
The Definitive Guide to the
ARM Cortex-M0

Joseph Yiu
AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First published 2011

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangement with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010940590

ISBN: 978-0-12-385477-3
For information on all Newnes publications
visit our website at www.elsevierdirect.com
Printed and bound in the United States

11 12 13 14 10 9 8 7 6 5 4 3 2 1

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

http://www.elsevier.com/permissions
http://www.elsevierdirect.com

Foreword
It is an exciting time to be a microcontroller user. A growing range of ARM Cortex-M devices

are available from many vendors, spanning a broad range of applications. Users who are

familiar with 8-bit and 16-bit microcontrollers and are moving to ARM Cortex-Mebased

devices are surprised at just how easy they are to use and, with the introduction of ARM

Cortex-M0 devices, how low-cost and efficient 32-bit microcontrollers have become.

So I was delighted that Joseph Yiu chose to write a guide for the users of these ARM

Cortex-M0 devices. As a technical authority on the ARM Cortex-M family and a formative

8-bit user, Joseph is uniquely placed to guide users new to ARM Cortex microcontrollers on

their first transition steps, and to impart detailed knowledge about the Cortex-M0 to the

advanced user.

Dr Dominic Pajak
ARM Cortex-M0 Product Manager
xiii

Preface
I started learning about microcontrollers when I was studying at university. At that time, some

of the single board computers I was using had an 8-bit microcontroller, and my programs were

stored in external Eraseable Programmable Read Only Memory (EPROM) chips. The EPROM

chips were in relatively large dual in line (DIP) packages and could be erased by shining

ultraviolet light through the glass window. Since then, microcontroller technology has changed

a lot: external EPROMs have been replaced by on-chip flash memories, DIP packages have

been replaced by surface mount packages, and most microcontrollers have become in-system

reprogrammable. More and more peripherals have been added to microcontrollers, and the

complexity of the software has increased dramatically.

Since 2004, the microcontroller market has made some dramatic changes. Previously, the

microcontrollers on the market were mostly 8-bit and 16-bit types, and 32-bit microcontroller

applications were limited to high-end products, mainly because of the cost. Although most of

the 8-bit and 16-bit microcontrollers could be programmed in C, trying to squeeze all the

required functionalities into a small microcontroller was becoming more and more difficult.

You might spend one day writing a program in C, and then find that you needed to spend

another two days rewriting part of the program in assembly because the processing speed of the

microcontroller was too slow for all the required processing tasks.

Even if you are developing simple applications and do not require high processing power in

the microcontrollers, occasionally you might need to switch to a different microcontroller

architecture because of project requirements, and this can take a tremendous effort. Not only

will you need to spend the money to buy new tools, but it can take weeks to learn to use the

tools and months to become familiar with a new architecture.

In October 2004, the price of an ARM7 microcontroller dropped to below 3 US dollars. This

was very good news for many developers who needed to develop complex embedded software.

Since then, with the availability of the Cortex-M3, the price of ARM microcontrollers has

dropped much further and you can get an ARM microcontroller for less than 1 US dollar. As

a result, the use of ARM microcontrollers is gaining acceptance. In addition to providing

excellent performance, the modern ARMmicrocontrollers require very little power. The use of

ARM microcontrollers is no longer limited to high-end products.
xv

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

xvi Preface
Like many good ideas, the concept for the Cortex-M0 started life as a conversation between

engineers in a bar. A small and growing number of ARM partners were looking for a 32-bit

processor that was small, really small. The concept quickly became a full-blown engineering

project (codenamed “Swift”). In 2009, the Cortex-M0 design was completed, and it quickly

became one of the most successful ARM processor products.

Through the examples in this book, you will find that the Cortex-M0 microcontrollers are easy

to use. In some aspects, they are even easier to use than some 8-bit microcontrollers because of

the simplicity of the linear memory architecture, an uncomplicated and yet flexible exception

model, comprehensive debug features, and the software infrastructures provided by ARM,

microcontroller vendors, and software solution providers.

Because the Cortex-M processors are extremely C friendly, there is no need to optimize the

applications with assembly. There is no need to learn lots of special C directives just to get the

interrupt handlers working. For some embedded developers, the switch to ARM micro-

controllers also means it is much easier to switch between different microcontroller products

without the need to buy new tools and learn a new architecture. On the Internet you can find

that many people are already using Cortex-M0 microcontrollers on a number of interesting

projects.

After working on a number of ARM processor projects, I gained a lot of experience in the use

of the Cortex-M processors (and possibly some gray hairs as well). With encouragement from

some friends and help from lots of people, I decided to put those experiences into a book to

share with numerous embedded developers who are interested in using the ARM Cortex-M

processors. I learned a lot while writing my first book, which is about the Cortex-M3 processor.

Many thanks to those people who gave me useful feedback when the first book was published,

both inside and outside ARM. I know it wasn’t perfect, but at least it is encouraging to find that

many readers found my Cortex-M3 book useful. I hope this book, The Definitive Guide to the

ARM Cortex-M0, will be even better.

This book targets a wide range of audiences: from students, hobbyists, and electronic enthu-

siasts, to professional embedded software developers, researchers, and even semiconductor

product designers. As a result, it covers a wide range of information, including many advanced

technical details that most embedded developers might never need. At the same time, it

contains many examples, making it easy for novice embedded software developers to use.

I hope that you find this book helpful and that you enjoy using the Cortex-M0 in your next

embedded project.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Acknowledgments
A number of people have assisted me in researching for and writing this book.

First of all, a big thank you to my colleagues in ARM for their help in reviewing and suggesting

improvements, especially Edmund Player, Nick Sampays, and Dominic Pajak, and also Drew

Barbier, Colin Jones, Simon Craske, Jon Marsh, and Robert Boys.

I would also like to thank a number of external reviewers whose input in terms of feedback has

enabled me to hone and improve the quality of the book’s technical information. They are Joe

Yu and Kenneth Dwyer from NXP, John Davies from Glasgow University, and Jeffrey S.

Mueller from Triad Semiconductor. In addition to those who reviewed the prepublication book,

I would also thank the following who assisted me while I was writing it by answering my

technical inquiries and by providing product information. They are Kenneth Dwyer, David

Donley, and Amit Bhojraj from NXP; Drew Barbier from ARM; Milorad Cvjetkovic from

Keil; Jeffrey S. Mueller, William Farlow, and Jim Kemerling from Triad Semiconductor; Jamie

Brettle from National Instruments; Derek Morris from Code Red Technologies; Brian Barrera

from CodeSourcery; and the sales teams from Rowley Associates, Steinert Technologies, IAR

Systems, and TASKING.

I would also thank the staff from Elsevier for their professional work in getting this book

published.

And finally, a big thank you to all my friends within and outside of my work environment

whose unstinting encouragement enthused and enabled me (though the odd cup of coffee

helped too) to start and then complete the book.
xvii

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Conventions
Various typographical conventions have been used in this book, as follows:

• Normal assembly program codes:

MOV R0; R1; Move data from Register R1 to Register R0

• Assembly code in generalized syntax; items inside “<>” must be replaced by real register
names:

MRS < reg>; <special reg>;

• C program codes:
for ði ¼ 0; i < 3; iþþÞ f func1ðÞ; g
• Pseudo code:
if ða > bÞ f.
• Values:
1. 4’hC, 0x123 are both hexadecimal values.

2. #3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3).

3. #immed_12 refers to 12-bit immediate data.

4. Register bits are typically used to illustrate a part of a value based on bit position. For

example, bit[15:12] means bit number 15 down to 12.

• Register access types:

1. R is Read only.

2. W is Write only.

3. R/W is Read or Write accessible.

4. R/Wc is Readable and cleared by a Write access.
xix

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Terms and Abbreviations
Abbreviations Meaning
AAPCS ARM Architecture Procedure Call Standard
AHB
 Advanced High-Performance Bus
ALU
 Arithmetic Logic Unit
AMBA
 Advanced Microcontroller Bus Architecture
APB
 Advanced Peripheral Bus
ARM ARM
 ARM Architecture Reference Manual
BE8
 Byte Invariant Big Endian mode
BPU
 Break Point Unit
CMOS
 Complementary Metal Oxide Semiconductor
CMSIS
 Cortex Microcontroller Software Interface Standard
DWT
 Data Watchpoint and Trace Unit (unit)
EXC_RETURN
 Exception Return
FPGA
 Field Programmable Gate Array
gcc
 GNU C Compiler
ICE
 In-Circuit Emulator
IDE
 Integrated Development Environment
ISA
 Instruction Set Architecture
ISR
 Interrupt Service Routine
JTAG
 Joint Test Action Group (a standard test and debug interface)
LR
 Link Register
LSB
 Least Significant Bit
MCU
 Microcontroller Unit
MDK/MDK-ARM
 ARM Keil Microcontroller Development Kit
xxi

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

xxii Terms and Abbreviations
Abbreviations
 Meaning

MSB
 Most Significant Bit
MSP
 Main Stack Pointer
NMI
 Non-Maskable Interrupt
NVIC
 Nested Vectored Interrupt Controller
OS
 Operating System
PC
 Program Counter
PSP
 Process Stack Pointer
PSR/xPSR
 Program Status Register
RVDS
 ARM RealView Development Suite
RTOS
 Real Time Operating System
RTX
 Keil Real-Time eXecutive kernel
SCB
 System Control Block
SCS
 System Control Space
TAP
 Test Access Port
TRM
 Technical Reference Manual
WIC
 Wakeup Interrupt Controller
Reference

The following documents are referenced in this book:
Document Tile
 ARM Document number

1
 Cortex-M0 Devices Generic User Guide
 ARM DUI 0497A
2
 Cortex-M0 r0p0 Technical Reference Manual
 ARM DDI 0432C
3
 ARMv6-M Architecture Reference Manual
 ARM DDI 0419B
4
 Procedure Call Standard for ARM Architecture
 ARM IHI 0042D
5
 ARM Workbench IDE User Guide
 ARM DUI 0330E
6
 CoreSight Technology System Design Guide
 ARM DGI 0012B
7
 ARM Debug Interface v5
 ARM IHI 0031A
8
 Keil MDK-ARM Compiler Optimization: Getting

the Best Optimized Code for Your Embedded

Application
Keil Application Note 202
9
 RealView Compilation Tools Developer Guide
 ARM DUI 0203I

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

CHAPTER 1

Introduction

Why Cortex-M0?

The ARM Cortex-M0 processor is designed to meet the needs of modern ultra-low-power

microcontroller units (MCUs) and mixed-signal devices. It is intended to satisfy the demand for

ever-lower-cost applications with increasing connectivity (e.g., Ethernet, USB, low-power

wireless) and uses of analog sensors (e.g., touch sensors and accelerometers). These applications

require tight integration of analog and digital functionality to preprocess and communicate data.

Existing 8-bit and 16-bit devices often can’t support these applications without significant

increases in code size and clock frequency, therefore increasing power. The Cortex-M0 addresses

the need for increased performance efficiencywhile remaining lowcost and extendingbattery life.

It is unsurprising, therefore, that the Cortex-M0 processor is now available in a rapidly growing

range of silicon products, with the processor being the fastest licensing ARM design to date.

The idea behind ARM Cortex-M0 was to create the smallest, lowest power processor possible,

while remaining upward compatible with the higher-performance ARM Cortex-M3. ARM

announced the Cortex-M0 processor in February 2009, and it achieved its goals. The resulting

design is just 12,000 logic gates in minimum configuration, as small as an 8-bit or 16-bit

processor, but it is a full 32-bit processor that incorporates advanced technologies with many

compelling benefits over 8-bit or 16-bit devices.

Energy Efficiency

The performance efficiency of the Cortex-M0 (0.9 DMIPS/MHz)means it can get a task done in

fewer cycles (even a 32-bit multiply can be completed in one cycle). This means Cortex-M0

devices can spend more time in a low-power sleep state, offering better energy efficiency.

Alternately, they can get the same job done in fewer MHz, meaning lower active power and

electromagnetic interference (EMI). The low gate count of the Cortex-M0 means that the

leakage, and sleep current, is minimized. The highly efficient interrupt controller (NVIC)means

that interrupt overhead is low, even when handling nested interrupts of different priorities.

Code Density

The code size offered by the Thumb-2-based instruction set is smaller than 8-bit or 16-bit

architectures for many applications. This means users can choose devices with smaller flash
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10001-1

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

1

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

10.1016/B978-0-12-385477-3.10001-1

2 Chapter 1
memory sizes for the same application. This saves both device cost and power, as flash accesses

contribute significantly to the total device power.

Ease of Use

The Cortex-M0 is designed as an ideal C target, with many modern compilers supporting it,

and its interrupt service routines are able to be coded directly as C functions without the need

for an assembler. However, the instruction set is just 56 instructions, so assembler coding is

also easy to learn. Although it is a high-performance pipelined processor, the instruction and

interrupt timings are fully deterministic (zero jitter), allowing the designs to be used in

applications that require deterministic timing behavior and allowing developers to predict or

analyze system timing accurately.

As microcontrollers are a key application area for the Cortex-M0 processor, it is designed with

a number of vital microcontroller features:

• A built-in interrupt controller with easy-to-use interrupt priority control

• Low interrupt latency, allowing higher interrupt processing throughput and predictable

system responsiveness

• A highly efficient instruction set called Thumb that provides high code density

• A very low gate count (as small as 12k in minimum configuration)

• A number of power-saving support features and very high energy efficiency

• Various debug features

In addition to the processor itself, the Cortex-M0 also has the following features:

• Awide range of tools supports including the Keil Microcontroller Development Kit as well

as a number of third-party tools

• A wide range of software written for ARM architecture, including many open source

projects like embedded operating systems (OSs) and compressors/decompressors (codecs)

The Cortex-M0 processor delivers the best energy-efficient 32-bit processing capability on the

market, alongside a complete ecosystem to provide all the needs for embedded developers.

A number of semiconductor vendors are already developing different products based on the

Cortex-M0 processor with a variety of peripherals, memory sizes, and speeds. Products based

on the Cortex-M0 started appearing on the market by the end of 2009, with more products

arriving afterward.

Application of the Cortex-M0 Processors

The Cortex-M0 processor is used with a wide range of products. The most common usage is

microcontrollers. Many Cortex-M0 microcontrollers are low cost and are designed for low-

power applications. They can be used in applications that include computer peripherals and

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Introduction 3
accessories; toys; white goods; industrial, heating, ventilating, and air conditioning (HVAC)

controls; and home automation.

By using Cortex-M0 microcontrollers, these products can be built with more features, a more

sophisticated user interface, better performance, and often better energy efficiency. At the same

time, software development with Cortex-M processors is just as easy as using 8-bit and 16-bit

microcontrollers. The costs of Cortex-M0 microcontrollers are competitive too.

Another important group of the Cortex-M0 applications are application-specific standard

products (ASSPs) and system-on-chip (SoC). For ASSPs like mixed-signal controllers, the low

gate count advantage of the Cortex-M0 allows a 32-bit processing capability to be included in

chip designs that traditionally only allow 8-bit or simple 16-bit processors to be used. One

example is the touch screen controller, and the Cortex-M0 processor is already used in this type

of product (see Chapter 22).

For complex system-on-chips, the designs are often divided into a main application processor

system and a number of subsystems for I/O controls, communication protocol processing,

and system management. In some cases, Cortex-M0 processors are used in part of the

subsystems to offload some activities from the main application processor and to allow

a small amount of processing be carried out while the main processor is in standby mode

(e.g., in battery-powered products).

Background of ARM and ARM processors

ARM has a long and successful history of 32-bit microprocessor design. Nowadays most

mobile phones use several ARM processors in their design, and the application of ARM

processors has been extended to many home entertainment systems, electronic toys, household

electrical products, mobile computing, and industrial applications. However, unlike most

semiconductor companies, ARM does not manufacture or sell these microprocessors. Instead,

the processors designed by ARM are used by other semiconductor companies through

a licensing business model. ARM provides a number of different processor designs, and the

Cortex-M0 is one of the products in the Cortex-M processor family that is designed for

microcontroller applications.

The Cortex-M0 is not the first processor ARM developed for the microcontroller market. ARM

processors have been around for more than 20 years. ARM was originally formed in 1990 as

Advanced RISCMachine Ltd, a joint venture of Acorn Computer Group, Apple Computer, and

VLSI Technology. In 1991, ARM released the ARM6 processor family and VLSI Technology

became the initial licensee. Since then, a number of well-known semiconductor companies

including Texas Instruments, NXP (formerly Philips Semiconductors), ST Microelectronics,

NEC, and Toshiba have also become ARM licensees. The use of the ARM processor also

extended to various consumer products as well as industrial applications.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

ARM

ARM
Processor

SRAM

Infrastructure

Peripherals

System
Control

Microcontroller vendors Microcontroller vendors
or

Semiconductor foundry

Complete microcontroller design

Flash

Interface

Analog

Broad range of IP blocks
available for licensing

Cell libraries

I/O libraries

Memory
libraries

Bus
components

Peripherals

Memory
controllers

The microcontroller design is completed by
microcontroller vendor, with possibly a
number of ARM IP components inside.

Processor IPs

ARM7

ARM9

Mail

ARM11

Cortex-M3

Cortex-A9,8

Cortex-M0

Cortex-R4

Other IPs
Microcontroller

Figure 1.1:
Use of intellectual property (IP) in microcontroller design.

