SRA.
• I16, I32, I64 for V{R}SHRN.

Qd and Qm are the destination and operand vectors, for a quadword operation.

Dd and Dm are the destination and operand vectors for a doubleword operation.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. B-14
ID071612 Non-Confidential



NEON and VFP Instruction Summary 
Dd and Qm are the destination vector and the operand vector, for a narrow operation.

imm is the immediate value specifying the size of the shift, in the range 0 to (size(datatype) – 1).

B.2.4 VQ{R}SHR{U}N 

VQ{R}SHR{U}N (Vector Saturating Shift Right, Narrow) (by immediate value) with optional 
Rounding) right shifts each element in a quadword vector of integers by an immediate value, 
and stores the results in a doubleword vector. The sticky QC flag (FPSCR bit[27]) is set if 
saturation occurs.

Syntax

VQ{R}SHR{U}N{cond}.datatype Dd, Qm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R indicates that the results are rounded. If R is not present, the results are truncated.

U indicates that the results are unsigned, although the operands are signed.

datatype is one of:
• S16, S32, S64 for VQ{R}SHRN or VQ{R}SHRUN.
• U16, U32, U64 for VQ{R}SHRN only.

Dd and Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift, in the range 0 to (size(datatype) – 1).

B.2.5 VSLI

VSLI (Vector Shift Left and Insert) left shifts each element in a vector by an immediate value, 
and inserts the results in the destination vector. Bits shifted out of the left of each element are 
lost.

Syntax

VSLI{cond}.size {Qd,} Qm, #imm
VSLI{cond}.size {Dd,} Dm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is one of 8, 16, 32, or 64.

Qd and Qm are the destination and operand vectors for a quadword operation.

Dd and Dm are the destination and operand vectors for a doubleword operation.

Dd and Qm are the destination vector and the operand vector.

imm is the immediate value that sets the size of the shift, in the range 0 to (size – 1)
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B.2.6 VSRI

VSRI (Vector Shift Right and Insert) right shifts each element in a vector by an immediate value, 
and inserts the results in the destination vector. Bits shifted out of the right of each element are 
lost.

Syntax

VSRI{cond}.size {Qd,} Qm, #imm
VSRI{cond}.size {Dd,} Dm, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is one of 8, 16, 32, or 64.

Qd and Qm are the destination and operand vectors for a quadword operation.

Dd and Dm are the destination and operand vectors for a doubleword operation.

imm is the immediate value that sets the size of the shift, in the range 1 to size.
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B.3 NEON logical and compare operations
This section covers NEON instructions which perform bitwise boolean operations and 
comparisons.

B.3.1 VACGE and VACGT

Vector Absolute Compare takes the absolute value of each element in a vector, and compares it 
with the absolute value of the corresponding element in a second vector. If the condition is true, 
the corresponding element in the destination vector is set to all ones. If the condition is not true, 
it is set to all zeros.

Syntax

VACop{cond}.F32 {Qd,} Qn, Qm
VACop{cond}.F32 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either GE (Absolute Greater than or Equal) or GT (Absolute Greater Than).

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation. The result datatype is I32.

B.3.2 VAND

VAND performs a bitwise logical AND operation between values in two registers, and places the 
results in the destination register.

Syntax

VAND{cond}{.datatype} {Qd,} Qn, Qm
VAND{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is an optional data type, which is ignored by the assembler.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.3 VBIC (immediate)

VBIC (Vector Bitwise Clear) (immediate) takes each element of the destination vector, does a 
bitwise AND Complement with an immediate value, and stores the result in the destination 
vector.
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Syntax

VBIC{cond}.datatype Qd, #imm
VBIC{cond}.datatype Dd, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of I8, I16, I32, or I64.

Qd or Dd is the NEON register for the source and result.

imm is the immediate value.

Immediate values can be specified as a pattern which the assembler repeats to fill the destination 
register. Alternatively, you can specify the entire value, provided it meets certain requirements. 
The permitted patterns for immediate value are 0x00XY or 0xXY00 for I16, or 0x000000XY, 
0x0000XY00, 0x00XY0000 or 0xXY000000 for I32. If you choose I8 or I64 datatypes, the assembler 
produces the I16 or I32 equivalent.

B.3.4 VBIC (register)

VBIC (Vector Bitwise Clear) performs a bitwise logical AND complement operation between 
values in two registers, and places the results in the destination register.

Syntax

VBIC{cond}{.datatype} {Qd,} Qn, Qm
VBIC{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is an optional data type, which is ignored by the assembler.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.5 VBIF

VBIF (Vector Bitwise Insert if False) inserts each bit from the first operand into the destination, 
if the corresponding bit of the second operand is 0, otherwise it does not change the destination 
bit.

Syntax

VBIF{cond}{.datatype} {Qd,} Qn, Qm
VBIF{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is an optional data type, which is ignored by the assembler.
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Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.6 VBIT

VBIT (Vector Bitwise Insert if True) inserts each bit from the first operand into the destination if 
the corresponding bit of the second operand is 1, otherwise it does not change the destination bit.

Syntax

VBIT{cond}{.datatype} {Qd,} Qn, Qm
VBIT{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is an optional data type, which is ignored by the assembler.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.7 VBSL

VBSL (Vector Bitwise Select) selects each destination bit from the first operand if the 
corresponding destination bit was 1 or from the second operand if the corresponding destination 
bit was 0.

Syntax

VBSL{cond}{.datatype} {Qd,} Qn, Qm
VBSL{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is an optional data type, which is ignored by the assembler.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.8 VCEQ, VCGE, VCGT, VCLE, and VCLT

Vector Compare takes each element in a vector and compares it with the corresponding element 
of a second vector (or zero). If the condition is true, the corresponding element in the destination 
vector is set to all ones. Otherwise, it is set to all zeros.

Syntax

VCop{cond}.datatype {Qd,} Qn, Qm
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VCop{cond}.datatype {Dd,} Dn, Dm
VCop{cond}.datatype {Qd,} Qn, #0
VCop{cond}.datatype {Dd,} Dn, #0

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is one of:
• EQ – Equal.
• GE – Greater than or Equal.
• GT – Greater Than.
• LE – Less than or Equal (only if the second operand is #0).
• LT – Less Than (only if the second operand is #0).

datatype is one of:
• I8, I16, I32, or F32 for VCEQ.
• S8, S16, S32, U8, U16, U32, or F32 for VCGE, VCGT, VCLE, or VCLT (except #0 form).
• S8, S16, S32, or F32 for VCGE, VCGT, VCLE, or VCLT (#0 form).

The result datatype is:
• I32 for operand datatypes I32, S32, U32, or F32.
• I16 for operand datatypes I16, S16, or U16.
• I8 for operand datatypes I8, S8, or U8.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation. #0 replaces Qm or Dm for comparisons with zero.

B.3.9 VEOR

VEOR performs a bitwise logical exclusive OR operation between values in two registers, and 
places the results in the destination register.

Syntax

VEOR{cond}{.datatype} {Qd,} Qn, Qm
VEOR{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.10 VMOV

VMOV, Vector Move (register) copies a value from a source register to a destination register.

Syntax

VMOV{cond}{.datatype} Qd, Qm
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VMOV{cond}{.datatype} Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd and Qm specify the destination vector and the source vector, for a quadword operation.

Dd and Dm specify the destination and source vector, for a doubleword operation.

B.3.11 VMVN

VMVN, Vector Bitwise NOT (register) inverts the value of each bit from the source register and 
stores the result to the destination register.

Syntax

VMVN{cond}{.datatype} Qd, Qm
VMVN{cond}{.datatype} Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd and Qm specify the destination vector and the source vector, for a quadword operation.

Dd and Dm specify the destination and source vector, for a doubleword operation.