4 Chapter 1
Unlike most microcontroller vendors, ARM does not manufacture microcontroller products.

The ARM business is based on intellectual property (IP) licensing (Figure 1.1). With this

business model, ARM provides the design of processors to microcontroller designers, and

these companies integrate the processor design with the rest of the chip design. Apart from the

processors, ARM also designs system infrastructure blocks, peripherals, and silicon process

libraries, which microcontroller vendors may choose to integrate into their chips.

In addition, from IP licensing ARM also provides software development tools including C

compilers, debug interface hardware, and hardware platforms, as well as services such as

consultancy and technical training courses. All these activities support microcontroller vendors

as well as software developers in using ARM technology.

One of the most successful processor products from ARM is the ARM7TDMI processor, which

is used in many 32-bit microcontrollers around the world. Unlike traditional 32-bit processors,

the ARM7TDMI supports two instruction sets, one called the ARM instruction set with 32-bit

instructions and another 16-bit instruction set called Thumb. By allowing both instruction sets

to be used on the processor, the code density is greatly increased, hence reducing memory

footprint. At the same time, critical tasks can still execute with good speed. This enables ARM

processors to be used in many portable devices that require low power and small memory. As

a result, ARM processors are the first choice for mobile devices like mobile phones.

After the success of ARM7TDMI, ARM continues to develop faster and more powerful

processors (Figure 1.2). For example, the ARM9 processor family is used in a large number of

32-bit microcontrollers and ARM11 devices, which are popular for use in smart phones and

personal digital assistants (PDAs). Many new technologies have been introduced in these

processors, like the Jazelle Java acceleration support and TrustZone, a feature that provides

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

1993

ARM7

1999

ARM9E

2001

ARM926EJ-S
ARM7TDMI-S,

ARM920,
ARM10

2009200319971995 2005 2007

Cortex-A9
Cortex-A8

Cortex-M0

Cortex-M3

ARM1136

ARM7100

ARM7500
ARM9TDMI

ARM922T

ARM1176,
ARM1156 Cortex-R4

Cortex-M1

Cortex-M4

2011

Cortex-A15

Figure 1.2:
Timeline of popular ARM processors.

Introduction 5
enhanced on-chip level system security. Nowadays, most mobile phones contain at least

one ARM processor, like the ARM11, and the recent Cortex-A8 and Cortex-A9 processor

products, which are used in mobile Internet devices. In September 2010, ARM announced the

introduction of the Cortex-A15 MPCore processor, which can be used in an even wider range

of computing platforms from mobile applications, to high-end home entertainment systems,

to server applications.

Besides the high-end processor products, ARM also increased the product portfolio for low-

end products like microcontrollers. In 2004, ARM introduced the Cortex-M3 processor design;

products started shipping in 2006, unleashing a new trend in the microcontroller market.

Following the success of the Cortex-M3, the entry-level Cortex-M0 and the Cortex-M4,

featuring floating point and DSP capabilities, joined the Cortex-M family. Today there are

more than 60 licensees using Cortex-M family processors, and many microcontroller vendors

are already shipping Cortex-M-based microcontrollers. In the third quarter of 2008, ARM’s

partners shipped more than 1 billion ARM processors. According to analysis1 in 2009, the

worldwide CPU core shipments (with CPU licensing) reached 5.3 billion in 2008, and they are

expected to increase to 10 billion in 2012.

Cortex-M0 Processor Specification and ARM Architecture

The specification of the Cortex-M0 is outlined in a number of ARM documents. The Cortex-

M0 Devices Generic User Guide (reference 1) covers the programmer’s model, instruction set,
1 Market analysis from the Linley Group (Mountain View, California) (www.eetimes.eu/semi/214600305).

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

6 Chapter 1
and general information about the architecture. The full details of the instruction set,

programmer’s model, and other topics are specified in a document called the ARMv6-M

Architecture Reference Manual (reference 3). The timing information of the processor core,

and implementation-related information are described in a document called the Cortex-M0

Technical Reference Manual (TRM) (reference 2). These documents are available from ARM

web site (www.arm.com). Please note that the download of the ARMv6-M Architecture

Reference Manual requires a registration process.

You might wonder what “ARMv6-M” means. Because there are several generations of ARM

processors, the architectures of these processors are also divided into different versions. For

example, the popular ARM7TDMI processor is based on ARM architecture version 4T, or

ARMv4T (T for Thumb instruction support), whereas the Cortex-M3 processor design is based

on architecture version 7-M. The design of the Cortex-M0 processor code is based on a version

of the architecture called ARMv6-M. The instruction set defined in ARMv6-M is a superset of

Thumb instruction set in ARM7TDMI, which provides a highly efficient instruction set and

excellent code density. It has access to 4GB of linear memory address space but does not need

to use memory paging as in some 8-bit and 16-bit microcontrollers.

For each version, the architecture document covers the following:

• Programmer’s model

• Instruction set details

• Exception mechanism

• Memory model

• Debug architecture

For each generation of ARM processors, new instructions and architectural features are added

to the processor architecture specification, which results in various versions of architecture.

The version number of the architecture is separated from the processor naming, and it is

possible for a processor family to contain more than one architecture version. For example,

early versions of ARM9 processors (ARM920T and ARM922T) are both architecture version

4T, whereas newer versions of ARM9 processors (ARM926EJ-S, ARM946E, ARM966E, etc.)

are based on architecture version 5TE. Table 1.1 shows some of the commonly used ARM

processors and their architecture versions.

You might notice that in the past, most ARM processors used a number of suffixes to specify

the features available on the processor. Some of the feature suffixes are no longer in use as they

have become standard features in newer ARM processors or have been replaced by newer

technologies.

After the release of the ARM11 processor family, it was decided that some of the new features

and technologies used in the most advanced ARM processors are just as useful to the lower-

cost or deeply embedded processor devices. For example, the Thumb-2 Instruction Set

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

http://www.arm.com

Table 1.1: Examples of ARM Processors and Their Architecture

Processor Suffixes in Processor Names Architecture

ARM7TDMI T ¼ Thumb instruction support
D ¼ JTAG debugging
M ¼ fast multiplier
I ¼ Embedded ICE module

ARMv4T

ARM920T T ¼ Thumb instruction support ARMv4T
ARM946E, ARM966E E ¼ Enhanced digital signal processing instructions ARMv5TE
ARM926EJ-S E ¼ Enhanced digital signal processing instructions,

J ¼ Jazelle (Java accelerator)
S ¼ Synthesizable design

ARMv5TE

ARM1136J(F)-S (F) ¼ Optional floating point ARMv6
ARM1176JZ(F)-S Z ¼ TrustZone security support ARMv6
ARM1156T2(F)-S T2 ¼ Thumb-2 Instruction Set support ARMv6
Cortex-A8, Cortex-A9,
Cortex-A15

A ¼ Application ARMv7-A

Cortex-R4(F) R ¼ RealTime, with optional floating point support ARMv7-R
Cortex-M3 M ¼ Microcontroller ARMv7-M
Cortex-M1 M ¼ Microcontroller (for FPGA) ARMv6-M
Cortex-M0 M ¼ Microcontroller ARMv6-M
Cortex-M4 M ¼ Microcontroller with optional floating point

support
ARMv7E-M

Introduction 7
provides a performance boost to ARM processors running in Thumb state, and CoreSight

Debug architecture provides scalable debug technologies that give better debug capability than

previous solutions. As a result, starting from version 7, the architecture is divided into three

profiles, targeted at different product ranges. This new generation of processors is called

“Cortex,” with a suffix to identify individual designs and indicate which architectural profile

they belong to (Figure 1.3 and Table 1.2).
Table 1.2: Three Profiles in the ARMv7 Architecture

Architecture Targets

ARMv7-A(e.g., Cortex-A9) Application processors that are required to support complex
applications like smart phones, PDAs, and GPSs

ARMv7-R(e.g., Cortex-R4) Real-time, high-performance processors to support highly demanding
applications like hard disk controller and automotive control systems

ARMv7-M(e.g., Cortex-M3) Microcontroller processors for industrial control like generic
microcontrollers or cost-sensitive embedded systems like low-cost
consumer products
So how does this relate to the Cortex-M0 processor? Following the success of the Cortex-

M3 processor release, ARM decided to further expand its product range in the micro-

controller applications. The first step is to allow users to implement their ARM processor on

Administrator
下划线

Administrator
下划线

Administrator
下划线

Cortex-A9

Cortex-A5

Cortex-A8

Cortex-R4F

Cortex-M4

Cortex-M0

Cortex-M3

Cortex-M1

Microcontroller

applications

High performance

Real-time systems

High-end Application

processors

ARM11

series

ARM9E

series

ARM7TDMI

Performance,

functionality

2005

Cortex-R4

2009 erutuF3002

ARM Cortex

processors
Cortex-A15

Figure 1.3:
Diversity of processor architecture to three areas in the Cortex processor family.

8 Chapter 1
a field programmable gate array (FPGA) easily, and the second step is to address the ultra-

low-power embedded processor. To do this, ARM took the Thumb instruction set from the

existing ARMv6 architecture and developed a new architecture based on the exception and

debug features in the ARMv7-M architecture. As a result, ARMv6-M was formed, and the

processors based on this architecture are the Cortex-M0 processor (for microcontroller and

ASICs) and the Cortex-M1 processor (for FPGA) (Figure 1.4).
ARM7TDMI,
920T, 922T

Architecture
v4 / v4T

Architecture
v5 / v5E

ARM926EJ-S,
946E, 966E

Architecture v6

ARM1136,
ARM1176,

ARM1156T-2

Architecture v7 ARMv7-A
E.g. Cortex-A9

ARMv7-R
E.g. Cortex-R4

ARMv7-M
E.g. Cortex-M3

Examples

ARM v6-M
Cortex-M0, Cortex-M1

Figure 1.4:
The evolution of ARM processor architecture.

Administrator
高亮

Administrator
高亮

Administrator
高亮

ARMv6-M

Architecture

ARMv7-M

Architecture

Programmer’s Model
and Exception Model

Thumb-2 system

Memory map

ARMv6

Architecture

CoreSight

Debug

Architecture

Thumb
instruction set

Serial-Wire and
Debug control

ARM

Cortex-M0

ARM

Cortex-M1

FPGA specific
features &

Optimization

Low power
optimized

design

Figure 1.5:
ARMv6-M architecture provides attractive features from various ARM architectures.

Introduction 9
This development results in a processor architecture that is very small and efficient and yet is

easy to use and can achieve a high performance. Similar to the Cortex-M3 processor, both the

Cortex-M0 and the Cortex-M1 processors include a nested vectored interrupt controller

(NVIC) and use the same exception/interrupt mechanism. They also use a programmer’s mode

similar to ARMv7-M, which defines Thread mode and Exception mode (Figure 1.5). They also

support the CoreSight Debug architecture, which makes it easy for users to develop and test

applications.

The rest of the book will only focus on the Cortex-M0 processor and not the Cortex-M1

processor.
ARM Processors and the ARM Ecosystem

What makes the ARM architecture special compared to proprietary architectures? Aside from

the processor technology, the ecosystem surrounding ARM development plays a very

important role.

As well as working directly with the microcontroller vendors that offer ARM processor-based

devices, ARM works closely with vendors that provide the ecosystem supporting those

devices. These include vendors providing compilers, middleware, operating systems, and

development tools, as well as training and design services companies, distributors, academic

researchers, and so on (Figure 1.6).

Administrator
高亮

ARM

Silicon
partners

EDA tool
vendors

Choices
● More choices of microcontrollers
● More choice on development tools
● More development boards
● More open source project support
● More OS support
● More middleware and software solutions

Knowledge sharing
● Resources on the Internet
● Large user community
● Technical forums
● Seminars and webinars (many free)
● Strong supports

Development
tools vendors

Distributors

Software &
middleware

vendors

Open
source

community

Researchers,
academics

Design
services &

training

ARM

Users

ecosystem

Figure 1.6:
The ARM ecosystem.

10 Chapter 1
The ARM ecosystem allows a lot more choices. Apart from choice of microcontroller

devices from different vendors, the user also has a greater choice of software tools. For

example, you can get development tools from Keil, IAR Systems, TASKING, CodeSourcery,

Rowley Associates, GNU C compiler, and the like. As a result, you have much more freedom

in project development. Information on some of the compiler products is presented in

Chapter 22.

ARM also invests in various open source projects to help the open source community to

develop software on ARM platforms. The combined effort of all these parties not only

makes the ARM products better, it also results in more choices of hardware and software

solutions.

The ARM ecosystem also enables better knowledge sharing, which helps developers build

products on ARMmicrocontrollers quicker and more effectively. Aside from the many Internet

resources available, you can also find expert advices on web-based technical forums from

ARM (some links are shown at the end of this chapter), ARM microcontroller vendors, and

others. Microcontroller vendors, distributors, and other training service providers also organize

regular ARM microcontroller training courses. The open nature of the ARM ecosystem also

enables healthy competition. As a result, users are getting high-quality products at competitive

prices.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Introduction 11
Any company that develops ARM products or uses ARM technologies can become an

ARM partner by becoming a member of the ARM Connected Community. The ARM

Connected Community is a global network of companies aligned to provide a complete

solution, from design to manufacture and end use, for products based on the ARM

architecture. ARM offers a variety of resources to Connected Community members,

including promotional programs and peer-networking opportunities that enable a variety

of ARM partners to come together to provide end-to-end customer solutions. Today,

the ARM Connected Community has more than 700 corporate members. Joining the

ARM Connected Community is easy; details are presented on the ARM web site (http://

cc.arm.com).
Getting Started with the Cortex-M0 Processor

The Cortex-M0 is easy to use and is supported by various microcontroller vendors and

development tools vendors. For example, software for the Cortex-M0 processor can be

developed with the ARM Keil Microcontroller Development Kit (MDK, and sometimes

referred as MDK-ARM in ARM/Keil documentation), the ARM RealView Development Suite

(RVDS), various GNU tool chains (e.g., CodeSourcery Gþþ), and a number of other

embedded development packages.

Because the Cortex-M0 processor is extremely C friendly, you can reuse a majority of your

existing C programs. Also, a number of embedded operating systems supports the Cortex-M0

processor, including the RTX kernel from Keil, mC/OS-II/III from Micrimm, embOS from

SEGGER, ThreadX from Express Logic, and mClinux from the open source community. In

addition, the Cortex-M0 can also reuse most of the Thumb assembly code written for the

ARM7TDMI processor.
Organization of This Book and Resources

The contents of this book can be divided into the areas outlined in Table 1.3.
Table 1.3: Organization of This Book

Chapters Descriptions

1 Introduction
2-7 Cortex-M0 processor features, architecture, programmer’s

model, instruction set, and memory map
8-13 Exceptions, interrupt, and various features
14-21 Software development
22 Product information
Appendix Instruction set summary, quick references

Administrator
下划线

http://cc.arm.com
http://cc.arm.com

12 Chapter 1
Apart from this book and documentation from the ARM web site, you can get additional

information from the following sources:

• Documentation from microcontroller vendors

• ARM forum (www.arm.com/forums)

• Keil forum (www.keil.com/forum)

• OnARM website (www.onarm.com)

• ARM Connected Community web page (www.arm.com/community)

• Forums of various microcontroller vendors.

http://www.arm.com/forums
http://www.keil.com/forum
http://www.onarm.com
http://www.arm.com/community

CHAPTER 2

Cortex-M0 Technical Overview

General Information on the Cortex-M0 Processor

The Cortex-M0 processor is a 32-bit Reduced Instruction Set Computing (RISC) processor

with a von Neumann architecture (single bus interface). It uses an instruction set called Thumb,

which was first supported in the ARM7TDMI processor; however, several newer instructions

from the ARMv6 architecture and a few instructions from the Thumb-2 technology are also

included. Thumb-2 technology extended the previous Thumb instruction set to allow all

operations to be carried out in one CPU state. The instruction set in Thumb-2 included both

16-bit and 32-bit instructions; most instructions generated by the C compiler use the 16-bit

instructions, and the 32-bit instructions are used when the 16-bit version cannot carry out the

required operations. This results in high code density and avoids the overhead of switching

between two instruction sets.

In total, the Cortex-M0 processor supports only 56 base instructions, although some

instructions can have more than one form. Although the instruction set is small, the Cortex-

M0 processor is highly capable because the Thumb instruction set is highly optimized.

Academically, the Cortex-M0 processor is classified as load-store architecture, as it has

separate instructions for reading and writing to memory, and instructions for arithmetic or

logical operations that use registers.

A simplified block diagram of the Cortex-M0 is shown in Figure 2.1.

The processor core contains the register banks, ALU, data path, and control logic. It is a three-

stage pipeline design with fetch stage, decode stage, and execution stage. The register bank has

sixteen 32-bit registers. A few registers have special usages.

The Nested Vectored Interrupt Controller (NVIC) accepts up to 32 interrupt request signals and

a nonmaskable interrupt (NMI) input. It contains the functionality required for comparing

priority between interrupt requests and the current priority level so that nested interrupts can be

handled automatically. If an interrupt is accepted, it communicates with the processor so that

the processor can execute the correct interrupt handler.

The Wakeup Interrupt Controller (WIC) is an optional unit. In low-power applications, the

microcontroller can enter standby state with most of the processor powered down. In this

situation, the WIC can perform the function of interrupt masking while the NVIC and the
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10002-3

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

13

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

10.1016/B978-0-12-385477-3.10002-3

Nested
Vector

Interrupt
Controller

(NVIC)

Processor
core

Internal Bus System

Debug
subsystem

Bus Interface

Wakeup
Interrupt

Controller
(WIC)

Interrupt
requests and

NMI

JTAG /
Serial-Wire

Debug
Interface

Connection
to debugger

AHB LITE
bus interface

unit

Memory and
Peripherals

Cortex-M0

Power management interface

Figure 2.1:
Simplified block diagram of the Cortex-M0 processor.

14 Chapter 2
processor core are inactive. When an interrupt request is detected, the WIC informs the power

management to power up the system so that the NVIC and the processor core can then handle

the rest of the interrupt processing.

The debug subsystem contains various functional blocks to handle debug control, program

breakpoints, and data watchpoints. When a debug event occurs, it can put the processor core in

a halted state so that embedded developers can examine the status of the processor at that point.

The JTAG or serial wire interface units provide access to the bus system and debugging

functionalities. The JTAG protocol is a popular five-pin communication protocol commonly

used for testing. The serial wire protocol is a newer communication protocol that only requires

two wires, but it can handle the same debug functionalities as JTAG.

The internal bus system, the data path in the processor core, and the AHB LITE bus interface

are all 32 bits wide. AHB-Lite is an on-chip bus protocol used in many ARM processors. This

bus protocol is part of the Advanced Microcontroller Bus Architecture (AMBA) specification,

a bus architecture developed by ARM that is widely used in the IC design industry.

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Cortex-M0 Technical Overview 15
The ARM Cortex-M0 Processor Features

The ARM Cortex-M0 processor contains many features. Some are visible system features, and

others are not visible to embedded developers.

System Features

• Thumb instruction set. Highly efficient, high code density and able to execute all Thumb

instructions from the ARM7TDMI processor.

• High performance. Up to 0.9 DMIPS/MHz (Dhrystone 2.1) with fast multiplier or

0.85 DMIPS/MHz with smaller multiplier.

• Built-in Nested Vectored Interrupt Controller (NVIC). This makes interrupt configuration

and coding of exception handlers easy. When an interrupt request is taken, the corresponding

interrupt handler is executed automatically without the need to determine the exception

vector in software.

• Interrupts can have four different programmable priority levels. The NVIC automatically

handles nested interrupts.

• Deterministic exception response timing. The design can be set up to respond

to exceptions (e.g., interrupts) with a fixed number of cycles (constant interrupt

latency arrangement) or to respond to the exception as soon as possible (minimum

16 clock cycles).

• Nonmaskable interrupt (NMI) input for safety critical systems.

• Architectural predefined memory map. The memory space of the Cortex-M0 processor

is architecturally predefined to make software porting easier and to allow easier

optimization of chip design. However, the arrangement is very flexible. The memory

space is linear and there is no memory paging required like in a number of other

processor architectures.

• Easy to use and C friendly. There are only two modes (Thread mode and Handler mode).

The whole application, including exception handlers, can be written in C without any

assembler.

• Built-in optional System Tick timer for OS support. A 24-bit timer with a dedicated

exception type is included in the architecture, which the OS can use as a tick timer or

as a general timer in other applications without an OS.

• SuperVisor Call (SVC) instruction with a dedicated SVC exception and PendSV (Pendable

Supervisor service) to support various operations in an embedded OS.

• Architecturally defined sleep modes and instructions to enter sleep. The sleep

features allow power consumption to be reduced dramatically. Defining sleep modes as

an architectural feature makes porting of software easier because sleep is entered by a

specific instruction rather than implementation defined control registers.

• Fault handling exception to catch various sources of errors in the system.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

16 Chapter 2
Implementation Features

• Configurable number of interrupts (1 to 32)

• Fast multiplier (single cycle) or small multiplier (for a smaller chip area and lower power,

32 cycles)

• Little endian or big endian memory support

• Optional Wakeup Interrupt Controller (WIC) to allow the processor to be powered down

during sleep, while still allowing interrupt sources to wake up the system

• Very low gate count, which allows the design to be implemented in mixed signal

semiconductor processes
Debug Features

• Halt mode debug. Allows the processor activity to stop completely so that register values

can be accessed and modified. No overhead in code size and stack memory size.

• CoreSight technology. Allows memories and peripherals to be accessed from the debugger

without halting the processor. It also allows a system-on-chip design with multiple

processors to share a single debug connection.

• Supports JTAG connection and serial wire debug connections. The serial wire debug

protocol can handle the same debug features as the JTAG, but it only requires two wires

and is already supported by a number of debug solutions from various tools vendors.

• Configurable number of hardware breakpoints (from 0 to maximum of 4) and watchpoints

(from 0 to maximum of 2). The chip manufacturer defines this during implementation.

• Breakpoint instruction support for an unlimited number of software breakpoints.

• All debug features can be omitted by chip vendors to allow minimum size implementations.
Others

• Programmer’s model similar to the ARM7TDMI processor. Most existing Thumb code for

the ARM7TDMI processor can be reused. This also makes it easy for ARM7TDMI users,

as there is no need to learn a new instruction set.

• Compatible with the Cortex-M1 processor. This allows users of the Cortex-M1 processor

to migrate their FPGA designs to an ASICs easily.

• Forward compatibility with the ARM Cortex-M3 and Cortex-M4 processors. All instruc-

tions supported in the Cortex-M0 processor are supported on the Cortex-M3 processor,

which allows an easy upgrade path.

• Easy porting from the ARM Cortex-M3/M4. Because of the similarities between the

architectures, many C applications for the Cortex-M3/M4 can be ported to the Cortex-

M0 processor easily. This is great news for middleware vendors and embedded OS

vendors, as it is straightforward to port their existing software products for Cortex-M3

microcontrollers to Cortex-M0 microcontrollers.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Cortex-M0 Technical Overview 17
• Supported by various development suites including the ARM Keil Microcontroller

Development Kit (MDK), the ARM RealView Development Suite (RVDS), the IAR C

compiler, and the open source GNU C compiler, including tool chains based on gcc

(e.g., CodeSourcery Gþþ development suite).

• Support of various embedded operating systems (OSs). A number of OS for the Cortex-

M0 processor are available, including some free OSs. For example, the Keil MDK

toolkit includes a free embedded OS called the RTX kernel. Examples of using the RTX

are covered in Chapter 18.
Advantages of the Cortex-M0 Processor

With all these features on the Cortex-M0 processor, what does it really mean for an embedded

developer? And why should embedded developers moved from 8-bit and 16-bit architectures?

Energy Efficiency

The most significant benefit of the Cortex-M0 processor over other 8-bit and 16-bit processors

is its energy efficiency. The Cortex-M0 processor is about the same size as a typical 16-bit

processor and possibly several times bigger than some of the 8-bit processors. However, it has

much better performance than 16-bit and 8-bit architectures. As a result, you can put the

processor into sleep mode for the majority of the time to reduce power to a minimum, yet you

will still be able to get the processing task done.

For comparison, the DMIPS figures of some popular architectures are shown in Figure 2.2 and

Table 2.1.

Note: You might wonder why the Dhrystone 2.1 is used for comparison while there are other

well-established benchmarks like the EEMBC. However, the EEMBC has restrictions on the

use of its benchmark results and therefore cannot be openly published.
0
0.2
0.4
0.6
0.8

1

Orig
ina

l 8
05

1
PIC

18

Fas
tes

t 8
05

1

H8S
/30

0H

HCS12

MSP43
0

H8S
/26

00
S12

X
PIC

24

Cort
ex

-M
0

DMIPS/MHz

Figure 2.2:
Dhrystone comparison.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Table 2.1: Dhrystone Performance Data Based on Information Available on

the Internet

Architecture Estimated DMIPS/MHz with Dhrystone 2.1

Original 80C51 0.0094
PIC18 0.01966
Fastest 8051 0.113
H8S/300H 0.16
HCS12 0.19
MSP430 0.288
H8S/2600 0.303
S12X 0.34
PIC24 0.445
Cortex-M0 0.896 (if a small multiplier is used, the performance is 0.85)

18 Chapter 2
As you can see, the Cortex-M0 processor is significantly faster than all popular 16-bit

microcontrollers and eight times faster than the fastest 8051 implementation. This advantage

can be used in conjunction with the sleep mode feature in the Cortex-M0 processor so that an

embedded system can stay in low-power mode more often to reduce the average power

consumption without losing performance. For example, Figure 2.3 illustrates that in an

interrupt-driven application, the Cortex-M0 processor can have much lower average power

consumption compared to 8-bit and 16-bit microcontrollers.

Although some 8-bit microcontrollers having a very low gate count, which can reduce

the sleep mode current consumption, the average current consumed by the processor can be

much larger than that for the Cortex-M0. The comparison is even more significant at the

chip level, when including the power consumption of the memory system and the peripherals.
Current

Time
Average current for

Cortex-M0
Average current for

16-bit processor
Average current for

8-bit processor

Interrupt events

Processor current on different processors executing the same interrupt task

Interrupt events Interrupt events

Figure 2.3:
The Cortex-M0 provides better energy saving at the same processing performance.

Administrator
高亮

Administrator
高亮

Current

Time
Average current for

Cortex-M0
Average current for

16-bit processor
Average current for

8-bit processor

Interrupt events

Microcontroller current on different architectures executing the same interrupt task

Interrupt events Interrupt events

Figure 2.4:
At the chip level, the duty cycle of processor activity becomes more significant.

Cortex-M0 Technical Overview 19
In a microcontroller design, the processor core only takes a small amount of the chip area,

whereas a large portion of the power is consumed by other parts of the chip. As a result, the

duty cycle (portion of time where the processor is active) dominates the power calculation at

chip component level, as shown in Figure 2.4.

When running other applications that are not interrupt driven, the clock frequency for the

Cortex-M0 processor can be reduced significantly, compared to 8-bit/16-bit processors, to

lower the power consumption. Even if an 8-bit or 16-bit microcontroller has a lower operating

current than the Cortex-M0 at the same clock frequency, you can still achieve lower power

consumption on the Cortex-M0 by reducing the clock speed without losing the performance

level compared to 8-bit/16-bit solutions (Figure 2.5).

Although other 32-bit microcontrollers are available that some of them have a higher

performance than the Cortex-M0, their processor sizes are a number of times larger than the

Cortex-M0 processor. As a result, the average power consumptions of these microcontrollers

are higher than the Cortex-M0 microcontrollers.
Limitations in 8-Bit and 16-Bit Architectures

Another important reason to use the 32-bit Cortex-M0 processor rather than the traditional

16-bit or 8-bit architectures is that it does not have many architectural limitations found in

these architectures.

The first obvious limitation of 8-bit and 16-bit architectures is memory size. Whereas program

size and data RAM size can directly limit the capability of an embedded product, other less

obvious limitations like stack memory size (e.g., 8051 stack is located in the internal RAM,

which is limited to 256 bytes, including the register bank space) can also affect what you can

Administrator
下划线

Administrator
高亮

Administrator
下划线

Frequency

Frequency

Performance

Required
performance

Cortex-M0

16-bit
processor

8-bit
processor

Microcontroller
power

consumption Cortex-M0

16-bit processor

8-bit processor

Average current for Cortex-M0

Average current for 16-bit processor

Average current for 8-bit processor

Figure 2.5:
The Cortex-M0 can provide lower power consumption by running at lower clock frequencies.

20 Chapter 2
develop. With the ARM architecture, the memory space is much larger and the stack is located

in system memory, making it much more flexible.

Many 8-bit and 16-bit microcontrollers allow access to a larger memory range by dividing

memory space into memory pages. By doing so, development of software can become difficult

because accessing addresses in a different memory page is not straightforward. It also increases

code size and reduces performance because of the overhead in switching memory pages. For

example, a processing task with a program size larger than one memory page might need page-

switching code to be inserted within it, or it might need to be partitioned into multiple parts.

ARM microcontrollers use 32-bit linear addresses and do not require memory paging; there-

fore, they are easier to use and provide better efficiency.

Another limitation of 8-bit microcontroller architectures can be the limitations of their

instruction sets. For example, 8051 heavily relies on the accumulator register to handle data

processing and memory transfers. This increases the code size because you need to keep

transferring data into the accumulator and taking it out before and after operations. For

instance, when processing integer multiplications on an 8051, a lot of data transfer is required

to move data in and out of the ACC (Accumulator) register and B register.

Administrator
下划线

Administrator
下划线

Cortex-M0 Technical Overview 21
Addressing modes account for another factor that limits performance in many 8-bit and 16-bit

microcontrollers. A number of addressing modes are available in the Cortex-M0, allowing

better code density and making it easier to use.

The instruction set limitations on 8-bit and 16-bit architectures not only reduce the

performance of the embedded system, but they also increase code size and hence increase

power consumption, as a larger program memory is required.

Easy to Use, Software Portability

When compared to other processors, including many 32-bit processors, the ARM Cortex

microcontrollers are much easier to use. All the software code for the ARM Cortex micro-

controllers can be written in C, allowing shorter software development time as well as

improving software portability. Even if a software developer decided to use assembly code, the

instruction set is fairly easy to understand. Furthermore, because the programmer’s model is

similar to ARM7TDMI, those who are already familiar with ARM processors will quickly

become familiar with the Cortex microcontrollers.

The architecture of the Cortex-M0 also allows an embedded OS to be implemented efficiently.

In complex applications, use of an embedded OS can make it easier to handle parallel tasks.

Wide Range of Choices

Because ARM operates as an intellectual property (IP) supplier, and ARM processors are

adopted by most of the microcontroller vendors, you can easily find the right ARM micro-

controller for your application. Also, you do not need to change your development tools if you

change the target microcontroller between different vendors.

Apart from the hardware, you can also find a wide range of choices of embedded OS, code

libraries, development tools, and other resources. This ecosystem allows you to focus on

product development and get your product ready faster.

Low-Power Applications

One of the key targets of the Cortex-M0 processor is low power. The result is that the processor

consumes only 12mW/MHz with a 65nm semiconductor process or 85mW/MHz with a 180nm

semiconductor process. This is very low power consumption for a 32-bit processor. How was

this target achieved?

ARM put a lot of effort into various areas to ensure the Cortex-M0 processor could reach its

low power-consumption target. These areas included the following:

• Small gate count

• High efficiency

Administrator
下划线

Administrator
高亮

Administrator
下划线

22 Chapter 2
• Low-power features (sleep modes)

• Logic cell enhancement

Let us take a look at these areas one by one.

Small Gate Count

The Cortex-M0 processor’s small gate count characteristic directly reduces the active current and

leakage current of the processor. During the development of the Cortex-M0 processor, various

design techniques and optimizations were used to make the circuit size as small as possible. Each

part of the designwas carefully developed and reviewed to ensure that the circuit size is small (it is

a bit likewriting an applicationprogram in assembly to achieve the best optimization). This allows

the gate count to be 12k gates at minimum configuration. Typically, the gate count could be 17k

to 25k gates when including more features. This is about the same size or smaller than typical

16-bit microprocessors, with more than double the system performance.

High Efficiency

By having a highly efficient architecture, embedded system designers can develop their

product so that it has a lower clock frequency while still being able to provide the required

performance, reducing the active current of the product. With a performance of 0.9DMIPS/

MHz, despite not being very high compared with some modern 32-bit processors, the

Dhrystone benchmark result of Cortex-M0 is still higher than the older generation of 32-bit

desktop processors like the 80486DX2 (0.81DMIPS/MHz), and it is a lot smaller. The high

efficiency of the Cortex-M0 processor is mostly due to the efficiency of the Thumb instruction

set, as well as highly optimized hardware implementation.

Low-Power Features

The Cortex-M0 processors have a number of low-power features that allow embedded

product developers to reduce the product’s power consumption. First, the processor provides

two sleep modes and they can be entered easily with “Wait-for-Interrupt” (WFI) or “Wait-

for-Event” (WFE) instructions. The power management unit on the chip can use the sleep

status of the processor to reduce the power consumption of the system. The Cortex-M0

processor also provides a “Sleep-on-Exit” feature, which causes the processor to run only

when an interrupt service is required. In addition, the Cortex-M0 processor has been

carefully developed so that some parts of the processor, like the debug system, can be

switched off when not required.

Apart from these normal sleep features, the Cortex-M0 processor also supports a unique

feature called the Wakeup Interrupt Controller (WIC). This allows the processor to be powered

down while still allowing interrupt events to power up the system and resume operation almost

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Cortex-M0 Technical Overview 23
instantaneously when required. This greatly reduces the leakage current (static power

consumption) of the system during sleep.
Logic Cell Enhancement

In recent years, there have been enhancements in logic cell designs. Apart from pushing logic

gate designs to smaller transistor sizes, the Physical IP (intellectual property) division in ARM

has also been working hard to find innovative ways to reduce power consumption in embedded

systems. One of the major developments is the introduction of the Ultra Low Leakage (ULL)

logic cell library. The first ULL cell library has been developed with a 0.18um process. Apart

from reducing the leakage current, the new cell library also supports special state retention

cells that can hold state information while the rest of the system is powered down. ARM also

works with leading EDA tools vendors to allow chip vendors to make use of these new

technologies in their chip designs.
Cortex-M0 Software Portability

The Cortex-M0 is the third processor released from the Cortex-M family. The Cortex-M

processors are developed to target microcontroller products and other products that require

a processor architecture that is easy to use and has flexible interrupt support. The first Cortex-M

processor released was the Cortex-M3 processor, a high-performance processor with many

advanced features. The second processor released was the Cortex-M1, a processor developed for

FPGA applications. Despite being developed for different types of applications, they all have

a consistent architecture, similar programmer’s models, and use a compatible instruction set.