B.3.12 VORN

VORN performs a bitwise logical OR NOT operation between values in two registers, and places 
the results in the destination register.

Syntax

VORN{cond}{.datatype} {Qd,} Qn, Qm
VORN{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.13 VORR (immediate)

VORR (Bitwise OR) (immediate) takes each element of the destination vector, does a bitwise OR 
with an immediate value, and stores the result into the destination vector.

Syntax

VORR{cond}.datatype Qd, #imm
VORR{cond}.datatype Dd, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. B-21
ID071612 Non-Confidential



NEON and VFP Instruction Summary 
datatype is one of I8, I16, I32, or I64.

Qd or Dd is the NEON register for the source and result.

imm is the immediate value.

Immediate values can be specified as a pattern which the assembler repeats to fill the destination 
register. Alternatively, you can specify the entire value, provided it meets certain requirements. 
The permitted patterns for immediate value are 0x00XY or 0xXY00 for I16, or 0x000000XY, 
0x0000XY00, 0x00XY0000 or 0xXY000000 for I32. If you choose I8 or I64 datatypes, the assembler 
produces the I16 or I32 equivalent.

B.3.14 VORR (register)

VORR (Bitwise OR) (register) performs a bitwise logical OR operation between values in two 
registers, and places the results in the destination register.

Syntax

VORR{cond}{.datatype} {Qd,} Qn, Qm
VORR{cond}{.datatype} {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.3.15 VTST

VTST (Vector Test Bits) takes each element in a vector and does a bitwise AND with the 
corresponding element in a second vector. If the result is zero, the corresponding element in the 
destination vector is set to all zeros. Otherwise, it is set to all ones.

Syntax

VTST{cond}.size {Qd,} Qn, Qm
VTST{cond}.size {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is one of 8, 16, or 32.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.
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B.4 NEON arithmetic instructions
This section describe NEON instructions which perform arithmetic operations such as addition, 
subtraction or reciprocal calculation.

B.4.1 VABA{L}

VABA (Vector Absolute Difference and Accumulate) subtracts the elements of one vector from 
the corresponding elements of another and accumulates the absolute values of the results into 
the elements of the destination vector. A long version of this instructions is available.

Syntax

VABA{cond}.datatype {Qd,} Qn, Qm
VABA{cond}.datatype {Dd,} Dn, Dm
VABAL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

Qd, Dn and Dm specify the destination, first operand and second operand vectors for a long 
operation.

B.4.2 VABD{L}

VABD (Vector Absolute Difference) subtracts the elements of one vector from the corresponding 
elements of another and places the absolute values of the results into the elements of the 
destination vector. A long version of the instruction is available.

Syntax

VABD{cond}.datatype {Qd,} Qn, Qm
VABD{cond}.datatype {Dd,} Dn, Dm
VABDL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of:

• S8, S16, S32, U8, U16, U32 or F32 for VABD.

• S8, S16, S32, U8, U16, or U32 for VABDL.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.
ARM DEN0013C Copyright © 2011, 2012 ARM. All rights reserved. B-23
ID071612 Non-Confidential



NEON and VFP Instruction Summary 
Qd, Dn, and Dm specify the destination, first operand and second operand vectors for a long 
operation.

B.4.3 V{Q}ABS

VABS (Vector Absolute) takes the absolute value of each element in a vector, and stores the results 
in the destination. The floating-point version only clears the sign bit. A saturating version of the 
instructions is available. The sticky QC flag is set if saturation occurs.

Syntax

V{Q}ABS{cond}.datatype Qd, Qm
V{Q}ABS{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q indicates that saturation is performed if any of the results overflow.

datatype is one of:

• S8, S16, S32 for VABS or VQABS

• F32 for VABS only.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.4 V{Q}ADD, VADDL, VADDW

VADD (Vector Add) adds corresponding elements in two vectors, and stores the results in the 
destination vector. VADD has long, wide and saturating variants.

Syntax

V{Q}ADD{cond}.datatype {Qd,} Qn, Qm ;
V{Q}ADD{cond}.datatype {Dd,} Dn, Dm ;
VADDL{cond}.datatype Qd, Dn, Dm ;
VADDW{cond}.datatype {Qd,} Qn, Dm ;

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q indicates that saturation is performed if any of the results overflow.

datatype is one of:
• I8, I16, I32, I64, F32 for VADD
• S8, S16, S32 for VQADD, VADDL or VADDW
• U8, U16, U32 for VQADD, VADDL or VADDW
• S64, U64 for VQADD.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.
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Qd, Dn, and Dm specify the destination, first operand and second operand vectors for a long 
operation.

Qd, Qn and Dm specify the destination, first operand and second operand vectors for a 
wideoperation.

B.4.5 V{R}ADDHN

V{R}ADDHN (Vector Add and Narrow, selecting High half) adds corresponding elements in two 
vectors, selects the most significant halves of the results, and stores them in the destination 
vector.

Syntax

V{R}ADDHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R specifies that each result is rounded. If R is not specified, each result is truncated.

datatype is one of I16, I32, or I64.

Dd, Qn, and Qm are the destination vector, the first operand vector, and the second operand vector.

B.4.6 VCLS

VCLS (Vector Count Leading Sign Bits) counts the number of consecutive bits following the 
topmost bit that are the same as that bit, in each element in a vector, and stores the results in a 
destination vector.

Syntax

VCLS{cond}.datatype Qd, Qm
VCLS{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of S8, S16, or S32.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.7 VCLZ

VCLZ (Vector Count Leading Zeros) counts the number of consecutive zeros, starting from the 
top bit, in each element in a vector, and stores the results in a destination vector.

Syntax

VCLZ{cond}.datatype Qd, Qm
VCLZ{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)
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datatype is one of S8, S16, or S32.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.8 VCNT

VCNT (Vector Count Set Bits) counts the number of bits that are one in each element in a vector, 
and stores the results in a destination vector.

Syntax

VCNT{cond}.datatype Qd, Qm
VCNT{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype must be I8.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.9 V{R}HADD

VHADD (Vector Halving Add) adds corresponding elements in two vectors, shifts each result right 
one bit and stores the results in the destination vector. Results can be either rounded or truncated.

Syntax

V{R}HADD{cond}.datatype {Qd,} Qn, Qm
V{R}HADD{cond}.datatype {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R specifies that each result is rounded. If R is not specified, each result is truncated.

datatype is one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.4.10 VHSUB

VHSUB (Vector Halving Subtract) subtracts the elements of one vector from the corresponding 
elements of another vector, shifts each result right one bit, and stores the result in the destination 
vector. Results are always truncated.

Syntax

VHSUB{cond}.datatype {Qd,} Qn, Qm
VHSUB{cond}.datatype {Dd,} Dn, Dm
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where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.4.11 VMAX and VMIN

VMAX (Vector Maximum) compares corresponding elements in two vectors, and writes the larger 
of them into the corresponding element in the destination vector.

VMIN (Vector Minimum) compares corresponding elements in two vectors, and writes the smaller 
value into the corresponding element in the destination vector.

Syntax

VMAX{cond}.datatype Qd, Qn, Qm
VMAX{cond}.datatype Dd, Dn, Dm
VMIN{cond}.datatype Qd, Qn, Qm
VMIN{cond}.datatype Dd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of S8, S16, S32, U8, U16, U32, or F32.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

B.4.12 V{Q}NEG

VNEG (Vector Negate) negates each element in a vector, and places the results in a second vector. 
The floating-point version only inverts the sign bit. A saturating version of the instruction is 
available. The sticky QC flag is set if saturation occurs.

Syntax

V{Q}NEG{cond}.datatype Qd, Qm
V{Q}NEG{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q indicates that saturation is performed if any of the results overflow.

datatype is one of:
• S8, S16, S32 for VNEG, or VQNEG
• F32 or F64 for VNEG.