Both Cortex-M0 and Cortex-M1 processors are based on the ARMv6-M architecture. Therefore,

they have exactly the same instruction set and programmer’s model. However, they have

different physical characteristics like instruction timing and have different system features.

The Cortex-M3 processor is based on the ARMv7-M architecture, and its Thumb-2 instruction

set is a superset of the instruction set used in ARMv6-M. The programmer’s model is also

similar to ARMv6-M. As a result, software developed for the Cortex-M0 can run on the

Cortex-M3 processor without changes (Figure 2.6).

The similarity between the Cortex-M processors provides various benefits. First, it provides

better software portability. In most cases, C programs can be transferred between these

processors without changes. And binary images from Cortex-M0 or Cortex-M1 processors can

run on a Cortex-M3 processor because of its upward compatibility.

The second benefit is that the similarities between Cortex-M processors allow development

tool chains to support multiple processors easily. Apart from similarities on the instruction set

and programmer’s model, the debug architecture is also similar.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Cortex-M1
(FPGA optimized)

Cortex-M3
(High performance, low
power microcontroller)

Cortex-M0
(Ultra low power

processor for
microcontrollers and
mixed signal SoC)

ARMv6-M
Architecture

ARMv7-M
Architecture

FPGA
prototyping

ASIC
migration

Upward
compatible

Figure 2.6:
Cortex-M0 compatibility.

24 Chapter 2
The consistency of instruction set and programmer’s model also make it easier for embedded

programmers to migrate between different products and projects without facing a sharp

learning curve.

Administrator
下划线

Administrator
下划线

CHAPTER 3

Architecture

Overview

The ARMv6-M architecture that the Cortex-M0 processor implemented covers a number of

different areas. The complete details of the ARMv6-M architecture are documented in the

ARMv6-M Architecture Reference Manual [reference 3]. This document is available from the

ARM web site via a registration process. However, you do not have to know the complete

details of the architecture to start using a Cortex-M0 microcontroller. To use a Cortex-M0

device with C language, you only need to know the memory map, the peripheral programming

information, the exception handling mechanism, and part of the programmer’s model.

In this chapter, we will cover the programmer’s model and a basic overview of the memory

map and exceptions. Most users of the Cortex-M0 processor will work in C language; as

a result, the underlying programmer’s model will not be visible in the program code. However,

it is still useful to know about the details, as this information is often needed during debugging

and it will also help readers to understand the rest of this book.

Programmer’s Model

Operation Modes and States

The Cortex-M0 processor has two operation modes and two states (Figure 3.1).
Debug State
(The processor stop

executing instruction)

Thumb State

possible when debugger is
connected.

Normal operation – the processor is
running Thumb/Thumb-2 instructions

Thread Mode
Executing normal

code

Handler Mode
Executing exception

handler

Exception
request

Exception
return

Debug
activities

Start
Debug operation – Only

Figure 3.1:
Processor modes and states in the Cortex-M0 processor.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10003-5

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

25

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

10.1016/B978-0-12-385477-3.10003-5

26 Chapter 3
When the processor is running a program, it is in the Thumb state. In this state, it can be either

in the Thread mode or the Handler mode. In the ARMv6-M architecture, the programmer’s

model of Thread mode and Handler mode are almost completely the same. The only difference

is that Thread mode can use a shadowed stack pointer (Figure 3.7, presented later in the

chapter) by configuring a special register called CONTROL. Details of stack pointer selection

are covered later in this chapter.

TheDebug state is used for debugging operation only. Halting the processor stops the instruction

execution and enter debug state. This state allows the debugger to access or change the processor

register values. The debugger can access system memory locations in either the Thumb state or

the Debug state.

When the processor is powered up, it will be running in the Thumb state and Thread mode by

default.

Registers and Special Registers

To perform data processing and controls, a number of registers are required inside the processor

core. If data from memory are to be processed, they have to be loaded from the memory to

a register in the register bank, processed inside the processor, and then written back to the

memory if needed. This is commonly called a “load-store architecture.” By having a sufficient

number of registers in the register bank, this mechanism is easy to use and is C friendly. It is easy

for C compilers to compile a C program into machine code with good performance. By using

internal registers for short-term data storage, the amount of memory accesses can be reduced.

The Cortex-M0 processor provides a register bank of 13 general-purpose 32-bit registers and

a number of special registers (Figure 3.2).

The register bank contains sixteen 32-bit registers. Most of them are general-purpose registers,

but some have special uses. The detailed descriptions for these registers are as follows.

R0eR12

Registers R0 to R12 are for general uses. Because of the limited space in the 16-bit Thumb

instructions, many of the Thumb instructions can only access R0 to R7, which are also called

the low registers, whereas some instructions, like MOV (move), can be used on all registers.

When using these registers with ARM development tools such as the ARM assembler, you can

use either uppercase (e.g., R0) or lowercase (e.g., r0) to specify the register to be used. The

initial values of R0 to R12 at reset are undefined.

R13, Stack Pointer (SP)

R13 is the stack pointer. It is used for accessing the stack memory via PUSH and POP

operations. There are physically two different stack pointers in Cortex-M0. The main stack

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Register bank

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (banked)
R14
R15

General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register

Link Register (LR)
Program Counter (PC)

Stack Pointer (SP)

Low Registers

High Registers

Special Registers

Program Status RegistersxPSR

MSP
PSP

Main Stack Pointer
Processs Stack Pointer

CONTROL

PRIMASK

Stack definition

Interrupt Mask Register

APSR EPSR IPSR
Application

PSR
Execution

PSR
Interrupt

PSR

Figure 3.2:
Registers in the Cortex-M0 processor.

Architecture 27
pointer (MSP, or SP_main in ARM documentation) is the default stack pointer after reset, and

it is used when running exception handlers. The process stack pointer (PSP, or SP_process in

ARM documentation) can only be used in Thread mode (when not handling exceptions). The

stack pointer selection is determined by the CONTROL register, one of the special registers

that will be introduced later.

When using ARM development tools, you can access the stack pointer using either “R13” or

“SP.” Both uppercase and lowercase (e.g., “r13” or “sp”) can be used. Only one of the stack

pointers is visible at a given time. However, you can access to the MSP or PSP directly

when using the special register access instructions MRS and MSR. In such cases, the register

names “MSP” or “PSP” should be used.

The lowest two bits of the stack pointers are always zero, and writes to these two bits are

ignored. In ARM processors, PUSH and POP are always 32-bit accesses because the registers

are 32-bit, and the transfers in stack operations must be aligned to a 32-bit word boundary. The

initial value of MSP is loaded from the first 32-bit word of the vector table from the program

memory during the startup sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on the

MSP. The PSP is normally used in designs with an OS, where the stack memory for OS Kernel

and the thread level application code must be separated.

Administrator
下划线

Administrator
高亮

Administrator
高亮

28 Chapter 3
R14, Link Register (LR)

R14 is the Link Register. The Link Register is used for storing the return address of a subroutine

or function call. At the end of the subroutine or function, the return address stored in LR is loaded

into the program counter so that the execution of the calling program can be resumed. In the case

where an exception occurs, the LR also provides a special code value, which is used by the

exception return mechanism. When using ARM development tools, you can access to the Link

Register using either “R14” or “LR.” Both upper and lowercase (e.g., “r14” or “lr”) can be used.

Although the return address in the Cortex-M0 processor is always an even address (bit[0] is

zero because the smallest instructions are 16-bit and must be half-word aligned), bit zero of LR

is readable and writeable. In the ARMv6-M architecture, some instructions require bit zero

of a function address set to 1 to indicate Thumb state.
R15, Program Counter (PC)

R15 is the Program Counter. It is readable and writeable. A read returns the current instruction

address plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause

a branch to take place (but unlike a function call, the Link Register does not get updated).

In the ARM assembler, you can access the Program Counter, using either “R15” or “PC,” in

either upper or lower case (e.g., “r15” or “pc”). Instruction addresses in theCortex-M0 processor

must be aligned to half-word address,whichmeans the actual bit zero of the PC should be zero all

the time. However, when attempting to carry out a branch using the branch instructions (BX

or BLX), the LSB of the PC should be set to 1.2 This is to indicate that the branch target is

a Thumb program region. Otherwise, it can imply trying to switch the processor to ARM state

(depending on the instruction used), which is not supported and will cause a fault exception.
xPSR, combined Program Status Register

The combined Program Status Register provides information about program execution and the

ALU flags. It is consists of the following three Program Status Registers (PSRs) (Figure 3.3):

• Application PSR (APSR)

• Interrupt PSR (IPSR)

• Execution PSR (EPSR)

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow flag),

and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use of these

flags is to control conditional branches.
2 Not required when a move (MOV) or add (ADD) instruction is used to modify the program counter.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

N Z C V Reserved

031 28 24 16 8

APSR

T

ISR Number

02413 16 8

IPSR

5

Reserved

04213 16 8

EPSR Reserved Reserved

bitbit

Figure 3.3:
APSR, IPSR, and EPSR.

Architecture 29
The IPSR contains the current executing interrupt service routine (ISR) number. Each

exception on the Cortex-M0 processor has a unique associated ISR number (exception type).

This is useful for identifying the current interrupt type during debugging and allows an

exception handler that is shared by several exceptions to know what exception it is serving.

The EPSR on the Cortex-M0 processor contains the T-bit, which indicates that the processor is

in the Thumb state. On the Cortex-M0 processor, this bit is normally set to 1 because the

Cortex-M0 only supports the Thumb state. If this bit is cleared, a hard fault exception will be

generated in the next instruction execution.

These three registers can be accessed as one register called xPSR (Figure 3.4). For example,

when an interrupt takes place, the xPSR is one of the registers that is stored onto the stack

memory automatically and is restored automatically after returning from an exception. During

the stack store and restore, the xPSR is treated as one register.
N Z C V Reserved

031 28 24 16 8

xPSR T ISR Number

5

Reserved

bitbit

Figure 3.4:
xPSR.
Direct access to the Program Status Registers is only possible through special register access

instructions. However, the value of the APSR can affect conditional branches and the carry flag

in the APSR can also be used in some data processing instructions.

Behaviors of the Application Program Status Register (APSR)

Data processing instructions can affect destination registers as well as the APSR, which is

commonly known as ALU status flags in other processor architectures. The APSR is essential

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

30 Chapter 3
for controlling conditional branches. In addition, one of the APSR flags, the C (Carry) bit, can

also be used in add and subtract operations.

There are four APSR flags in the Cortex-M0 processor, and they are identified in Table 3.1.
Table 3.1: ALU Flags on the Cortex-M0 Processor

Flag Descriptions

N (bit 31) Set to bit [31] of the result of the executed instruction. When it is “1”, the result has a negative
value (when interpreted as a signed integer). When it is “0”, the result has a positive value or
equal zero.

Z (bit 30) Set to “1” if the result of the executed instruction is zero. It can also be set to “1” after
a compare instruction is executed if the two values are the same.

C (bit 29) Carry flag of the result. For unsigned addition, this bit is set to “1” if an unsigned overflow
occurred. For unsigned subtract operations, this bit is the inverse of the borrow output
status.

V (bit 28) Overflow of the result. For signed addition or subtraction, this bit is set to “1” if a signed
overflow occurred.
A few examples of the ALU flag results are shown in Table 3.2.
Table 3.2: ALU Flags Example

Operation Results, Flags

0x70000000 þ 0x70000000 Result ¼ 0xE0000000, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 1
0x90000000 þ 0x90000000 Result ¼ 0x30000000, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 1
0x80000000 þ 0x80000000 Result ¼ 0x00000000, N ¼ 0, Z ¼ 1, C ¼ 1, V ¼ 1
0x00001234 � 0x00001000 Result ¼ 0x00000234, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x00000004 � 0x00000005 Result ¼ 0xFFFFFFFF, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 0
0xFFFFFFFF � 0xFFFFFFFC Result ¼ 0x00000003, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x80000005 � 0x80000004 Result ¼ 0x00000001, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x70000000 � 0xF0000000 Result ¼ 0x80000000, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 1
0xA0000000 � 0xA0000000 Result ¼ 0x00000000, N ¼ 0, Z ¼ 1, C ¼ 1, V ¼ 0
In the Cortex-M0, almost all of the data processing instructions modify the APSR; however,

some of these instructions do not update the V flag or the C flag. For example, the MULS

(multiply) instruction only changes the N flag and the Z flag.

The ALU flags can be used for handling data that is larger than 32 bits. For example, we can

perform a 64-bit addition by splitting the operation into two 32-bit additions. The pseudo form

of the operation can be written as follows:
// Calculating Z ¼ X þ Y, where X, Y and Z are all 64-bit
Z[31:0] ¼ X[31:0] þ Z[31:0]; // Calculate lower word addition, carry flag get updated
Z[63:32] ¼ X[63:32] þ Z[63:32] þ Carry; // Calculate upper word addition
An example of carry out such 64-bit add operation in assembly code can be found in Chapter 6.

Administrator
下划线

Administrator
下划线

031

Reserved

PRIMASK

1

PRIMASK

bitbit

Figure 3.5:
PRIMASK.

Architecture 31
The other common usage of APSR flag is to control branching. This topic is addressed in

Chapter 4, where the details of the condition branch instruction will be covered.

PRIMASK: Interrupt Mask Special Register

The PRIMASK register is a 1-bit-wide interrupt mask register (Figure 3.5). When set, it blocks

all interrupts apart from the nonmaskable interrupt (NMI) and the hard fault exception.

Effectively it raises the current interrupt priority level to 0, which is the highest value for

a programmable exception.

The PRIMASK register can be accessed using special register access instructions (MSR, MRS)

as well as using an instruction called the Change Processor State (CPS). This is commonly used

for handling time-critical routines.

CONTROL: Special Register

As mentioned earlier, there are two stack pointers in the Cortex-M0 processor. The stack

pointer selection is determined by the processor mode as well as the configuration of the

CONTROL register (Figure 3.6).

After reset, the main stack pointer (MSP) is used, but can be switched to the process stack

pointer (PSP) in Thread mode (when not running an exception handler) by setting bit [1] in the

CONTROL register (Figure 3.7). During running of an exception handler (when the processor
031

Reserved

Stack definition

1

CONTROL

Reserved

bit bit

Figure 3.6:
CONTROL.

Thumb State

Thread Mode

Executing normal code

Exception
request

Exception
return

Start
CONTROL[1] = 0 CONTROL[1] = 1

Handler Mode

Executing exception handler

CONTROL[1] = 0
MSP selected

MSP selected PSP selected

Figure 3.7:
Stack pointer selection.

32 Chapter 3
is in Handler mode), only the MSP is used, and the CONTROL register reads as zero. The

CONTROL register can only be changed in Thread mode or via the exception entrance and

return mechanism.

Bit 0 of the CONTROL register is reserved to maintain compatibility with the Cortex-M3

processor. In the Cortex-M3 processor, bit 0 can be used to switch the processor to User mode

(non-privileged mode). This feature is not available in the Cortex-M0 processor.
Memory System Overview

The Cortex-M0 processor has 4 GB of memory address space (Figure 3.8). The memory space

is architecturally defined as a number of regions, with each region having a recommended

usage to help software porting between different devices.

The Cortex-M0 processor contains a number of built-in components like the NVIC and

a number of debug components. These are in fixed memory locations within the system region

of the memory map. As a result, all the devices based on the Cortex-M0 have the same

programming model for interrupt control and debug. This makes it convenient for software

porting and helps debug tool vendors to develop debug solutions for the Cortex-M0 based

microcontroller or system-on-chip (SoC) products.

In most cases, the memories connected to the Cortex-M0 are 32-bits, but it is also possible to

connect memory of different data widths to the Cortex-M0 processor with suitable memory

interface hardware. The Cortex-M0 memory system supports memory transfers of different

sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The Cortex-M0 design can be

Administrator
下划线

Administrator
下划线

CODE

SRAM

External RAM

External Device

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

System

0xA0000000

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Mainly used for program
code. Also used for exception
vector table

Mainly used for data memory
(e.g. static RAM.)

Mainly used for peripherals.

Mainly used for external
memory.

Mainly used for external
peripherals.

Private peripherals including
built-in interrupt controller
(NVIC) and debug
components

Private
Peripheral Bus

(PPB)

0xE0000000

0xE00FFFFF

System Control
Space (SCS)

0xE000E000

0xE000EFFF

0.5GB

0.5GB

0.5GB

1GB

1GB

Private Peripheral Bus

Figure 3.8:
Memory map.

Architecture 33
configured to support either little endian or big endian memory systems, but it cannot switch

from one to another in an implemented design.

Because the memory system and peripherals connected to the Cortex-M0 are developed by

microcontroller vendors or system-on-chip (SoC) designers, different memory sizes and

memory types can be found in different Cortex-M0 based products.

Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as

temporary data storage that behaves as a first-in, last-out buffer. One of the essential elements

of stack memory operation is a register called the stack pointer. The stack pointer is adjusted

automatically each time a stack operation is carried out. In the Cortex-M0 processor, the stack

pointer is register R13 in the register bank. Physically there are two stack pointers in the

Cortex-M0 processor, but only one of them is used at one time, depending on the current value

of the CONTROL register and the state of the processor (see Figure 3.7).