Qd and Qm specify the destination and operand vectors for a quadword operation.
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Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.13 VPADD{L}, VPADAL

VPADD (Vector Pairwise Add) adds adjacent pairs of elements of two vectors, and stores the 
results in the destination vector.

VPADDL (Vector Pairwise Add Long) adds adjacent pairs of elements of a vector, sign or zero 
extends the results to twice their original width and stores the results in the destination vector.

VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector, 
and accumulates the results into the elements of the destination vector.

Syntax

VPADD{cond}.datatype {Dd,} Dn, Dm
VPopL{cond}.datatype Qd, Qm
VPopL{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either ADD or ADA.

datatype is one of:
• I8, I16, I32, F32 for VPADD.
• S8, S16, S32 for VPADDL or VPADAL.
• U8, U16, U32 for VPADDL or VPADAL.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a VPADD.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.14 VPMAX and VPMIN

VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors and 
writes the larger of each pair into the corresponding element in the destination vector.

VPMIN (Vector Pairwise Minimum) compares adjacent pairs of elements in two vectors, and 
writes the smaller of each pair into the corresponding element in the destination vector. 
Operands and results must be doubleword vectors for the latter two pairwise operations.

Syntax

VPMAX{cond}.datatype Dd, Dn, Dm
VPMIN{cond}.datatype Dd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of S8, S16, S32, U8, U16, U32, or F32.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.
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B.4.15 VRECPE

VRECPE (Vector Reciprocal Estimate) finds an approximate reciprocal of each element in a vector, 
and stores the results in a destination vector.

Syntax

VRECPE{cond}.datatype Qd, Qm
VRECPE{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is either U32 or F32.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.16 VRECPS

VRECPS (Vector Reciprocal Step) multiplies the elements of one vector by the corresponding 
elements of another, subtracts each of the results from 2.0, and stores the final results into the 
elements of the destination. This instruction is used as part of the Newton-Raphson iteration 
algorithm.

Syntax

VRECPS{cond}.F32 {Qd,} Qn, Qm
VRECPS{cond}.F32 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is either U32 or F32.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.17 VRSQRTE

VRSQRTE (Vector Reciprocal Square Root Estimate) finds an approximate reciprocal square root 
of each element in a vector and stores the results in a destination vector.

Syntax

VRSQRTE{cond}.datatype Qd, Qm
VRSQRTE{cond}.datatype Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is either U32 or F32.

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.
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B.4.18 VRSQRTS

VRSQRTS (Vector Reciprocal Square Root Step) multiplies the elements of one vector by the 
corresponding elements of another, subtracts each of the results from 3.0, divides these results 
by 2.0, and places the final results into the elements of the destination. This instruction is used 
as part of the Newton-Raphson iteration algorithm.

Syntax

VSQRTS{cond}.F32 {Qd,} Qn, Qm
VSQRTS{cond}.F32 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Qd and Qm specify the destination and operand vectors for a quadword operation.

Dd and Dm specify the destination and operand vectors for a doubleword operation.

B.4.19 V{Q}SUB, VSUBL and VSUBW

VSUB (Vector Subtract) subtracts the elements of one vector from the corresponding elements of 
another vector and stores the results in the destination vector. VSUB has Long, Wide and 
Saturating variants.

Syntax

V{Q}SUB{cond}.datatype {Qd,} Qn, Qm
V{Q}SUB{cond}.datatype {Dd,} Dn, Dm
VSUBL{cond}.datatype Qd, Dn, Dm
VSUBW{cond}.datatype {Qd,} Qn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Q specifies that saturation should be performed if any of the results overflow.

datatype is one of:
• I8, I16, I32, I64, F32 for VSUB
• S8, S16, S32 for VQSUB, VSUBL, or VSUBW
• U8, U16, U32 for VQSUB, VSUBL, or VSUBW
• S64, U64 for VQSUB.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

Qd, Dn, and Dm specify the destination, first operand and second operand vectors for a long 
operation.

Qd, Qn and Dm specify the destination, first operand and second operand vectors for a 
wideoperation.
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B.4.20 V{R}SUBHN

V{R}SUBHN (Vector Subtract and Narrow, selecting High Half) subtracts the elements of one 
vector from the corresponding elements of another vector, selects the most significant halves of 
the results and stores them in the destination vector. Results can be either rounded or truncated 
for both operations.

Syntax

V{R}SUBHN{cond}.datatype Dd, Qn, Qm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R specifies that each result is rounded. If R is not specified, each result is truncated.

datatype is one of I16, I32, or I64.

Dd, Qn, and Qm are the destination vector, the first operand vector, and the second operand vector.
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B.5 NEON multiply instructions
This section describe NEON instructions which perform multiplication or multiply-accumulate.

B.5.1 VFMA, VFMS

VFMA (Vector Fused Multiply Accumulate) multiplies corresponding elements in two vectors, 
and accumulates the results into the destination vector.

VFMS (Vector Fused Multiply Subtract) multiplies corresponding elements in two operand 
vectors, subtracts the products from the corresponding elements of the destination vector, and 
stores the final results in the destination vector. The result of the multiply is not rounded before 
performing the accumulate or subtract operation.

Syntax

Vop{cond}.F32 {Qd,} Qn, Qm
Vop{cond}.F32 {Dd,} Dn, Dm
Vop{cond}.F64 {Dd,} Dn, Dm
Vop{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is one of FMA or FMS.

Sd, Sn, and Sm are the destination and operand vectors for word operation.

Dd, Dn, and Dm are the destination and operand vectors for doubleword operation.

Qd, Qn, and Qm are the destination and operand vectors for quadword operation.

B.5.2 VMUL{L}, VMLA{L}, and VMLS{L}

VMUL (Vector Multiply) multiplies corresponding elements in two vectors and stores the results 
in the destination vector.

VMLA (Vector Multiply Accumulate) multiplies corresponding elements in two vectors and adds 
the results to the corresponding element of the destination vector.

VMLS (Vector Multiply Subtract) multiplies elements in two vectors, subtracts the results from 
corresponding elements of the destination vector, and stores the results in the destination vector.

Syntax

Vop{cond}.datatype {Qd,} Qn, Qm
Vop{cond}.datatype {Dd,} Dn, Dm
VopL{cond}.datatype Qd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is one of:
• MUL, Multiply
• MLA, Multiply Accumulate
• MLS, Multiply Subtract.
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datatype is one of:
• I8, I16, I32, F32 for VMUL, VMLA, or VMLS
• S8, S16, S32 for VMULL, VMLAL, or VMLSL
• U8, U16, U32 for VMULL, VMLAL, or VMLSL
• P8 for VMUL or VMULL.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

Qd, Dn, and Dm specify the destination, first operand and second operand vectors for a long 
operation.

B.5.3 VMUL{L}, VMLA{L}, and VMLS{L} (by scalar)

VMUL (Vector Multiply by scalar) multiplies each element in a vector by a scalar and stores the 
results in the destination vector.

VMLA (Vector Multiply Accumulate) multiplies each element in a vector by a scalar and 
accumulates the results into the corresponding elements of the destination vector.

VMLS (Vector Multiply Subtract) multiplies each element in a vector by a scalar and subtracts the 
results from the corresponding elements of the destination vector and stores the final results in 
the destination vector.

Syntax

Vop{cond}.datatype {Qd,} Qn, Dm[x]
Vop{cond}.datatype {Dd,} Dn, Dm[x]
VopL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is one of:
• MUL – Multiply.
• MLA – Multiply Accumulate.
• MLS – Multiply Subtract.

datatype is one of:
• I16, I32, F32 for VMUL, VMLA, or VMLS.
• S16, S32 for VMULL, VMLAL, or VMLSL.
• U16, U32 for VMULL, VMLAL, or VMLSL.

Qd, Qn, and Qm specify the destination, first operand and second operand registers for a quadword 
operation.

Dd, Dn, and Dm specify the destination, first operand and second operand registers for a 
doubleword operation.

Qd, Dn, and Dm specify the destination, first operand and second operand vectors for a long 
operation.

Dm[x] is the scalar holding the second operand.
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B.5.4 VQ{R}DMULH (by vector or by scalar)

Vector Saturating Doubling Multiply Returning High Half instructions multiply their operands 
and double the result. They return only the high half of the results. If any of the results overflow, 
they are saturated and the sticky QC flag is set.

Syntax

VQ{R}DMULH{cond}.datatype {Qd,} Qn, Qm
VQ{R}DMULH{cond}.datatype {Dd,} Dn, Dm
VQ{R}DMULH{cond}.datatype {Qd,} Qn, Dm[x]
VQ{R}DMULH{cond}.datatype {Dd,} Dn, Dm[x]

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R specifies that each result is rounded. If R is not specified, each result is truncated.

datatype is either S16 or S32.

Qd and Qn are the destination and first operand vector, for a quadword operation.

Dd and Dn are the destination and first operand vector for a doubleword operation.

Qm or Dm specifies the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand for a by scalar operation.

B.5.5 VQDMULL, VQDMLAL, and VQDMLSL (by vector or by scalar)

Vector Saturating Doubling Multiply Long instructions multiply their operands and double the 
results. The instruction variants are:
• VQDMULL stores the results in the destination register.
• VQDMLAL adds the results to the values in the destination register.
• VQDMLSL subtracts the results from the values in the destination register.

If any of the results overflow, they are saturated and the sticky QC flag is set.

Syntax

VQDopL{cond}.datatype Qd, Dn, Dm
VQDopL{cond}.datatype Qd, Dn, Dm[x]

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is one of:
• MUL, Multiply.
• MLA, Multiply Accumulate.
• MLS, Multiply Subtract.

datatype is either S16 or S32.

Qd and Dn are the destination vector and the first operand vector.

Dm is the vector holding the second operand in the case of a by vector operation.

Dm[x] is the scalar holding the second operand for a by scalar operation.
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B.6 NEON load and store element and structure instructions
This section describe NEON instructions which load or store data to or from memory or ARM 
integer registers.

B.6.1 VLDn and VSTn (single n-element structure to one lane)

VLDn (Vector Load single n-element structure to one lane) loads an n-element structure from 
memory into one or more NEON registers. Elements of the register that are not loaded remain 
unchanged.

VSTn (Vector Store single n-element structure to one lane) stores an n-element structure to 
memory from one or more NEON registers.

Syntax

Vopn{cond}.datatype list, [Rn{:align}]{!}
Vopn{cond}.datatype list, [Rn{:align}], Rm

where:

op is either LD or ST.

n is one of 1, 2, 3, or 4.

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of 8, 16 or 32. 

The following table shows the permitted options.

Table B-2 Permitted combinations of parameters

n datatype list align Alignment

1 8 {Dd[x]} - Standard only

 16 {Dd[x]} 16 2-byte

 32 {Dd[x]} 32 4-byte

2 8 {Dd[x], D(d+1)[x]} 16 2-byte

 16 {Dd[x], D(d+1)[x]} 32 4-byte

  {Dd[x], D(d+2)[x]} 32 4-byte

 32 {Dd[x], D(d+1)[x]} 64 8-byte

  {Dd[x], D(d+2)[x]} 64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

 16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

  {Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} 32 4-byte

 16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} 64 8-byte
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list is a list of NEON registers in the range D0-D31, subject to the limitations given in the table. 

Rn is the ARM register containing the base address (cannot be PC). If ! is present, Rn is updated 
to (Rn + the number of bytes transferred by the instruction). The update occurs after all the loads 
or stores have been performed.

Rm is the ARM register containing an offset from the base address. If Rm is present, then Rn is 
updated to (Rn + Rm) after the memory accesses have been performed. Rm cannot be SP or PC.

B.6.2 VLDn (single n-element structure to all lanes)

VLDn (Vector Load single n-element structure to all lanes) loads multiple copies of an n-element 
structure from memory into one or more NEON registers.

Syntax

VLDn{cond}.datatype list, [Rn{:align}]{!}
VLDn{cond}.datatype list, [Rn{:align}], Rm

where:

n is one of 1, 2, 3, or 4.

cond is an optional conditional code (see Conditional execution on page 6-3).

datatype is one of 8, 16 or 32. 

The following table shows the permitted options:

  {Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} 64 8-byte

 32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} 64 or 128 8-byte or 16-byte

  {Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} 64 or 128 8-byte or 16-byte

Table B-2 Permitted combinations of parameters (continued)

n datatype list align Alignment

Table B-3 Permitted combinations of parameters

n datatype list align Alignment

1 8 {Dd[]} - Standard only

  {Dd[],D(d+1)[]} - Standard only

 16 {Dd[]} 16 2 byte

  {Dd[],D(d+1)[]} 16 2 byte

 32 {Dd[]} 32 4 byte

  {Dd[],D(d+1)[]} 32 4 byte

2 8 {Dd[], D(d+1)[]} 8 byte

  {Dd[], D(d+2)[]} 8 byte

 16 {Dd[], D(d+1)[]} 16 2 byte

  {Dd[], D(d+2)[]} 16 2 byte
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list is a list of NEON registers in the range D0-D31, subject to the limitations given in the table. 

Rn is an ARM register containing the base address. Rn cannot be PC. If ! is specified, Rn is 
updated to (Rn + the number of bytes transferred by the instruction). The update occurs after the 
memory accesses are performed.

Rm is an ARM register containing an offset from the base address. If Rm is present, Rn is updated 
to (Rn + Rm) after the address is used to access memory. Rm cannot be SP or PC.

B.6.3 VLDn and VSTn (multiple n-element structures)

VLDn (Vector Load multiple n-element structures) loads multiple n-element structures from 
memory into one or more NEON registers, with de-interleaving (unless n == 1). Every element 
of each register is loaded.

VSTn (Vector Store multiple n-element structures) writes multiple n-element structures to 
memory from one or more NEON registers, with interleaving (unless n == 1). Every element of 
each register is stored.

Syntax

Vopn{cond}.datatype list, [Rn{:align}]{!}
Vopn{cond}.datatype list, [Rn{:align}], Rm

where:

op is either LD or ST.

n is one of 1, 2, 3, or 4.

cond is an optional conditional code (see Conditional execution on page 6-3).

datatype is one of 8, 16 or 32. 

 32 {Dd[], D(d+1)[]} 32 4 byte

  {Dd[], D(d+2)[]} 32 4 byte

3 8, 16, or 32 {Dd[], D(d+1)[], D(d+2)[]} - Standard only

  {Dd[], D(d+2)[], D(d+4)[]} - Standard only

4 8 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} 32 4 byte

  {Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} 32 4 byte

 16 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} 64 8 byte

  {Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} 64 8 byte

 32 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} 64 or 128 8 byte or 16 byte

  {Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} 64 or 128 8 byte or 16 byte

Table B-3 Permitted combinations of parameters (continued)

n datatype list align Alignment
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The following table shows the permitted options:

list is a list of NEON registers in the range D0-D31, subject to the limitations given in the table. 

Rn is the ARM register containing the base address. Rn cannot be PC. If ! is specified, Rn is 
updated to (Rn + the number of bytes transferred by the instruction). The update occurs after the 
memory accesses are performed.

Rm is an ARM register containing an offset from the base address. If Rm is present, Rn is updated 
to (Rn + Rm) after the address is used to access memory. Rm cannot be SP or PC.