In common terms, storing data to the stack is called pushing (using the PUSH instruction) and

restoring data from the stack is called popping (using the POP instruction). Depending on

processor architecture, some processors perform storing of new data to stack memory using

incremental address indexing and some use decrement address indexing. In the Cortex-M0

processor, the stack operation is based on a “full-descending” stack model. This means the

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Data Processing
(Original register

contents destroyed)

SP

Memory

1234

Register
contents

PUSH operation

Memory

POP operation

1234
Register

contents restored

Stack PUSH operation to back up
register contents

Stack POP operation to restore
register contents

SP

Memory

1234

SP

Stack pointer
decremented

Stack pointer
incremented

1234

Address

Figure 3.9:
Stack PUSH and POP in the Cortex-M0 processor.

34 Chapter 3
stack pointer always points to the last filled data in the stack memory, and the stack pointer

predecrements for each new data store (PUSH) (Figure 3.9).

PUSH and POP are commonly used at the beginning and end of a function or subroutine. At the

beginning of a function, the current contents of the registers used by the calling program are

stored onto the stack memory using a PUSH operation, and at the end of the function, the data

on the stack memory is restored to the registers using a POP operation. Typically, each register

PUSH operation should have a corresponding register POP operation, otherwise the stack

pointer will not be able to restore registers to their original values. This can result in

unpredictable behavior, for example, stack overflow.

The minimum data size to be transferred for each push and pop operations is one word (32-bit),

and multiple registers can be pushed or popped in one instruction. The stack memory accesses

in the Cortex-M0 processor are designed to be always word aligned (address values must be

a multiple of 4, for example, 0x0, 0x4, 0x8, etc.), as this gives the best efficiency for minimum

design complexity. For this reason, bits [1:0] of both stack pointers in the Cortex-M0 processor

are hardwired to zeros and read as zeros.

The stack pointer can be accessed as either R13 or SP. Depending on the processor state and

the CONTROL register value, the stack pointer accessed can either be the main stack pointer

(MSP) or the process stack pointer (PSP). In many simple applications, only one stack pointer

is needed and by default the main stack pointer (MSP) is used. The process stack pointer

(PSP) is usually only required when an operating system (OS) is used in the embedded

application (Table 3.3).

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Table 3.3: Stack Pointer Usage Definition

Processor State CONTROL[1] [0 (Default Setting) CONTROL[1] [1 (OS Has Started)

Thread mode Use MSP (R13 is MSP) Use PSP (R13 is PSP)
Handler mode Use MSP (R13 is MSP) Use MSP (R13 is MSP)

Architecture 35
In a typical embedded application with an OS, the OS kernel uses the MSP and the application

processes use the PSP. This allows the stack for the kernel to be separate from stack memory

for the application processes. This allows the OS to carry out context switching quickly

(switching from execution of one application process to another). Even though the OS kernel

only uses the MSP as its stack pointer, it can still access the value in PSP by using special

register access instructions (MRS and MSR).

Because the stack grows downward (full-descending), it is common for the initial value of the

stack pointer to be set to the upper boundary of SRAM. For example, if the SRAM memory

range is from 0x20000000 to 0x20007FFF, we can start the stack pointer at 0x20008000. In this

case, the first stack PUSH will take place at address 0x20007FFC, the top word of the SRAM.

The initial value of MSP is stored at the beginning of the program memory. Here we will find

the exception vector table, which is introduced in the next section. The initial value of PSP is

undefined, and therefore the PSP must be initialized by software before using it.

Exceptions and Interrupts

Exceptions are events that cause change to program control: instead of continuing program

execution, the processor suspends the current executing task and executes a part of the program

code called the exception handler. After the exception handler is completed, it will then resume

the normal program execution. There are various types of exceptions, and interrupts are

a subset of exceptions. The Cortex-M0 processor supports up to 32 external interrupts

(commonly referred as IRQs) and an additional special interrupt called the nonmaskable

interrupt (NMI). The exception handlers for interrupt events are commonly known as interrupt

service routines (ISRs). Interrupts are usually generated by on-chip peripherals, or by external

input through I/O ports. The number of available interrupts on the Cortex-M0 processor

depends on the microcontroller product you use. In systems with more peripherals, it is

possible for multiple interrupt sources to share one interrupt connection.

Besides the NMI and IRQ, there are a number of system exceptions in the Cortex-M0

processor, primarily for OS use and fault handling (Table 3.4).

Each exception has an exception number. This number is reflected in various registers

including the IPSR and is used to define the exception vector addresses. Note that exception

numbers are separated from interrupt numbers used in device driver libraries. In most device

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Table 3.4: Exception Types

Exception Type Exception Number Description

Reset 1 Power on reset or system reset.
NMI 2 Nonmaskable interruptdhighest priority exception that cannot be

disabled. For safety critical events.
Hard fault 3 For fault handlingdactivated when a system error is detected.
SVCall 11 Supervisor calldactivated when SVC instruction is executed.

Primarily for OS applications.
PendSV 14 Pendable service (system) calldactivated by writing to an interrupt

control and status register. Primarily for OS applications.
SysTick 15 System Tick Timer exceptiondtypically used by an OS for a regular

system tick exception. The system tick timer (SysTick) is an
optional timer unit inside the Cortex-M0 processor.

IRQ0 to IRQ31 16 - 47 Interruptsdcan be from external sources or from on-chip peripherals.

36 Chapter 3
driver libraries, system exceptions are defined using negative numbers, and interrupts are

defined as positive numbers from 0 to 31.

Reset is a special type of exception. When the Cortex-M0 processor exits from a reset, it

executes the reset handler in Thread mode (no need to return from handler to thread). Also, the

exception number of 1 is not visible in the IPSR.

Apart from NMI, hard fault, and reset, all other exceptions have a programmable priority level.

The priority level for NMI and hard fault are fixed and both have a higher priority than the rest

of the exceptions. More details will be covered in Chapter 8.

Nested Vectored Interrupt Controller (NVIC)

To prioritize the interrupt requests and handle other exceptions, the Cortex-M0 processor has

a built-in interrupt controller called the Nested Vectored Interrupt Controller (NVIC). The

interrupt management function is controlled by a number of programmable registers in the

NVIC. These registers are memory mapped, with the addresses located within the System

Control Space (SCS) as illustrated in Figure 3.8.

The NVIC supports a number of features:

• Flexible interrupt management

• Nested interrupt support

• Vectored exception entry

• Interrupt masking
Flexible Interrupt Management

In the Cortex-M0 processor, each external interrupt can be enabled or disabled and can

have its pending status set or clear by software. It can also accept exception requests at

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Architecture 37
signal level (interrupt request from a peripheral remain asserted until the interrupt service

routine clears the interrupt request), as well as an exception request pulse (minimum

1 clock cycle). This allows the interrupt controller to be used with any interrupt source.

Nested Interrupt Support

In the Cortex-M0 processor, each exception has a priority level. The priority level can

be fixed or programmable. When an exception occurs, such as an external interrupt, the

NVIC will compare the priority of this exception to the current level. If the new excep-

tion has a higher priority, the current running task will be suspended. Some of the regis-

ters will be stored on to the stack memory, and the processor will start executing the

exception handler of the new exception. This process is called “preemption.” When

the higher priority exception handler is complete, it is terminated with an exception

return operation and the processor automatically restores the registers from the stack

and resumes the task that was running previously. This mechanism allows nesting of

exception services without any software overhead.

Vectored Exception Entry

When an exception occurs, the processor will need to locate the starting point of the

corresponding exception handler. Traditionally, in ARM processors such as the

ARM7TDMI, software usually handles this step. The Cortex-M0 automatically

locates the starting point of the exception handler from a vector table in the memory.

As a result, the delay from the start of the exception to the execution of the exception

handlers is reduced.

Interrupt Masking

The NVIC in the Cortex-M0 processor provides an interrupt masking feature via the

PRIMASK special register. This can disable all exceptions except hard fault and

NMI. This masking is useful for operations that should not be interrupted such as

time critical control tasks or real-time multimedia codecs.
The above NVIC features help makes the Cortex-M0 processor easier to use, provides better

response times, and reduces program code size by managing the exceptions in the NVIC

hardware.
System Control Block (SCB)

Apart from the NVIC, the System Control Space (SCS) also contains a number of other

registers for system management. This is called the System Control Block (SCB). It contains

registers for sleep mode features and system exception configurations, as well as a register

containing the processor identification code (which can be used by in circuit debuggers for

detection of the processor type).

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

38 Chapter 3
Debug System

Although it is currently the smallest processor in the ARM processor family, the Cortex-M0

processor supports various debug features. The processor core provides halt mode debug,

stepping, and register accesses, and additional debug blocks provide debug features like the

Breakpoint Unit (BPU) and Data Watchpoint (DWT) units. The BPU supports up to four

hardware breakpoints, and the DWT supports up to two watchpoints.

To allow a debugger to control the aforementioned debug components and carry out debug

operations, the Cortex-M0 processor provides a debug interface unit. This debug interface unit

can either use the JTAG protocol or the serial wire debug (SWD) protocol. In some Cortex-M0

products, the microcontroller vendors can also choose to use a debug interface unit, which

supports both JTAG and serial wire debug protocol. However, typical Cortex-M0 imple-

mentations are likely to support only one protocol with SWD probably being preferred because

fewer pins are required.

The serial wire debug protocol is a new standard developed by ARM, and it can reduce the

number connection to just two signals. It can handle all the same debug features as JTAG

without any loss of performance. The serial wire debug interface shares the same connector as

JTAG: The Serial clock signal is shared with JTAG TCK signal, and the serial wire data are

shared with the JTAG TMS signal (Figure 3.10). There are many debug emulators for ARM

microcontrollers, including ULINK2 (from Keil) and JLink (from SEGGER), that already

support the serial wire debug protocol.
ARM
Cortex-M0

R
un

C
om

U
SB

IDC
connector

Flat cable
ULINK 2

USB

KEIL
Microcontroller

Development Kit

nTRST

TCK

TDI

TMS

TDO

not used

Serial-Wire clock

Serial-Wire data

JTAG connection Serial-Wire connection

not used

not used

KEIL
TM

An ARM® Company

In-Circuit Debugger

Figure 3.10:
Debug interface connections can be JTAG or the serial wire debug protocol.

Administrator
下划线

Administrator
高亮

Administrator
高亮

Architecture 39
Program Image and Startup Sequence

To understand the startup sequence of the Cortex-M0 processor, we need to have a quick

overview on the program image first. Normally, the program image for the Cortex-M0

processor is located from address 0x00000000.

The beginning of the program image contains the vector table (Figure 3.11). It contains the

starting addresses (vectors) of exceptions. Each vector is located in address of “Exception_

Number� 4.” For example, external IRQ #0 is exception type #16, therefore the address of the

vector for IRQ#0 is in 16 � 4 ¼ 0�40. These vectors have LSB set to 1 to indicate that the

exceptions handlers are to be executed with Thumb instructions. The size of the vector table

depends on how many interrupts are implemented.
Program
image

0x00000000

Program
memory

Program
code

Vector table
Initial MSP value

Reset vector

NMI vector

Hard fault vector

Interrupt vectors

SVC vector

PendSV vector

SysTick vector

reserved

reserved

0x00000040

0x0000003C

0x00000038

0x00000000

0x00000004

0x00000008

0x0000000C

0x0000002C

Figure 3.11:
Vector table in a program image.
The vector table also defines the initial value of the main stack pointer (MSP). This is stored in

the first word of the vector table.

When the processor exits from reset, it will first read the first two-word addresses in the vector

table. The first word is the initial MSP value, and the second word is the reset vector

(Figure 3.12), which determines the starting of the program execution address (reset handler).
Reset

Fetch reset vector

Read address
0x00000000

1st instruction
fetch

Time

Fetch initial value
for MSP

Read address
0x00000004

Read address
indicated by reset

vector
Subsequent instruction

fetches

Figure 3.12:
Reset sequence.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

40 Chapter 3
For example, if we have boot code starting from address 0x000000C0, we need to put this

address value in the reset vector location with the LSB set to 1 to indicate that it is Thumb code.

Therefore, the value in address 0x00000004 is set to 0x000000C1 (Figure 3.13). After the

processor fetches the reset vector, it will start executing program code from the address found

there. This behavior is different from traditional ARM processors (e.g., ARM7TDMI), where

the processor executes the program starting from address 0x00000000, and the vectors in the

vector table are instructions as oppose to address values in the Cortex-M processors.

The reset sequence also initializes the main stack pointer (MSP). Assume we have SRAM

located from 0x20000000 to 0x20007FFF, and we want to put the main stack at the top of the

SRAM; we can set this up by putting 0x20008000 in address 0x00000000 (Figure 3.13).

Because the Cortex-M0 processor will first decrement the stack pointer before pushing the data

on to the stack, the first stacked item will be located in 0x200007FFC, which is just at the top of

the SRAM,whereas the second stacked itemwill be in 0x20007FF8, below the first stacked item.

This behavior differs from that of traditional ARM processors and many other microcontroller

architectures where the stack pointer has to be initialized by software code rather than a value

in a fixed address.
Figure 3.13:
Example of MSP and PC initialization.

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Architecture 41
If the process stack pointer (PSP) is to be used, it must be initialized by software code before

writing to the CONTROL register to switch the stack pointer. The reset sequence only

initializes the MSP and not the PSP.

Different software development tools have different ways of specifying the initial stack pointer

value and the values for the reset and exception vectors. Most of the development tools come

with code examples demonstrating how this can be done with their development flow. In most

compilation tools, the vector table can be defined completely using C.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

CHAPTER 4

Introduction to Cortex-M0 Programming

Introduction to Embedded System Programming

All microcontrollers need program code to enable them to perform their intended tasks. If your

only experience comes from developing programs for personal computers, you might find the

software development for microcontrollers very different. Many embedded systems do not

have any operating systems (sometimes these systems are referred as bare metal targets) and do

not have the same user interface as a personal computer. If you are completely new to

microcontroller programming, do not worry. Programming the Cortex-M0 is easy. As long as

you have a basic understanding of the C language, you will soon be able develop simple

applications on the Cortex-M0.

What Happens When a Microcontroller Starts?

Most modern microcontrollers have on-chip flash memory to hold the compiled program. The

flash memory holds the program in binary machine code format, and therefore programs

written in C must be compiled before programmed to the flash memory. Some of these

microcontrollers might also have a separate boot ROM, which contains a small boot loader

program that is executed when the microcontroller starts, before executing the user program in

the flash memory. In most cases, only the program code in the flash memory can be changed

and the boot loader is fixed.

After the flash memory (or other types of program memory) is programmed, the program is

then accessible by the processor. After the processor is reset, it carries out the reset sequence, as

outlined at the end of the previous chapter (Figure 4.1).
Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Service

Routines

Runtime
libraries

Reset
sequence Boot

Loader

(optional,
depends on the
microcontroller

design)

Figure 4.1:
What happens when a microcontroller startsdthe Reset handler.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10004-7

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

43

Administrator
高亮

http://dx.doi.org/10.1016/B978-0-12-385477-3.10004-7

44 Chapter 4
In the reset sequence, the processor obtains the initial MSP value and reset vector, and then it

executes the reset handler. All of this required information is usually stored in a program file

called startup code. The reset handler in the startup code might also perform system

initialization (e.g., clock control circuitry and Phase Locked Loop [PLL]), although in

some cases system initialization is carried out later when the C program “main()” starts.

Example startup code can usually be found in the installation of the development suite or from

software packages available from the microcontroller vendors. For example, if the Keil

Microcontroller Development Kit (MDK) is used for development, the project creation

wizard can optionally copy a default startup code file into your project that matches the

microcontroller you selected.

For applications developed in C, the C startup code is executed before entering the main

application code. The C startup code initializes variables and memory used by the application,

and they are inserted to the program image by the C development suite (Figure 4.2).
Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Service

Routines
Runtime
libraries

Reset
sequence

Figure 4.2:
What happens when a microcontroller startsdC startup code.
After the C startup code is executed, the application starts. The application program often

contains the following elements:

• Initialization of hardware (e.g., clock, PLL, peripherals)

• The processing part of the application

• Interrupt service routines

In addition, the application might also use C library functions (Figure 4.3). In such cases, the C

compiler/linker will include the required library functions into the compiled program image.

The hardware initialization might involve a number of peripherals, some system control

registers, and interrupt control registers inside the Cortex-M0 processors. The initialization of

the system clock control and the PLL might also take place if this were not carried out in the

reset handler. After the peripherals are initialized, the program execution can then proceed

to the application processing part.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Service

Routines
Runtime
libraries

Reset
sequence

Figure 4.3:
What happens when a microcontroller startsdapplication.

Introduction to Cortex-M0 Programming 45
Designing Embedded Programs

There are many ways to structure the flow of the application processing. Here we will cover

a few fundamental concepts.

Polling

For simple applications, polling (sometimes also called super loop) is easy to set up and works

fairly well for simple tasks (Figure 4.4).
Start

Initialization

Peripheral A requires
processing? Y

Process A

Peripheral B requires
processing? Y

Process B
N

N

Peripheral C requires
processing? Y

Process C
N

Figure 4.4:
Polling method for simple application processing.