B.6.4 VLDR and VSTR

VLDR loads a single extension register from memory, using an address from an ARM core 
register, with an optional offset.

VSTR saves the contents of a NEON or VFP register to memory.

One word is transferred if Fd is a VFP single-precision register, otherwise two words are 
transferred.

This instruction is present in both NEON and VFP instruction sets.

Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]
VSTR{cond}{.size} Fd, [Rn{, #offset}]
VLDR{cond}{.size} Fd, label
VSTR{cond}{.size} Fd, label

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size is an optional data size specifier, which is 32 if Fd is an S register, or 64 otherwise.

Table B-4 Permitted combinations of parameters

n datatype list align Alignment

1 8, 16, 32, or 64 {Dd} 64 8 byte

  {Dd, D(d+1)} 64 or 128 8 byte or 16 byte

  {Dd, D(d+1), D(d+2)} 64 8 byte

  {Dd, D(d+1), D(d+2), D(d+3)} 64, 128, or 256 8 byte, 16 byte, or 32 byte

2 8, 16, or 32 {Dd, D(d+1)} 64, 128 8 byte or 16 byte

  {Dd, D(d+2)} 64, 128 8 byte or 16 byte

  {Dd, D(d+1), D(d+2), D(d+3)} 64, 128, or 256 8 byte, 16 byte, or 32 byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} 64 8 byte

  {Dd, D(d+2), D(d+4)} 64 8 byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} 64, 128, or 256 8 byte, 16 byte, or 32 byte

  {Dd, D(d+2), D(d+4), D(d+6)} 64, 128, or 256 8 byte, 16 byte, or 32 byte
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Fd is the extension register to be loaded or saved. For a NEON instruction, it must be a D register. 
For a VFP instruction, it can be either a D or S register.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must be a multiple of 4, within the range –1020 to 
+1020. The value is added to the base address to form the address used for the transfer. Label is 
a PC-relative expression and must align to a word boundary within ±1KB of the current 
instruction.

B.6.5 VLDM, VSTM, VPOP, and VPUSH

NEON and VFP register load multiple (VLDM), store multiple (VSTM), pop from stack (VPOP), push 
onto stack (VPUSH).

These instructions are present in both NEON and VFP instruction sets.

Syntax

VLDMmode{cond} Rn{!}, Registers
VSTMmode{cond} Rn{!}, Registers
VPOP{cond} Registers
VPUSH{cond} Registers

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

mode is one of:
• IA – Increment address after each transfer. This is the default, and can be omitted.
• DB – Decrement address before each transfer.
• EA – Empty Ascending stack operation. This is the same as DB for loads and IA for saves.
• FD – Full Descending stack operation. This is the same as IA for loads, and DB for saves.

Rn is the ARM register holding the base address for the transfer. If ! is specified, the updated 
base address must be written back to Rn. If ! is not specified, the mode must be IA.

Registers is a list of one or more consecutive NEON or VFP registers enclosed in braces, { }. 
The list can be comma-separated, or in range format. S, D, or Q registers can be specified, but 
they must not be mixed. The number of registers must not exceed 16 D registers, or 8 Q 
registers.

VPOP is equivalent to VLDM sp! and VPUSH is equivalent to VSTMDB sp!.

B.6.6 VMOV (between two ARM registers and an extension register)

Transfer contents between two ARM registers and a 64-bit NEON or VFP register, or two 
consecutive 32-bit VFP registers.

This instruction is present in both NEON and VFP instruction sets.

Syntax

VMOV{cond} Dm, Rd, Rn
VMOV{cond} Rd, Rn, Dm
VMOV{cond} Sm, Sm1, Rd, Rn
VMOV{cond} Rd, Rn, Sm, Sm1

where:
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cond is an optional conditional code. (See Conditional execution on page 6-3)

Dm is a 64-bit extension register.

Sm is a VFP 32-bit register and Sm1 is the next consecutive VFP 32-bit register after Sm.

Rd and Rn are the ARM registers.

B.6.7 VMOV (between an ARM register and a NEON scalar)

Transfer contents between an ARM register and a NEON scalar.

This instruction is present in both NEON and VFP instruction sets.

Syntax

VMOV{cond}{.size} Dn[x], Rd
VMOV{cond}{.datatype} Rd, Dn[x]

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

size can be 8, 16, or 32(default) for NEON, or 32 for VFP.

datatype can be U8, S8, U16, S16, or 32 (default). For VFP instructions, datatype must be 32 or 
omitted.

Dn[x] is the NEON scalar.

Rd is the ARM register.

B.6.8 VMRS and VMSR

VMRS transfers the contents of NEON or VFP system register FPSCR into Rd.

VMSR transfers the contents of Rd into a NEON or VFP system register, FPSCR.

These instructions are present in both NEON and VFP instruction sets.

Syntax

VMRS{cond} Rd, extsysreg
VMSR{cond} extsysreg, Rd

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

extsysreg specifies a NEON and VFP system register, one of:
• FPSCR
• FPSID
• FPEXC.

Rd is the ARM register. Rd can be APSR_nzcv, if extsysreg is FPSCR. Here, the floating-point 
status flags are transferred into the corresponding flags in the ARM APSR.

These instructions stall the ARM until all current NEON or VFP operations complete.
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B.7 VFP instructions
This section describes VFP floating-point instructions.

B.7.1 VABS

Floating-point absolute value (VABS). This instruction can be scalar, vector, or mixed. VABS takes 
the contents of the specified register, clears the sign bit and stores the result.

Syntax

VABS{cond}.F32 Sd, Sm
VABS{cond}.F64 Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd and Sm are the single-precision registers for the result and operand.

Dd and Dm are the double-precision registers for the result and operand.

B.7.2 VADD

VADD adds the values in the operand registers and places the result in the destination register.

Syntax

VADD{cond}.F32 {Sd,} Sn, Sm
VADD{cond}.F64 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd, Sn, and Sm are the single-precision registers for the result and operands.

Dd, Dn, and Dm are the double-precision registers for the result and operands.

B.7.3 VCMP 

VCMP (Floating-Point Compare) subtracts the value in the second operand register (or 0 if the 
second operand is #0) from the value in the first operand register and sets the VFP condition 
flags depending on the result. VCMP is always scalar.

Syntax

VCMP{cond}.F32 Sd, Sm
VCMP{cond}.F32 Sd, #0
VCMP{cond}.F64 Dd, Dm
VCMP{cond}.F64 Dd, #0

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd and Sm are the single-precision registers holding the operands.

Dd and Dm are the double-precision registers holding the operands.
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B.7.4 VCVT (between single-precision and double-precision)

VCVT converts the single-precision value in Sm to double-precision and stores the result in Dd, or 
converts the double-precision value in Dm to single-precision, storing the result in Sd. VCVT is 
always scalar.

Syntax

VCVT{cond}.F64.F32 Dd, Sm
VCVT{cond}.F32.F64 Sd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Dd is a double-precision register for the result, with Sm a single-precision register which holds 
the operand.

Sd is a single-precision register for the result with Dm a double-precision register holding the 
operand.

B.7.5 VCVT (between floating-point and integer)

VCVT forms which convert from floating-point to integer or from integer to floating-point. VCVT 
is always scalar.

Syntax

VCVT{R}{cond}.type.F64 Sd, Dm
VCVT{R}{cond}.type.F32 Sd, Sm
VCVT{cond}.F64.type Dd, Sm
VCVT{cond}.F32.type Sd, Sm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

R makes the operation use the rounding mode specified by the FPSCR. If R is not specified, VCVT 
rounds towards zero.

type is either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd is a single-precision register for the result.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Dm is a double-precision register holding the operand.