46 Chapter 4
However, when the application gets complicated and demands higher processing performance,

polling is not suitable. For example, if one of the processes takes a long time, other peripheralswill

not receive any service for some time.Another disadvantage of using the pollingmethod is that the

processor has to run the polling program all the time, even if it requires no processing.

Interrupt Driven

In applications that require lower power, processing can be carried out in interrupt service

routines so that the processor can enter sleep mode when no processing is required. Interrupts

are usually generated by external sources or on chip peripherals to wake up the processor.

In interrupt-driven applications (Figure 4.5), the interrupts from different devices can be set at

different priorities. In this way a high-priority interrupt request can obtain service even when

a lower-priority interrupt service is running, which will be temporarily stopped. As a result, the

latency for the higher-priority interrupt is reduced.
Start

Initialization

Enter sleep mode

Interrupt Service Routine A

Process A

Interrupt Service Routine B

Process B

Interrupt Service Routine C

Process C

Interrupt

Figure 4.5:
An interrupt-driven application.
Combination of Polling and Interrupt Driven

In many cases, applications can use a combination of polling and interrupt methods

(Figure 4.6). By using software variables, information can be transferred between interrupt

service routines and the application processes.

By dividing a peripheral processing task into an interrupt service routine and a process running

in the main program, we can reduce the duration of interrupt services so that even lower-

priority interrupt services gain a better chance of getting serviced. At the same time, the system

Administrator
下划线

Start

Initialization

Enter sleep mode

Interrupt
Service

Routine A

Interrupt
Service

Routine B

Interrupt
Service

Routine C

Peripheral A requires
processing? Y

Process A

Peripheral B requires
processing? Y

Process B
N

N

Peripheral C requires
processing? Y

Process C
N

Any more processing
required? Y

N

Software
variables

Software
variables

Software
variables

Figure 4.6:
Combination of polling and interrupt-driven application.

Introduction to Cortex-M0 Programming 47
can still enter sleep mode when no processing task is required. In Figure 4.6, the application is

partitioned into processes A, B, and C, but in some cases, an application cannot be partitioned

into individual parts easily and needs to be written as a large combined process.

Handling Concurrent Processes

In some cases, an application process could take a significant amount of time to complete and

therefore it is undesirable to handle it in a big loop as shown in Figure 4.6. If process A takes

too long to complete, processes B and C will not able to respond to peripheral requests fast

enough, resulting in system failure. Common solutions are as follows:

1. Breaking down a long processing task to a sequence of states. Each time the process is

accessed, only one state is executed.

2. Using a real-time operating system (RTOS) to manage multiple tasks.

Administrator
下划线

Restore state
information

Process
A1

Process
A2

Process
A3

Process
A4

Process A

state = 4state = 3state = 2state = 1

state = 2 state = 3 state = 4 state = 1

Process B, C, etc

Figure 4.7:
Partitioning a process into multiple parts in the application loop.

48 Chapter 4
For method 1, a process is divided into a number of parts, and software variables are used to

track the state of the process (Figure 4.7). Each time the process is executed, the state

information is updated so that next time the process is executed, the processing can resume

correctly.

Because the execution path of the process is shortened, other processes in the main loop can be

reached quicker inside the big loop. Although the total processing time required for the

processing remains unchanged (or increases slightly because of the overhead of state saving

and restoring), the system is more responsive. However, when the application tasks become

more complex, partitioning the application task manually can become impractical.

For more complex applications, a real-time operating system (RTOS) can be used (Figure 4.8).

An RTOS allows multiple application processes to be executed by dividing processor execution

time into time slots and allocating one to each task. To use an RTOS, a timer is needed to

generate regular interrupt requests. When each time slot ends, the timer generates an interrupt

that triggers the RTOS task scheduler, which determines if context switching should be carried

out. If context switching should be carried out, the task schedule suspends the current

executing task and then switches to the next task that is ready to be executed.

Using an RTOS improves the responsiveness of a system by ensuring that all tasks are reached

within a certain amount of time. Examples of using an RTOS are covered in Chapter 18.

Administrator
下划线

Administrator
下划线

Administrator
下划线

Process A

Process B

Process C

OS task
scheduler

OS
initialization

Start

Figure 4.8:
Using an RTOS to handle multiple concurrent application processes.

Introduction to Cortex-M0 Programming 49
Inputs and Outputs

On many embedded systems, the available inputs and outputs can be limited to simple

electronic interfaces like digital and analog inputs and outputs (I/Os), UARTs, I2C, SPI, and so

on. Many microcontrollers also offer USB, Ethernet, CAN, graphics LCD, and SD card

interfaces. These interfaces are handled by peripherals in the microcontrollers.

On Cortex-M0 microcontrollers, peripherals are controlled by memory-mapped registers

(examples of accessing peripherals are presented later in this chapter). Some of these

peripherals are more sophisticated than peripherals available on 8-bit and 16-bit

microcontrollers, and there might be more registers to program during the peripheral setup.

Typically, the initialization process for peripherals may consist of the following steps:

1. Programming the clock control circuitry to enable the clock signal to the peripheral and

the corresponding I/O pins if necessary. In many low-power microcontrollers, the clock

signals reaching different parts of the chip can be turned on or off individually to save

power. By default, most of the clock signals are usually turned off and need to be enabled

before the peripherals are programmed. In some cases you also need to enable the clock

signals for the peripherals bus system.

2. Programming of I/O configurations. Most microcontrollers multiplex their I/O pins for

multiple uses. For a peripheral interface to work correctly, the I/O pin assignment might

need to be programmed. In addition, some microcontrollers also offer configurable electrical

characteristics for the I/O pins. This can result in additional steps in I/O configurations.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

50 Chapter 4
3. Peripheral configuration. Most interface peripherals contain a number of programmable

registers to control their operations, and therefore a programming sequence is usually

needed to allow the peripheral to work correctly.

4. Interrupt configuration. If a peripheral operation requires interrupt processing, additional

steps are required for the interrupt controller (e.g., the NVIC in the Cortex-M0).

Most microcontroller vendors provide device driver libraries for peripheral programming to

simplify software development. Unlike programming on personal computers, you might need

to develop your own user interface functions to design a user-friendly standalone embedded

system. However, the device driver libraries provided by the microcontroller vendors will make

the development of your user interface easier.

For the development of most deeply embedded systems, it is not necessary to have a rich user

interface. However, basic interfaces like LEDs, DIP switches, and push buttons can deliver

only a limited amount of information. For debugging software, a simple text input/output

console is often sufficient. This can be handled by a simple RS-232 connection through

a UART interface on the microcontroller to a UART interface on a personal computer (or via

a USB adaptor) so that we can display the text messages and enter user inputs using a terminal

application (Figure 4.9).
RS-232 serial
cable

Microcontroller with
ARM Cortex-M0

Level shifter

Personal
computer

Terminal / console
application

Development board

Figure 4.9:
Using UART interface for user input and output.
The technique to redirect text messages from a “printf” (in C language) to a UART (or another

interface) is commonly referred to as “retargeting.” Retargeting can also handle user inputs and

system functions. Examples of simple retargeting will be presented in later chapters of this

book.

Typically, microcontrollers also provide a number of general-purpose input and output ports

(GPIOs) that are suitable for simple control, user buttons or switches, LEDs, and the like. You

Administrator
下划线

Administrator
下划线

Introduction to Cortex-M0 Programming 51
can also develop an embedded system with a full feature graphics display using

a microcontroller with built-in LCD controllers or using an external LCD module with

a parallel or SPI interface. Although microcontroller vendors usually provide device driver

libraries for the peripheral blocks, you might still need to develop your own user input and

output functions.

Development Flow

Many development tool chains are available for ARM microcontrollers. The majority of them

support C and assembly language. Embedded projects can be developed in either C or

assembly language, or a mixture of both. In most cases, the program-generation flow can be

summarized in a diagram, as shown in Figure 4.10.
Assembler

C Compiler

.c
.cpp

.s

Linker

C source
code

Assembly
source code

.o

.o

Object files

Object files

.elf

Executable
image

Linker script /

.ld

.scat

Scatter-loading file

.out

.axf

Instruction Set

Simulator

Flash

programmer

ARM
Cortex-M0

Microcontroller

Flash

Debugger

Testing by
simulation

Testing using
real hardware

Figure 4.10:
Typical program-generation flow.
In most simple applications, the programs can be completely written in the C language. The

C compiler compiles the C program code into object files and then generates the executable

program image file using the linker. In the case of GNU C compilers, the compile and linking

stages are often merged into one step.

Projects that require assembly programming use the assembler to generate object code from

assembly source code. The object files can then be linked with other object files in the project

to produce an executable image. Besides the program code, the object files and the executable

image may also contain various debug information.

Administrator
下划线

52 Chapter 4
Depending on the development tools, it is possible to specify the memory layout for the linker

using command line options. However, in projects using GNU C compilers, a linker script is

normally required to specify the memory layout. A linker script is also required for other

development tools when the memory layout gets complicated. In ARM development tools, the

linker scripts are often called scatter-loading files. If you are using the Keil Microcontroller

Development Kit (MDK), the scatter-loading file is generated automatically from the memory

layout window. You can use your own scatter file if you prefer.

After the executable image is generated, we can test it by downloading it to the flash memory

or internal RAM of the microcontroller. The whole process can be quite easy; most

development suites come with a user-friendly integrated development environment (IDE).

When working together with an in-circuit debugger (sometimes referred to as an in-circuit

emulator [ICE], debug probe, or USB-JTAG adaptor), you can create a project, build your

application, and download your embedded application to the microcontroller in a few steps

(Figure 4.11).
Create a
project

Add program
code &

Device Driver
Library

Select device
and specify

project
options

Compile
(program

generation flow)

Download
to flash

Debug
your

application

Update
your

application

Microcontroller with
ARM Cortex-M0 Development board

flash

JTAG / Serial-wire
connectionUSB

connection

(require in-circuit debugger)
ULINK2, an example of
USB in-circuit debugger

Figure 4.11:
An example of development flow.
In many cases, an in-circuit debugger is needed to connect the debug host (personal computer)

to the target board. The Keil U-LINK2 is one of the products available and can be used with

Keil MDK and CodeSourcery gþþ (Figure 4.12).

The flash programming function can be carried out by the debugger software in the

development suite (Figure 4.13) or in some cases by a flash programming utility downloadable

from microcontroller vendor web site. The program can then be tested by running it on the

microcontroller, and by connecting the debugger to the microcontroller, the program execution

Administrator
高亮

Figure 4.12:
ULINK 2 USB-JTAG adaptor.

ARM Cortex-M0
Microcontroller

Flash programming
utility from MCU

vendors

Cortex-M0

Peripherals

SRAM

Flash

Manufacturing
Testing Tester

Development Suite

Flash
programming

algorithm

Debugger

In-Circuit
debugger / USB-

JTAG adaptor

Figure 4.13:
Various usages of the debug interface on the Cortex-M0 processor.

Introduction to Cortex-M0 Programming 53
can be controlled and the operations can be observed. All these actions can be carried out via

the debug interface of the Cortex-M0 processor.

For simple program codes, we can also test the program using a simulator. This allows us to

have full visibility to the program execution sequence and allows testing without actual

54 Chapter 4
hardware. Some development suites provide simulators that can also imitate peripheral

behavior. For example, Keil MDK provides device simulation for many ARM Cortex

microcontrollers.

Apart from the fact that different C compilers perform differently, different development

suites also provide different C language extension features, as well as different syntax and

directives in assembly programming. Chapters 5, 6, and 16 provide assembly syntax

information for ARM development tools (including ARM RealView Development Suite

[RVDS] and Keil MDK) and GNU C compilers. In addition, different development suites

also provide different features in debug, utilities, and support different debug hardware

product range.

C Programming and Assembly Programming

The Cortex-M0 processor can be programmed using C language, assembly language, or a mix

of both. For beginners, C language is usually the best choice as it is easier to learn and most

modern C compilers are very good at generating efficient code for the Cortex microcontrollers.

Table 4.1 compares the use of C language and assembly language.
Table 4.1: Comparison between C Programming and Assembly Language Programming

Language Pros and Cons

C Pros
Easy to learn
Portable
Easy handling of complex data structures
Cons
Limited/no direct access to core register and stack
No direct control over instruction sequence generation
No direct control over stack usage

Assembly Pros
Allows direct control to each instruction step and all memory
operations
Allows direct access to instructions that cannot be generated with C
Cons
Take longer time to learn
Difficult to manage data structure
Less portable (syntax of assembly language in different tool chains can
be different)
Most C compilers provide workarounds to allow assembly code to be used within C program

code. For example, ARM C compilers provide an Embedded Assembler so that assembly

functions can be included in C program code easily. Similarly, most other C compilers provide

an Inline Assembler for inlining assembly code within a C program file. However, the assembly

Administrator
下划线

Administrator
下划线

Introduction to Cortex-M0 Programming 55
syntax for using an Embedded Assembler and Inline Assembler are tool specific (not portable).

Note that the ARM C compiler has an Inline Assembler feature as well, but this is only

available for 32-bit ARM instructions (e.g., for ARM7TDMI). Because the Cortex-M0

processor supports the Thumb instruction set only, the Embedded Assembler is used.

Some C compilers (including ARM C compilers in RealView Development Suite and Keil

MDK) also provide intrinsic functions to allow special instructions to be used that cannot be

generated using normal C code. Intrinsic functions are normally tool dependent. However,

a tool-independent version of similar functions for Cortex-M0 is also available via the Cortex

Microcontroller Software Interface Standard (CMSIS). This will be covered later in the

chapter.

As Figure 4.10 shows, you can mix C and assembly code together in a project. This allows most

parts of the program to be written in C, and some parts that cannot be handled in C can be

written in assembly code. To do this, the interface between functions must be handled in

a consistent manner to allow input parameters and returned results to be transferred correctly.

In ARM software development, the interface between functions is specified by a specification

document called the ARM Architecture Procedure Call Standard (AAPCS, reference 4). The

AAPCS is part of the Embedded Application Binary Interface (EABI). When using the

Embedded Assembler, you should follow the guidelines set by the AAPCS. The AAPCS

document and the EABI document can be downloaded from the ARM web site.

More details in this area are covered in Chapter 16.

What Is in a Program Image?

At the end of Chapter 3 we covered the reset sequence of the Cortex-M0 and briefly introduced

the vector table. Now we will look at the program image in more detail.

A program image for the Cortex-M0 microcontroller often contains the following

components:

• Vector table

• C startup routine

• Program code (application code and data)

• C library code (program codes for C library functions, inserted at link time)

Vector Table

The vector table can be programmed in either C language or assembly language. The exact

details of the vector table code are tool chain dependent because vector table entries require

symbols created by the compiler and linker. For example, the initial stack pointer value is linked

to stack region address symbols generated by the linker, and the reset vector is linked to C startup

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

56 Chapter 4
code address symbols, which are compiler dependent. For example, in the RealView

Development Suite (RVDS), you can define the vector table with the following C code:
Example of vector table in C language

/* Stack and heap settings */
#define STACK_BASE 0x20020000 /* Stack start address */
#define STACK_SIZE 0x8000 /* length stack grows downwards */
#define HEAP_BASE 0x20010000 /* Heap starts address */
#define HEAP_SIZE 0x10000-0x8000 /* Heap Length */

/* Linker-generated Stack Base addresses */
extern unsigned int Image$$ARM_LIB_STACK$$ZI$$Limit;
extern unsigned int Image$$ARM_LIB_STACKHEAP$$ZI$$Limit;
typedef void(* const ExecFuncPtr)(void) __irq;

extern int __main(void);
/*
 * Exception Table, in separate section so it can be correctly placed at 0x0
 */
#pragma arm section rodata="exceptions_area"

ExecFuncPtr exception_table[] = {
 /* Configure Initial Stack Pointer, using linker-generated symbols*/
 #pragma import(__use_two_region_memory)
 (ExecFuncPtr)&Image$$ARM_LIB_STACK$$ZI$$Limit,
 /* Initial Main Stack Pointer */
 (ExecFuncPtr) Reset_Handler, /* Initial PC, set to entry point.
 Branch to __main */
 NMI_Handler, /* Non-maskable Interrupt handler */
 HardFault_Handler, /* Hard fault handler */
 0, 0, 0, 0, 0, 0, 0, /* Reserved */
 SVC_Handler, /* SVC handler */
 0, 0, /* Reserved */
 PendSV_Handler, /* PendSV handler */
 SysTick_Handler, /* SysTick Handler */

 /* Device specific configurable interrupts start here...*/
 Interrupt0_Handler,
 Interrupt1_Handler, /* dummy default interrupt handlers */
 Interrupt2_Handler
 /*
 :
 */
};
#pragma arm section
Some development tools, including Keil MDK, create the vector table as part of the assembly

startup code. In this case, the Define Constant Data (DCD) directive is used to create the vector

table.