B.7.6 VCVT (between floating-point and fixed-point)

Convert between floating-point and fixed-point numbers. In all cases the fixed-point number is 
contained in the least significant 16 or 32 bits of the register. VCVT is always scalar.

Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits
VCVT{cond}.type.F32 Sd, Sd, #fbits
VCVT{cond}.F64.type Dd, Dd, #fbits
VCVT{cond}.F32.type Sd, Sd, #fbits
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where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

type can be any one of:
• S16, 16-bit signed fixed-point number.
• U16, 16-bit unsigned fixed-point number.
• S32, 32-bit signed fixed-point number.
• U32, 32-bit unsigned fixed-point number.

Sd is a single-precision register for the operand and result.

Dd is a double-precision register for the operand and result.

fbits is the number of fraction bits in the fixed-point number, in the range 0-16 (if type is S16 
or U16), or 1-32 (if type is S32 or U32).

B.7.7 VCVTB, VCVTT (half-precision extension)

These instructions convert between half-precision and single-precision floating-point numbers:

• VCVTB uses the lower half (bits [15:0]) of the single word register to obtain or store the 
half-precision value.

• VCVTT uses the upper half (bits [31:16]) of the single word register to obtain or store the 
half-precision value.

VCVTB and VCVTT are always scalar.

Syntax

VCVTB{cond}.type Sd, Sm
VCVTT{cond}.type Sd, Sm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

type is either F32.F16 (convert from half-precision to single-precision) or F16.F32 (convert from 
single-precision to half-precision).

Sd is a single word register for the result.

Sm is a single word register for the operand.

B.7.8 VDIV

VDIV divides the value in the first operand register by the value in the second operand register, 
and places the result in the destination register. The instructions can be scalar, vector, or mixed.

Syntax

VDIV{cond}.F32 {Sd,} Sn, Sm
VDIV{cond}.F64 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd, Sn, and Sm are the single-precision registers for the result and operands.
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Dd, Dn, and Dm are the double-precision registers for the result and operands.

B.7.9 VFMA, VFNMA, VFMS, VFNMS 

VFMA (Fused Floating-point Multiply Accumulate (with optional Negation)) multiplies the 
operand registers, adds the value from the destination register and stores the final result in the 
destination register. The result of the multiply is not rounded before the accumulation.

VFMS (Fused Floating-point Multiply Subtract (with optional Negation)) multiplies the values in 
the operand registers, subtracts the product from the destination register value and places the 
final result in the destination register. The result of the multiply is not rounded before the 
subtraction.

These instructions are always scalar.

Syntax

VF{N}op{cond}.F64 {Dd,} Dn, Dm
VF{N}op{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either MA or MS.

N negates the final result.

Sd, Sn, and Sm are the single-precision registers for the result and operands.

Dd, Dn, and Dm are the double-precision registers for the result and operands.

Qd, Qn, and Qm are the double-precision registers for the result and operands.

B.7.10 VMOV

VMOV puts a floating-point immediate value into a single-precision or double-precision register, 
or copies one register into another register. This instruction is always scalar.

Syntax

VMOV{cond}.F32 Sd, #imm
VMOV{cond}.F64 Dd, #imm
VMOV{cond}.F32 Sd, Sm
VMOV{cond}.F64 Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd is the single-precision destination register.

Dd is the double-precision destination register.

imm is the floating-point immediate value.

Sm is the single-precision source register.

Dm is the double-precision source register.
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B.7.11 VMOV

Transfer contents between a single-precision floating-point register and an ARM register.

Syntax

VMOV{cond} Rd, Sn
VMOV{cond} Sn, Rd

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sn is the VFP single-precision register.

Rd is the ARM register.

B.7.12 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS 

VMUL (Floating-point Multiply (with optional Negation)) multiplies the values in the operand 
registers and stores the result in the destination register.

VMLA (Floating-point Multiply Accumulate (with optional Negation)) multiplies the values in the 
operand registers, adds the value from the destination register, and stores the final result in the 
destination register.

VMLS (Floating-point Multiply and Multiply Subtract (with optional Negation)) multiplies the 
values in the operand registers, subtracts the result from the value in the destination register, and 
stores the final result in the destination register.

The final result is negated if the N option is used.

These instructions can be scalar, vector, or mixed.

Syntax

V{N}MUL{cond}.F32 {Sd,} Sn, Sm
V{N}MUL{cond}.F64 {Dd,} Dn, Dm
V{N}MLA{cond}.F32 Sd, Sn, Sm
V{N}MLA{cond}.F64 Dd, Dn, Dm
V{N}MLS{cond}.F32 Sd, Sn, Sm
V{N}MLS{cond}.F64 Dd, Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

N negates the final result.

Sd, Sn, and Sm are the single-precision registers for the result and operands.

Dd, Dn, and Dm are the double-precision registers for the result and operands.

B.7.13 VNEG

VNEG (Floating-point negate). This instruction can be scalar, vector, or mixed. VNEG takes the 
contents of the specified register, inverts the sign bit and stores the result.

Syntax

VNEG{cond}.F32 Sd, Sm
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VNEG{cond}.F64 Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd and Sm are the single-precision registers for the result and operand.

Dd and Dm are the double-precision registers for the result and operand.

B.7.14 VSQRT

VSQRT (Floating-point square root) takes the square root of the contents of Sm or Dm, and places 
the result in Sd or Dd. It can be scalar, vector, or mixed.

Syntax

VSQRT{cond}.F32 Sd, Sm
VSQRT{cond}.F64 Dd, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd and Sm are the single-precision registers for the result and operand.

Dd and Dm are the double-precision registers for the result and operand.

B.7.15 VSUB

VSUB subtracts the value in the second operand register from the value in the first operand 
register, and places the result in the destination register. The instructions can be scalar, vector, 
or mixed.

Syntax

VSUB{cond}.F32 {Sd,} Sn, Sm
VSUB{cond}.F64 {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

Sd, Sn, and Sm are the single-precision registers for the result and operands.

Dd, Dn, and Dm are the double-precision registers for the result and operands.
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B.8 NEON and VFP pseudo-instructions
This section describe pseudo-instructions which will be translated by the assembler to a real 
machine instruction.

B.8.1 VACLE and VACLT

Vector Absolute Compare takes the absolute value of each element in a vector, and compares 
with the absolute value of the corresponding element of a second vector. If the condition is true, 
the corresponding element in the destination vector is set to all ones. If false, it is set to all zeros. 
This produces the corresponding VACGE and VACGT instructions, with the operands reversed.

Syntax

VACop{cond}.datatype {Qd,} Qn, Qm
VACop{cond}.datatype {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either LE (Absolute Less than or Equal) or LT (Absolute Less Than).

datatype must be F32.

Qd or Dd is the NEON register for the result. The result datatype is always I32.

Qn or Dn is the NEON register holding the first operand,

Qm or Dm is the NEON register which holds the second operand.

B.8.2 VAND (immediate)

VAND (bitwise AND immediate) takes each element of the destination vector, does a bitwise AND 
with an immediate value, and stores the result into the destination.

Syntax

VAND{cond}.datatype Qd, #imm
VAND{cond}.datatype Dd, #imm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of I8, I16, I32, or I64.

Qd or Dd is the NEON register for the result.

imm is the immediate value.

If datatype is I16, the immediate value must have one of the following forms:
• 0xFFXY

• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY

• 0xFFFFXYFF

• 0xFFXYFFFF

• 0xXYFFFFFF.
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B.8.3 VCLE and VCLT

Vector Compare takes the value of each element in a vector, and compares it with the value of 
the corresponding element of a second vector. If the condition is true, the corresponding element 
in the destination vector is set to all ones. If false, it is set to all zeros. These pseudo-instructions 
produce the corresponding VCGE and VCGT instructions, with the operands reversed.

Syntax

VCop{cond}.datatype {Qd,} Qn, Qm
VCop{cond}.datatype {Dd,} Dn, Dm

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either LE (Less than or Equal) or LT (Less Than).

datatype is one of S8, S16, S32, U8, U16, U32, or F32.

Qd or Dd is the NEON register for the result. The result datatype is as follows:
• I32 for operand datatypes I32, S32, U32, or F32.
• I16 for operand datatypes I16, S16, or U16.
• I8 for operand datatypes I8, S8, or U8.
• U32 32-bit unsigned fixed-point number.

Qn or Dn is the NEON register holding the first operand.

Qm or Dm is the NEON register which holds the second operand.

B.8.4 VLDR pseudo-instruction

The VLDR pseudo-instruction loads a constant value into every element of a 64-bit NEON vector 
(or a VFP single-precision or double-precision register).

Syntax

VLDR{cond}.datatype Dd,=constant
VLDR{cond}.datatype Sd,=constant

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of In, Sn, Un (where n is one of 8, 16, 32, or 64) or F32 for NEON. For VFP code, 
use either F32 or F64.

Dd or Sd is the register to be loaded.

constant is an immediate value of the appropriate type for datatype. If an instruction is available 
that can generate the constant directly, the assembler uses it. Otherwise, it generates a 
doubleword literal pool entry containing the constant and use a VLDR instruction to load the 
constant.

B.8.5 VLDR and VSTR (post-increment and pre-decrement)

The VLDR and VSTR pseudo-instructions load or store extension registers with post-increment and 
pre-decrement.
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Syntax

op{cond}{.size} Fd, [Rn], #offset ; post-increment
op{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

op is either VLDR or VSTR.

size is 32 if Fd is an S register, or 64 if Fd is a D register. For a NEON instruction, it must be a 
doubleword (Dd) register. For a VFP instruction, it can be a double-precision (Dd) or single 
precision (Sd) register.

Rn is the ARM register that sets the base address for the transfer.

The post-increment instruction increments the base address in the register by the offset value, 
after the transfer. The pre-decrement instruction decrements the base address in the register by 
the offset value, and then does the transfer using the new address in the register. These 
pseudo-instructions assemble to VLDM or VSTM instructions.

B.8.6 VMOV2

The VMOV2 pseudo-instruction generates an immediate value and places it in every element of a 
NEON vector, without a load from a literal pool. It always generates two instructions typically 
a VMOV or VMVN followed by a VBIC or VORR. VMOV2 can generate any 16-bit immediate value, and a 
restricted range of 32-bit and 64-bit immediate values.

Syntax

VMOV2{cond}.datatype Qd, #constant
VMOV2{cond}.datatype Dd, #constant

where:

cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of:
• I8, I16, I32, or I64.
• S8, S16, S32, or S64.
• U8, U16, U32, or U64.
• F32.

Qd or Dd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

B.8.7 VORN 

VORN (Bitwise OR NOT) (immediate) takes each element of the destination vector, does a bitwise 
OR complement with an immediate value and stores the result into the destination vector.

Syntax

VORN{cond}.datatype Qd, #imm
VORN{cond}.datatype Dd, #imm

where:
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cond is an optional conditional code. (See Conditional execution on page 6-3)

datatype is one of I8, I16, I32, or I64.

Qd or Dd is the NEON register for the result.

imm is the immediate value.

If datatype is I16, the immediate value must have one of the following forms:
• 0xFFXY

• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.
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Appendix C 
Building Linux for ARM Systems

The objective of this appendix is to enable the reader to build a Linux system for an ARM platform. 
Though the process for doing this will vary slightly for different processors and platforms, most of 
the steps will be very similar to those outlined here.

A working Linux system has two primary components, namely the kernel and the root filesystem. 
The kernel is the core of the operating system and acts as a resource manager. It is loaded into RAM 
by the bootloader and then executed during the boot process, as described in Chapter 15. The root 
filesystem contains system libraries, applications, tools and utilities, for example, command line 
interfaces or shells, graphical interfaces (such as the X window system), text editors (such as vi, 
emacs, gedit) and advanced applications like web browsers or office suites.

The root filesystem is often located in persistent storage, such as a hard disk or a flash device. 
However, the root filesystem can also reside in primary memory (RAM). This book will not cover 
RAM-based filesystems in great detail. We will first cover the steps for building the kernel and then 
the root filesystem, before analyzing how these fit together to get the system running. 
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C.1 Building the Linux kernel
This section explains the steps required to build the kernel for an ARM processor based 
platform, either natively on the target platform or cross-compiled on, for example, an x86 PC. 
The platform we build the kernel for is called the target platform. The platform on which we 
build is called the build platform. We assume that the reader has some experience in using 
Linux, C compilers and has a machine (either x86 or ARM processor based) running a Linux 
distribution like Ubuntu – for other distributions some of the steps of the build procedure might 
differ slightly. We also assume that the build machine has a working internet connection. If this 
machine is ARM processor based, it is not necessary for the build platform to be exactly the 
same as the target platform.

The Linux kernel can be viewed as consisting two parts. One part is architecture independent 
and consists of components like process schedulers, system call interfaces 
architecture-independent device drivers and high-level network subsystems. The other part is 
closely related to the hardware platform for which the kernel is being built. This consists of 
board initialization code and drivers corresponding to a specific hardware platform. While 
building a kernel one has be sure of having the correct set of initialization code and drivers for 
the platform at hand.

The Linux kernel sources can be found at , http://www.kernel.org/. 

There are two ways to get the kernel source code. The first is to download a compressed tar file. 
The exact name of this file will naturally depend upon the version of the kernel selected, for 
example 2.6.34. When downloaded, this file must be uncompressed using a command similar 
to the following.

tar xjvf  linux-2.6.34.tar.bz2

The other option for obtaining the kernel source is to obtain the source tree using GIT (git) 
commands. Linux is developed using the GIT version control system, which can be installed 
using a command similar to the one below for Ubuntu.

sudo apt-get install git-core

Obviously, a working internet connection is required for the above steps and those which follow.

The Linux source tree can be cloned with a command similar to the following:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

This command will copy the official Linux kernel repository to the current directory, which can 
take some time. You can then check out a specific tag, which is a local operation and fairly 
quick. 

git checkout -b  v2.6.34

Follow the instructions in Prebuilt versions of GNU toolchains on page 3-9 in order to obtain 
and install a suitable toolchain. Also ensure that the toolchain is accessible on your path.

When the source tree is in place, the kernel needs to be configured to match the hardware 
platform and desired kernel features. The standard method is to use a command such as:

make ARCH=arm realview_defconfig

which generates a default configuration file for the RealView platform file and stores it as  
.config.

There are several methods available for configuring the kernel. The most commonly used 
provides a text based interface based on the ncurses library. It can be invoked using the 
command:
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make ARCH=arm menuconfig

This gives a configuration screen for selecting or omitting features of the kernel, as shown in 
Figure C-1.

Figure C-1 Kernel Configuration screen using make menuconfig

If this command fails, and the configuration menu does not appear, this could be because the 
ncurses header files are not installed on your build host. You can install them by executing:

sudo apt-get install libncurses5-dev

The other alternative is to use a graphical Xconfig tool; this uses the Qt GUI library and can be 
invoked using the command:

make ARCH=arm xconfig

Figure C-2 on page C-4 shows the Kernel Configuration screen from this tool.
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Figure C-2 Kernel Configuration screen using make xconfig

When the kernel is configured correctly then it can be built using a simple make command as 
below – exact details can differ slightly depending on the bootloader used:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

The CROSS_COMPILE value should be set to the toolchain cross-compilation prefix (Prebuilt 
versions of GNU toolchains on page 3-9) or should be completely left out for native 
compilation.