Administrator
高亮

Example of vector table in assembly

 AREA STACK, NOINIT, READWRITE, ALIGN=3
StackMem
 SPACE 0x8000 ; Allocate space for the stack.
__initial_sp
 AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
HeapMem
 SPACE 0x8000 ; Allocate space for the heap.
__heap_limit
 PRESERVE8 ; Indicate that the code in this file
 ; preserves 8-byte alignment of the stack.
;
; The vector table.
 AREA RESET, CODE, READONLY
 THUMB
 EXPORT __Vectors
__Vectors
 DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler (branch to __main)
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD SVC_Handler ; SVCall Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD PendSV_Handler ; PendSV Handler
 DCD SysTick_Handler ; SysTick Handler

 ; Device specific configurable interrupts start here...
 DCD Interrupt0_Handler ;
 DCD Interrupt1_Handler ; dummy default interrupt handlers
 DCD Interrupt2_Handler ;

Introduction to Cortex-M0 Programming 57
You might notice that in both examples, the vector tables are given section names

(exceptions_area in the C example and RESET in the assembly example). The vector

table needs to be placed at the beginning of the system memory map (address

0x00000000). This can be done by a linker script or command line option, which requires

a section name so that the contents of the vector table can be identified and mapped correctly by

the linker.

Administrator
下划线

Administrator
高亮

58 Chapter 4
In normal applications, the reset vector can point to the beginning of the C startup code.

However, you can also define a reset handler to carry out additional initialization before

branching to the C startup code.
C Startup Code

The C startup code is used to set up data memory such as global data variables. It also zero

initializes part of the data memory for variables that are uninitialized at load time. For

applications that use C functions like malloc(), the C startup code also needs to initialize the

data variables controlling the heap memory. After this initialization, the C startup code

branches to the beginning of the main() program.

The C startup code is inserted by the compiler/linker automatically and is tool chain specific; it

might not be present if you are writing a program purely in assembly. For ARM compilers, the

C startup code is labeled as “__main,” whereas the startup code generated by GNU C compilers

is normally labeled as “_start.”

Program Code

The instructions generated from your application program code carry out the tasks you specify.

Apart from the instruction sequence, there are also various types of data:

• Initial values of variables. Local variables in functions or subroutines need to be initialized,

and these initial values are set up during program execution.

• Constants in program code. Constant data are used in application codes in many ways: data

values, addresses of peripheral registers, constant strings, and so on. These data are

sometimes grouped together within the program images as a number of data blocks called

literal pools.

• Some applications can also contain additional constant data like lookup tables and graphics

image data (e.g., bit map) that are merged into the program images.

C Library Code

C library code is injected in to the program image by the linker when certain C/Cþþ functions

are used. In addition, C library code can also be included because of data processing tasks such

as floating point operations and divide. The Cortex-M0 does not have a divide instruction, and

this function typically needs to be carried out by a C library divide function.

Some development tools offer various versions of C libraries for different purposes. For

example, in Keil MDK or ARM RVDS there is an option to use a special version of C library

called Microlib. The Microlib is targeted for microcontrollers and is very small, but it does not

offer all features of the standard C library. In embedded applications that do not require high

Administrator
高亮

Administrator
高亮

Administrator
高亮

Introduction to Cortex-M0 Programming 59
data processing capability and have tight program memory requirement, the Microlib offers

a good way to reduce code size.

Depending on the application, C library code might not be present in simple C applications (no

C library function calls) or pure assembly language projects.

Apart from the vector table, which must be placed at the beginning of the memory map, there

are no other constraints on the placement of the rest of the elements inside a program image. In

some cases, if the layout of the items in the program memory is important, the layout of the

program image can be controlled by a linker script.

Data in RAM

Like program ROM, the RAM of microcontrollers is used in different ways. Typically, the

RAM usage is divided into data, stack, and heap regions (Figure 4.14).
0x20000000

Memory Address Stack
(grow downwards)

Heap
(grow upwards)

Data

Example RAM usage in systems without OS

Figure 4.14:
Example of RAM usage in single task systems (without OS).
For microcontroller systems with an embedded OS (e.g., mClinux) or RTOS (e.g., Keil RTX),

the stacks for each task are separate. Some OSs allow a user-defined stack for tasks that

require larger stack memory. Some OSs divide the RAM into a number of segments, and each

segment is assigned to a task, each containing individual data, stack, and heap regions

(Figure 4.15).

So what is stored inside these data, stack, and heap regions?

• Data. Data stored in the bottom of RAM usually contain global variables and static

variables. (Note: Local variables can be spilled onto the stack to reduce RAM usage.

Local variables that belong to a function that is not in use do not take up memory space.)

Administrator
高亮

Administrator
下划线

Administrator
下划线

0x20000000

Memory Address

Example RAM usage in a simple embedded OS

0x20000000

Memory Address

OS & IRQ stack
OS heap
OS data

Alternate RAM usage in multiple
task system with an embedded OS

Task X stack

Task X heap

Task X data

Task Y stack

Task Y heap
Task Y data

Task Z stack
Task Z heap
Task Z data

Memory for OS
and Exception /

Interrupt handlers

Memory for
Task X

Memory for
Task Y

Memory for
Task Z

OS & IRQ stack

Heap (shared between
tasks)

Data (shared between
tasks)

Task X stack

Task Y stack

Task Z stack

Figure 4.15:
Example of RAM usage in multiple task systems (with an OS).

60 Chapter 4
• Stack. The role of stack memory includes temporary data storage (normal stack PUSH

and POP operations), memory space for local variables, parameter passing in function

calls, register saving during an exception sequence, and so on. The Thumb instruction

set is very efficient in handling data accesses that use a stack pointer (SP) related

addressing mode and allows data in the stack memory to be accessed with very low

instruction overhead.

• Heap. The heap memory is used by C functions that dynamically reserve memory space,

like “alloc(),” “malloc(),” and other function calls that use these functions. To allow these

functions to allocate memory correctly, the C startup code needs to initialize the heap

memory and its control variables.

Usually, the stack is placed at the top of the memory space and the heap memory is placed

underneath. This gives the best flexibility for the RAM usage. In an OS environment, there can

be multiple regions of data, stack, and heap in the RAM.
C Programming: Data Types

The C language supports a number of “standard” data types. However, the implementation of

data type can be processor architecture dependent and C compiler dependent. In ARM

processors including the Cortex-M0, the data type implementations shown in Table 4.2 are

supported by all C compilers.

When porting applications from other processor architectures to ARM processors, if the data

types have different sizes, it might be necessary to modify the C program code in order to

Administrator
高亮

Administrator
下划线

Administrator
高亮

Table 4.2: Size of Data Types in Cortex-M Processors

C and C99 (stdint.h)
Data Type

Number
of Bits

Range (Signed) Range (Unsigned)

char, int8_t, uint8_t 8 �128 to 127 0 to 255
short int16_t, uint16_t 16 �32768 to 32767 0 to 65535
int, int32_t, uint32_t 32 �2147483648 to 2147483647 0 to 4294967295
long 32 �2147483648 to 2147483647 0 to 4294967295
long long, int64_t,
uint64_t

64 � (2^63) to (2^63 � 1) 0 to (2^64 � 1)

float 32 �3.4028234 � 1038 to 3.4028234 � 1038

double 64 �1.7976931348623157 � 10308 to 1.7976931348623157 � 10308

long double 64 �1.7976931348623157 � 10308 to 1.7976931348623157 � 10308

pointers 32 0x0 to 0xFFFFFFFF
enum 8/16/32 Smallest possible data type, except when overridden by compiler

option
bool (Cþþ only),
_Bool (C only)

8 True or false

wchar_t 16 0 to 65535

Introduction to Cortex-M0 Programming 61
ensure the program operates correctly. More details on porting software from 8-bit and 16-bit

architecture are covered in Chapter 21.

In Cortex-M0 programming, the data variables stored in memory need to be stored at an

address location that is a multiple of its size. More details on this area are covered in Chapter 7

(the data alignment section).

In ARM programming, we also refer to data size as word, half word, and byte (Table 4.3).
Table 4.3: Data Size Definition in ARM
Processor

Terms Size

Byte 8-bit
Half word 16-bit
Word 32-bit
Double word 64-bit
These terms are commonly found in ARM documentation, such as in the instruction set details.

Accessing Peripherals in C

Apart from data variables, a C program for microcontroller applications normally needs to

access peripherals. In ARM Cortex-M0 microcontrollers, peripheral registers are memory

mapped and can be accessed by memory pointers. In most cases, you can use the device drivers

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

62 Chapter 4
provided by the microcontroller vendors to simplify the software development task and make it

easier to port software between different microcontrollers. If it is necessary to access the

peripheral registers directly, the following methods can be used.

In simple cases of accessing a few registers, you can define a peripheral register as a pointer as

follows:
Example registers definition for a UART using pointers and accessing the registers

#define UART_BASE 0x40003000 // Base of ARM Primecell PL011
#define UART_DATA (*((volatile unsigned long *)(UART_BASE + 0x00)))
#define UART_RSR (*((volatile unsigned long *)(UART_BASE + 0x04)))
#define UART_FLAG (*((volatile unsigned long *)(UART_BASE + 0x18)))
#define UART_LPR (*((volatile unsigned long *)(UART_BASE + 0x20)))
#define UART_IBRD (*((volatile unsigned long *)(UART_BASE + 0x24)))
#define UART_FBRD (*((volatile unsigned long *)(UART_BASE + 0x28)))
#define UART_LCR_H (*((volatile unsigned long *)(UART_BASE + 0x2C)))
#define UART_CR (*((volatile unsigned long *)(UART_BASE + 0x30)))
#define UART_IFLS (*((volatile unsigned long *)(UART_BASE + 0x34)))
#define UART_MSC (*((volatile unsigned long *)(UART_BASE + 0x38)))
#define UART_RIS (*((volatile unsigned long *)(UART_BASE + 0x3C)))
#define UART_MIS (*((volatile unsigned long *)(UART_BASE + 0x40)))
#define UART_ICR (*((volatile unsigned long *)(UART_BASE + 0x44)))
#define UART_DMACR (*((volatile unsigned long *)(UART_BASE + 0x48)))
/* ----- UART Initialization ---- */
void uartinit(void) // Simple initialization for ARM Primecell PL011
{
 UART_IBRD =40; // ibrd : 25MHz/38400/16 = 40
 UART_FBRD =11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
 UART_LCR_H =0x60; // Line control : 8N1
 UART_CR =0x301; // cr : Enable TX and RX, UART enable
 UART_RSR =0xA; // Clear buffer overrun if any
}
/* ----- Transmit a character ---- */
int sendchar(int ch)
{
 while (UART_FLAG & 0x20); // Busy, wait
 UART_DATA = ch; // write character
 return ch;
}
/* ----- Receive a character ---- */
int getkey(void)
{
 while ((UART_FLAG & 0x40)==0); // No data, wait
 return UART_DATA; // read character
}

This solution is fine for simple applications. However, when multiple units of the same

peripherals are available in the system, defining registers will be required for each of these

peripherals, which can make code maintenance difficult. In addition, defining each register as

a separated pointer might result in larger program size, as each register access requires a 32-bit

address constant to be stored in the program flash memory.

Administrator
高亮

Introduction to Cortex-M0 Programming 63
To simplify the code, we can define the peripheral register set as a data structure and define the

peripheral as a memory pointer to this data structure.
Example registers definition for a UART using data structure and accessing the
registers using pointer of structure

typedef struct { // Base on ARM Primecell PL011
 volatile unsigned long DATA; // 0x00
 volatile unsigned long RSR; // 0x04
 unsigned long RESERVED0[4];// 0x08 – 0x14
 volatile unsigned long FLAG; // 0x18
 unsigned long RESERVED1; // 0x1C
 volatile unsigned long LPR; // 0x20
 volatile unsigned long IBRD; // 0x24
 volatile unsigned long FBRD; // 0x28
 volatile unsigned long LCR_H; // 0x2C
 volatile unsigned long CR; // 0x30
 volatile unsigned long IFLS; // 0x34
 volatile unsigned long MSC; // 0x38
 volatile unsigned long RIS; // 0x3C
 volatile unsigned long MIS; // 0x40
 volatile unsigned long ICR; // 0x44
 volatile unsigned long DMACR; // 0x48
} UART_TypeDef;
#define Uart0 ((UART_TypeDef *) 0x40003000)
#define Uart1 ((UART_TypeDef *) 0x40004000)
#define Uart2 ((UART_TypeDef *) 0x40005000)

/* ----- UART Initialization ---- */
void uartinit(void) // Simple initialization for Primecell PL011
{
 Uart0->IBRD =40; // ibrd : 25MHz/38400/16 = 40
 Uart0->FBRD =11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
 Uart0->LCR_H =0x60; // Line control : 8N1
 Uart0->CR =0x301; // cr : Enable TX and RX, UART enable
 Uart0->RSR =0xA; // Clear buffer overrun if any
}
/* ----- Transmit a character ---- */
int sendchar(int ch)
{
 while (Uart0->FLAG & 0x20); // Busy, wait
 Uart0->DATA = ch; // write character
 return ch;
}
/* ----- Receive a character ---- */
int getkey(void)
{
 while ((Uart0->FLAG & 0x40)==0); // No data, wait
 return Uart0->DATA; // read character
}

In this example, the Integer Baud Rate Divider (IBRD) register for UART #0 is

accessed by the symbol Uart0->IBRD, and the same register for UART #1 is accessed by
Uart1->IBRD.

64 Chapter 4
With this arrangement, the same register data structure for the peripheral can be shared

between multiple instantiations, making code maintenance easier. In addition, the

compiled code could be smaller because of the reduced requirement of immediate data storage.

With further modification, a function developed for the peripherals can be shared between

multiple units by passing the base pointer to the function:
Example registers definition for a UART and driver code that support multiple
UART using pointer passing

typedef struct { // Base on ARM Primecell PL011
 volatile unsigned long DATA; // 0x00
 volatile unsigned long RSR; // 0x04
 unsigned long RESERVED0[4];// 0x08 – 0x14
 volatile unsigned long FLAG; // 0x18
 unsigned long RESERVED1; // 0x1C
 volatile unsigned long LPR; // 0x20
 volatile unsigned long IBRD; // 0x24
 volatile unsigned long FBRD; // 0x28
 volatile unsigned long LCR_H; // 0x2C
 volatile unsigned long CR; // 0x30
 volatile unsigned long IFLS; // 0x34
 volatile unsigned long MSC; // 0x38
 volatile unsigned long RIS; // 0x3C
 volatile unsigned long MIS; // 0x40
 volatile unsigned long ICR; // 0x44
 volatile unsigned long DMACR; // 0x48
} UART_TypeDef;
#define Uart0 ((UART_TypeDef *) 0x40003000)
#define Uart1 ((UART_TypeDef *) 0x40004000)
#define Uart2 ((UART_TypeDef *) 0x40005000)

/* ----- UART Initialization ---- */
void uartinit(UART_Typedef *uartptr) //
{
 uartptr->IBRD =40; // ibrd : 25MHz/38400/16 = 40
 uartptr->FBRD =11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
 uartptr->LCR_H =0x60; // Line control : 8N1
 uartptr->CR =0x301; // cr : Enable TX and RX, UART enable
 uartptr->RSR =0xA; // Clear buffer overrun if any
}
/* ----- Transmit a character ---- */
int sendchar(UART_Typedef *uartptr, int ch)
{
 while (uartptr->FLAG & 0x20); // Busy, wait
 uartptr->DATA = ch; // write character
 return ch;
}
/* ----- Receive a character ---- */
int getkey(UART_Typedef *uartptr)
{
 while ((uartptr ->FLAG & 0x40)==0); // No data, wait
 return uartptr ->DATA; // read character
}

Administrator
下划线

Administrator
标注
指针，也是地址

Administrator
波浪线

Administrator
波浪线

Introduction to Cortex-M0 Programming 65
In most cases, peripheral registers are defined as 32-bit words. This is because most

peripherals are connected to a peripheral bus (using APB protocol; see Chapter 7) that

handles all transfers as 32 bit. Some peripherals might be connected to the processor

bus (with AHB protocol that supports various transfer sizes; see Chapter 7). In such

cases, the registers might be accessed in other transfer sizes. Please refer to the user

manual of the microcontroller to determine the supported transfer size for each

peripheral.

Note that when defining memory pointers for peripheral accesses, the “volatile” keyword

should be used.
Cortex Microcontroller Software Interface Standard (CMSIS)

Introduction of CMSIS

As the complexity of embedded systems increase, the compatibility and reusability of software

code becomes more important. Having reusable software often reduces development time

for subsequent projects and hence speeds up time to market, and software compatibility

helps the use of third-party software components. For example, an embedded system project

might involve the following software components:

• Software from in-house software developers

• Software reused from other projects

• Device driver libraries from microcontroller vendors

• Embedded OS

• Other third-party software products like a communication protocol stack and codec

(compressor/decompressor)

The use of the third-party software components is becoming more and more common. With all

these software components being used in one project, compatibility is becoming critical for

many large-scale software projects. To allow a high level of compatibility between these

software products and improve software portability, ARM worked with various

microcontroller vendors and software solution providers to develop the CMSIS, a common

software framework covering most Cortex-M processors and Cortex-M microcontroller

products (Figure 4.16).

The CMSIS is implemented as part of device driver library from microcontroller vendors.

It provides a standardized software interface to the processor features like NVIC control and

system control functions. Many of these processors feature access functions are available in

CMSIS for the Cortex-M0, Cortex-M3 and Cortex-M4, allowing easy software porting

between these processors.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

CMSIS

Microcontroller Device Driver Libraries

Peripherals drivers

Microcontroller

Cortex-M0Peripherals

Embedded OSThird parties softwareApplication code

Software

Figure 4.16:
CMSIS provides standardized access functions for processor features.