The output of the compilation would be in the form of a compressed kernel zImage. This can 
usually be found in the path <source root>/arch/arm/boot as a file named zImage.

When compiling natively on an ARM processor based system, the CROSS_COMPILE... parameter 
should be left out. If a different cross compilation toolchain than the codesourcery Linux EABI 
toolchain is used, arm-none-linux-eabi- might need to be modified to reflect the name of the 
toolchain executables. The above also assumes that the cross compilation toolchain executable 
directory is listed in your PATH environment variable.

This operation requires the mkimage utility to be installed. The Ubuntu package name for this tool 
is uboot-mkimage.
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If the hardware platform uses the U-Boot bootloader, the kernel image will need to be converted 
into a form accepted by U-boot. For example, in Ubuntu the uboot-mkimage package can be 
installed followed by the command below, instead of the simple make, to create an “ubootified” 
image. 

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage

The built kernel image would be found as the file named uImage, again in the path <source 
root>/arch/arm/boot.

Now that the kernel is built, the filesystem needs to be created in order to have a working ARM 
Linux system. The next section deals with creating the filesystem.
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C.2 Creating the Linux filesystem
Creating a filesystem for an ARM processor based platform is relatively straightforward, using 
a Ubuntu distribution. The procedure described here does not actually compile the filesystem, 
rather it downloads pre-built packages to create the filesystem. A full compilation of the 
filesystem would take many hours of compilation time and can be technically challenging.

For carrying out the process of putting together the filesystem the rootstock package needs to 
be installed, which can be done using the command below:

sudo apt-get install rootstock

When the package is installed, navigate to the directory to be used for creating and saving the 
filesystem. The filesystem can be created in the form of a compressed tarball using the 
command below. 

sudo rootstock --fqdn ubuntu --login ubuntu --password ubuntu --imagesize 3G --seed 
ubuntu-desktop

In this case, the system would be based on the ubuntu-desktop seed which includes a desktop 
windowing system. Other seeds could be used instead, for example xubuntu-desktop (for a 
smaller, more lightweight desktop system) or build-essential (for a text based interface).

Note
 This step might take a significant amount of time, depending on the speed of the internet 
connection.

The following steps describe the process of preparing a disk drive and transferring the 
filesystem to it. This disk would then be used as the root filesystem on the ARM processor based 
platform. The term disk drive is used here in a loose sense and refers to a variety of secondary 
storage devices, for example, hard disks, compact-flash drives, or USB drives. After plugging 
in the disk drive to the computer which was used to create the filesystem, the following 
command can be used to check the connected drives

sudo fdisk  –l

Note
 The disk drive being used for storing the root filesystem of the ARM processor based platform 
will be formatted by the following steps. The process of formatting the disk will destroy any 
data that might exist on the disk. Therefore the user needs to ensure that the disk does not contain 
any useful data prior to formatting, as this data will be permanently erased. It is also easy to lose 
the data elsewhere on the system if the wrong device is specified here.

The disk drive to be used needs to be identified correctly in the list given by the command above 
(for example, /dev/sdb). Assuming that /dev/sdb is the correct device or disk drive, the 
following command is needed to partition the drive correctly.

sudo fdisk /dev/sdb

On entering the above command, the fdisk prompt will be displayed. Now a sequence of fdisk 
command needs to be entered which are in the form of single characters. 

Type m to display the help for the possible set of fdisk commands. Use d to delete any existing 
partitions on the disk. You can then create a new partition using n. The character w is used to 
write the changes to the disk and exit. You can check that the partition has been written correctly 
by starting fdisk again using the above command, followed by a p for printing the partition 
table. 
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When the partition table has been written correctly, the disk partition that has been created can 
be formatted. Usually the first partition created on the disk identified by (for example) /dev/sdb 
is denoted as /dev/sdb1. The command for formatting this partition as an ext-3 filesystem is as 
below.

sudo mkfs.ext3 /dev/sdb1

Now, the previously created tarball for the Linux filesystem needs to be decompressed into this 
disk partition. To do this, the disk partition needs to be mounted which either can be done 
manually with the mount command, or automatically by unplugging and re-plugging in the drive. 
In the automatic mounting case, the disk is usually mounted at the location 
/media/<disk_directory>. Navigate to the directory at which the disk is mounted and 
uncompress the file-stem tarball into it using the command below:

sudo tar zxvf  <path_to_tarred_file_system/file.tgz>

Now that both the kernel and filesystem have been created, the two need to be brought together 
to have a working Linux system.

Note
 It is also possible to store the root filesystem in primary memory, using a RAMDISK. However, 
this alternative will not be described here and is left to advanced users.
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C.3 Putting it together
The steps for creating the kernel and the filesystem are generic and common to many different 
boards or platforms. However, the steps for having the kernel programmed onto the platform 
can vary between boards. For most boards, the kernel needs to be transferred to some form of 
secondary memory that either exists on the board or is connected to it. For example, on ARM 
Versatile boards, the kernel needs to be copied on to a flash device on the board. There can be 
two different kinds of procedures for doing this depending on the board. 

Use the documentation for your development board to find the appropriate method for getting 
your kernel installed, and follow the instructions. You should also ensure that the root filesystem 
which was created earlier is connected correctly or copied onto the target board.

In order to obtain a list of possible U-Boot commands type help at the U-Boot prompt.

The U-Boot bootloader is popular on many ARM processor based platforms. It is free and 
open-source. Other than U-Boot, there are also other bootloaders which might be proprietary for 
certain ARM processor based platforms. In order to interact with the bootloader, it might be 
necessary to connect a serial interface between the board or platform and a personal computer 
running a serial terminal. Again, refer to the board’s user manual for more details.

The bootloader can pass a set of parameters to the kernel during the boot process. Among these 
is the kernel command line, known in U-Boot as bootargs (short for boot arguments).These 
parameters are used by the kernel for some initialization configurations. An example command 
for setting up the bootargs on ARM Versatile boards is shown below. This needs to be entered 
at the U-Boot prompt.

setenv bootargs root=/dev/sda1 mem=512M@0x20000000 ip=dhcp console=ttyAMA0 clcd=xvga 
rootwait

The bootargs in this case specifies the following:

• The root filesystem is in /dev/sda1.

• The memory region to be used by the operating system in the form of a size (512MB) and 
a starting address location. This isn’t required if the bootloader passes the correct 
ATAG_MEM atag.

• The IP address (for example, 192.168.0.7) or the mechanism for obtaining it (in this case 
DHCP).

• The display interface details. 

• The delay required before trying to mount the root filesystem which can be needed for 
devices to be recognized (for example, USB disks).

The command above can be followed by a saveenv command in U-Boot, to save the changes 
into flash and make them permanent. In order to obtain a list of possible U-Boot commands type 
help at the U-Boot prompt. Type help <command> at the U-Boot prompt, to get more details 
regarding a particular command.

The bootloader also needs a boot command to start the boot process automatically. In the 
simplest case the bootcmd can be set as follows, where 0x41000000 is the location where the 
kernel is stored for example in flash memory.

setenv bootcmd bootm 0x41000000

If the kernel image exists at a different location, or on the network, a cp or tftp command can 
precede the bootm command. U-Boot commands on the same line need to be separated by a “;”, 
for example:
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setenv bootcmd cp 0x65000000 0x41000000 0x8000000; bootm 0x41000000

Again, a saveenv command would be required, to ensure that changes are saved to secondary 
storage. Now that the bootcmd is in place, the system needs to be restarted such that the bootcmd 
is used automatically and the system should start running. The sequence of boot commands can 
also be entered manually at the U-Boot prompt, to try different options without saving them 
permanently. 
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