66 Chapter 4
The CMSIS is standardized across multiple microcontroller vendors and is supported by

multiple C compiler vendors. For example, it can be used with the Keil MDK, the ARM

RealView Development Suite (RVDS), the IAR Embedded Workbench, the TASKING

compiler, and various GNU-based C compiler suites including the CodeSourcery Gþþ tool

chain.
What Is Standardized in CMSIS

The CMSIS standardized the following areas for embedded software:

• Standardized access functions for accessing NVIC, System Control Block (SCB), and

System Tick timer (SysTick) such as interrupt control and SysTick initialization. These

functions will be covered in various chapters of this book and in the CMSIS functions

quick reference in Appendix C.

• Standardized register definitions for NVIC, SCB, and SysTick registers. For best software

portability, we should use the standardized access functions. However, in some cases we

need to directly access the registers in NVIC, SCB, or the SysTick. In such cases, the

standardized register definitions help the software to be more portable.

• Standardized functions for accessing special instructions in Cortex-M microcontrollers.

Some instructions on the Cortex-M microcontroller cannot be generated by normal C

code. If they are needed, they can be generated by these functions provided in CMSIS.

Otherwise, users will have to use intrinsic functions provided by the C compiler or

embedded/inline assembly language, which are tool chain specific and less portable.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Introduction to Cortex-M0 Programming 67
• Standardized names for system exceptions handlers. An embedded OS often requires

system exceptions. By having standardized system exception handler names, supporting

different device driver libraries in an embedded OS is much easier.

• Standardized name for the system initialization function. The common system initializa-

tion function “void SystemInit(void)” makes it easier for software developers to set up

their system with minimum effort.

• Standardize variable for clock speed information. A standardized software variable called

“SystemFreq” (CMSIS v1.00 to v1.20) or “SystemCoreClock” (CMSIS v1.30 or newer).

This is used to determine the processor clock frequency.

The CMSIS also provides the following:

• A common platform for device driver librariesdeach device driver library has the same

look and feel, making it easier for beginners to learn and making it easier for software

porting.

• In future release of CMSIS, it could also provide a set of common communication access

functions so that middleware that has been developed can be reused on different devices

without porting.

The CMSIS is developed to ensure compatibility for the basic operations. Microcontroller

vendors can add functions to enhance their software solution so that CMSIS does not restrict

the functionality and the capability of the embedded products.
Organization of the CMSIS

The CMSIS is divided into multiple layers:
Core Peripheral Access Layer
• Name definitions, address definitions, and helper functions to access core registers and

core peripherals like the NVIC, SCB, and SysTick
Middleware Access Layer (work in progress)
• Common method to access peripherals for typical embedded systems

• Targeted at communication interfaces including UART, Ethernet, and SPI

• Allows embedded software to be used on any Cortex microcontrollers that support the

required communication interface
Device Peripheral Access Layer (MCU specific)
• Register name definitions, address definitions, and device driver code to access

peripherals
Access Functions for Peripherals (MCU specific)
• Optional helper functions for peripherals

The role of these layers is summarized in Figure 4.17.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

User Application code

Real-Time
KernelRTOS

Middleware
Components

CMSIS

Peripheral Registers and Interrupt/Exception Vector Definitions

Core Peripheral
Functions

Middleware
Access Functions

Device
Peripheral
Functions

MCU
Other

Peripherals

Cortex-M processor

NVIC

Nested Vector
Interrupt
Controller

SysTick

RTOS Kernel
Timer

Debug/Trace

Interface

Processor

Core

Figure 4.17:
CMSIS structure.

68 Chapter 4
Using CMSIS

The CMSIS is an integrated part of the device driver package provided by the microcontroller

vendors. If you are using the device driver libraries for software development, you are already

using the CMSIS. If you are not using device driver libraries frommicrocontroller vendors, you

can still use CMSIS by downloading the CMSIS package from OnARMweb site (www.onarm.

com), unpacking the files, and adding the required files for your project.

For C program code, normally you only need to include one header file provided in the device

driver library from your microcontroller vendor. This header file then pulls in the all the

required header files for CMSIS features as well as peripheral drivers.

You also need to include the CMSIS-compliant startup code, which can be either in C or

assembly code. CMSIS provides various versions of startup code customized for different tool

chains.

Figure 4.18 shows a simple project setup using the CMSIS package. The name of some the files

depends on the actual microcontroller device name (indicated as <device> in Figure 4.18).

When you use the header file provided in the device driver library, it automatically includes the

other required header files for you (Table 4.4).

Administrator
高亮

Administrator
高亮

Administrator
高亮

http://www.onarm.com
http://www.onarm.com

Project
Start up code
(including the
vector table)

Application
code

Peripheral
driver files

#include <device>.h

int main(void)
{

<device>.h

Core peripheral access
layercore_cm0.h

core_cm0.c Functions for accessing
special instructions

system_<device>.h

system_<device>.c

Other header files

Interrupt number and
peripheral registers
definitions

System functions including
initialization

Device peripheral access
layer and additional access
functions

Multiple startup files
for different tool

chains

Peripheral driver
code

core_cm0.c

system_<device>.c

CMSIS compliant

device driver

library

core_cmFunc.h Header for special registers
access functions (CMSIS v2)

core_cmInstr.h Header for special instruction
access functions (CMSIS v2)

Figure 4.18:
Using CMSIS in a project.

Introduction to Cortex-M0 Programming 69
Figure 4.19 shows a simple example of using CMSIS.

Typically, information and examples of using CMSIS can be found in the device driver libraries

package from your microcontroller vendor. There are also some simple examples of using the

CMSIS in the CMSIS package on the OnARM web site (www.onarm.com).

Benefits of CMSIS

For most users, CMSIS offer a number of key advantages.

Porting of applications from one Cortex-M microcontroller to another Cortex-M

microcontroller is much easier. For example, most of the interrupt control functions are

available for Cortex-M0, Cortex-M3, and Cortex-M4 (only a few functions for Cortex-M3/M4

are not available for Cortex-M0 because of the extra functionality of the Cortex-M3/M4

processors). This makes it straightforward to reuse the same application code for a different

project. You can migrate a Cortex-M3 project to Cortex-M0 for lower cost, or you can move

a Cortex-M0 project to Cortex-M3 if higher performance is required.

Administrator
下划线

http://www.onarm.com

Table 4.4: Files in CMSIS

Files Descriptions

<device>.h A file provided by the microcontroller vendor that includes other header files and
provides definitions for a number of constants required by CMSIS, definitions of
device specific exception types, peripheral register definitions, and peripheral address
definitions. The actual filtername depends on the device.

core_cm0.h The file core_cm0.h contains the definitions of the registers for processor peripherals
like NVIC, System Tick Timer, and System Control Block (SCB). It also provides the
core access functions like interrupt control and system control. This file and the file
core_cm0.c provide the core peripheral access layer of the CMSIS. In CMSIS version
2, this file is spitted into multiple files (see Figure 4.18).

core_cm0.c The file core_cm0.c provides intrinsic functions of the CMSIS. The CMSIS intrinsic
functions are compiler independent.

Startup code Multiple versions of the startup code can be found in CMSIS because it is tools
specific. The startup code contains a vector table and dummy definitions for
a number of system exceptions handler, and from version 1.30 of the CMSIS, the
reset handler also executes the system initialization function “void SystemInit(void)”
before it branches to the C startup code.

system_<device>.h This is a header file for functions implemented in system_<device>.c
system_<device>.c This file contains the implementation of the system initialization function “void

SystemInit(void),” the definition of the variable “SystemCoreClock” (processor clock
speed) and a function called “void SystemCoreClockUpdate(void)” that is used after
clock frequency changes to update “SystemCoreClock.” The “SystemCoreClock”
variable and the “SystemCoreClockUpdate” are available from CMSIS version 1.3.

Other files There are additional files for peripheral control code and other helper functions.
These files provide the device peripheral access layer of the CMSIS.

#include “vendor_device.h”

void main(void) {
SystemInit();
…
NVIC_SetPriority(UART1_IRQn, 0x0);
NVIC_EnableIRQ(UART1_IRQn);
…

}
void UART1_IRQHandler {
...

}

void SysTick_Handler(void) {
…
}

Common name for system
initialization code

(from CMSIS v1.30, this function
is called from startup code)

Interrupt numbers defined in
system_<device>.h

NVIC setup by core access
functions

System exception handler
names are common to all
Cortex-M microcontrollers

Peripheral interrupt names are
device specific, defined in

device specific startup code

Figure 4.19:
CMSIS example.

70 Chapter 4

Administrator
高亮

Administrator
高亮

Introduction to Cortex-M0 Programming 71
Learning to use a new Cortex-M microcontroller is made easier. Once you have used one

Cortex-M microcontroller, you can start using another quickly because all CMSIS device

driver libraries have the same core functions and a similar look and feel.

The CMSIS also lowers the risk of incompatibility when integrating third-party software

components. Because middleware and an embedded RTOS will be based on the same core

peripheral register definitions and core access functions in CMSIS files, this reduces the chance

of conflicting code. This can happen when multiple software components carry their own core

access functions and register definitions. Without CMSIS, you might possibly find that

different third-party software programs contain unique driver functions. This could lead to

register name clashes, confusion because of multiple functions with similar names, and a waste

of code space as a result of duplicated functions (Figure 4.20).
Driver library from
OS / middleware

vendor

Driver Library from
Microcontroller

vendors

Embedded OS /
middlewareApplication

Peripherals Processor
core

Embedded
OS /

middleware
Application

Peripherals Processor
core

Driver Library from
Microcontroller vendors with

CMSIS

Without CMSIS, an embedded OS or
middleware needs to include processor

core access functions, and might need to
include a few peripheral drivers.

With CMSIS, an embedded OS or
middleware can use standardized core
access functions from a driver library

Figure 4.20:
CMSIS avoids overlapping of driver code.
CMSIS makes your software code future proof. Future Cortex-M microcontrollers will also

have CMSIS support, so you can reuse your application code in future products.

The CMSIS core access functions have a small memory footprint. Multiple parties have tested

CMSIS, and this helps reduce your software testing time. The CMSIS is Motor Industry

Software Reliability Association (MISRA) compliant.

For companies developing an embedded OS or middleware products, the advantage of CMSIS

is significant. Because CMSIS supports multiple compiler suites and is supported by multiple

microcontroller vendors, the embedded OS or middleware developed with CMSIS can work on

multiple complier products and can be used on multiple microcontroller families. Using

CMSIS also means that these companies do not have to develop their own portable device

drivers, which saves development time and verification efforts.

Administrator
下划线

Administrator
下划线

Administrator
下划线

CHAPTER 5

Instruction Set

Background of ARM and Thumb Instruction Set

The early ARM processors use a 32-bit instruction set called the ARM instructions. The

32-bit ARM instruction set is powerful and provides good performance, but at the same time

it often requires larger program memory when compared to 8-bit and 16-bit processors. This

was and still is an issue, as memory is expensive and could consume a considerable amount

of power.

In 1995, ARM introduced the ARM7TDMI processor, adding a new 16-bit instruction set

called the Thumb instruction set. The ARM7TDMI supports both ARM instructions and

Thumb instructions, and a state-switching mechanism is used to allow the processor to decide

which instruction decode scheme should be used (Figure 5.1). The Thumb instruction set

provides a subset of the ARM instructions. By itself it can perform most of the normal

functions, but interrupt entry sequence and boot code must still be in ARM state. Nevertheless,

most processing can be carried out using Thumb instructions and interrupt handlers could

switch themselves to use the Thumb state, so the ARM7TDMI processor provides excellent

code density when compared to other 32-bit RISC architectures.
Incoming
Instructions

Thumb remap
to ARM

ARM
instruction
decoder

Execution
stage

T bit (0 = ARM,
1 = Thumb)

0

1

Instruction decode
format selection

Figure 5.1:
ARM7TDMI design supports both ARM and the Thumb instruction set.
Thumb code provides a code size reduction of approximately 30% compared to the equivalent

ARM code. However, it has some impact on the performance and can reduce the performance

by 20%. On the other hand, in many applications, the reduction of program memory size and
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10005-9

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

73

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

http://dx.doi.org/10.1016/B978-0-12-385477-3.10005-9

74 Chapter 5
the low-power nature of the ARM7TDMI processor made it extremely popular with portable

electronic devices like mobile phones and microcontrollers.

In 2003, ARM introduced Thumb-2 technology. This technology provides a number of

32-bit Thumb instructions as well as the original 16-bit Thumb instructions. The new

32-bit Thumb instructions can carry out most operations that previously could only be

done with the ARM instruction set. As a result, program code compiled for Thumb-2 is

typically 74% of the size of the same code compiled for ARM, but it maintains similar

performance.

The Cortex-M3 processor is the first ARM processor that supports only Thumb-2 instructions.

It can deliver up to 1.25 DMIPS per MHz (measured with Dhrystone 2.1), and various

microcontroller vendors are already shipping microcontroller products based on the Cortex-

M3 processor. By implementing only one instruction set, the software development is made

simpler and at the same time improves the energy efficiency because only one instruction

decoder is required (Figure 5.2).
Incoming
Instructions

Thumb-2
instruction
decoder

Execution
stage

Figure 5.2:
Cortex-M processors do not have to remap instructions from Thumb to ARM.
In the ARMv6-M architecture used in the Cortex-M0 processor, in order to reduce the circuit

size to a minimum, only the 16-bit Thumb instructions and a minimum subset of 32-bit Thumb

instructions are supported. These 32-bit Thumb instructions are essential because the

ARMv6-M architecture uses a number of features in the ARMv7-M architecture, which

requires these instructions. For example, the accesses to the special registers require the MSR

and MRS instructions. In addition, the Thumb-2 version of Branch and Link instruction (BL) is

also included to provide a larger branch range.

Although the Cortex-M0 processor does not support many 32-bit Thumb instructions, the

Thumb instruction set used in the Cortex-M0 processor is a superset of the original 16-bit

Thumb instructions supported on the ARM7TDMI, which is based on ARMv4T architecture.

Over the years, both ARM and Thumb instructions have gone through a number of

enhancements as the architecture has evolved. For example, a number of instructions for data

type conversions have been added to the Thumb instruction set for the ARMv6 and ARMv6-M

architectures. These instruction set enhancements, along with various implementation opti-

mizations, allow the Cortex-M0 processor to deliver the same level of performance as an

ARM7TDMI running ARM instructions.

Administrator
高亮

Administrator
下划线

Instruction Set 75
Table 5.1 shows the base 16-bit Thumb instructions supported in the Cortex-M0.
Table 5.1: 16-Bit Thumb Instructions Supported on the Cortex-M0 Processor

16-Bit Thumb Instructions Supported on Cortex-M0

ADC ADD ADR AND ASR B BIC BLX BKPT BX
CMN CMP CPS EOR LDM LDR LDRH LDRSH LDRB LDRSB
LSL LSR MOV MVN MUL NOP ORR POP PUSH REV
REV16 REVSH ROR RSB SBC SEV STM STR STRH STRB
SUB SVC SXTB SXTH TST UXTB UXTH WFE WFI YIELD
The Cortex-M0 processor also supports a number of 32-bit Thumb instructions from Thumb-2

technology (Table 5.2):

• MRS and MSR special register access instructions

• ISB, DSB, and DMB memory synchronization instructions

• BL instruction (BL was supported in traditional Thumb instruction set, but the bit field

definition was extended in Thumb-2)
Table 5.2: 32-Bit Thumb Instructions Supported on the Cortex-M0 Processor

32-Bit Thumb Instructions Supported on Cortex-M0

BL DSB DMB ISB MRS MSR
Assembly Basics

This chapter introduces the instruction set of the Cortex-M0 processor. In most situations,

application code can be written entirely in C language and therefore it is not necessary to

know the details of the instruction set. However, it is still useful to know what instructions

are available and their usages; for example, this information might be needed during

debugging.

The complete details of each instruction are documented in the ARMv6-M Architecture

Reference Manual (reference 3). Here, the basic syntax and usage are introduced. First of all, to

help explain the assembly instructions covered in this chapter, some of the basic information

about assembly syntax is introduced here.

Quick Glance at Assembly Syntax

Most of the assembly examples in this book are written for the ARM assembler (armasm).

Assembly tools from different vendors (e.g., GNU tool chain) have different assembly syntax.

In most cases, the mnemonics of the assembly instructions are the same, but compile directives,

definitions, labeling, and comment syntax can be different.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

76 Chapter 5
For ARM assembly (applies to ARM RealView Development Suite and Keil Microcontroller

Development Kit), the following instruction formatting is used:
labe

labe
l
mnemonic operand1, operand2,. ; Comments
The “label” is used as a reference to an address location. It is optional; some instructions might

have a label in front of them so that the address of the instruction can be obtained using the label.

Labels can also be used to reference data addresses. For example, you can put a label for a lookup

table inside the program. After the “label,” you can find the “mnemonic,” which is the name of

the instruction, followed by a number of operands. For data processing instructions written for

the ARM assembler, the first operand is the destination of the operation. For a memory read or

write, the first operand is the register that data are loaded into or the register that holds the write

data (except for instructions that handle multiple loads and stores, which have a different

syntax). The number of operands for each instruction depends on the instruction type. Some

instructions do not need any operands, and some might need just one operand.

Note that some mnemonics can use different types of operands and can result in different

instruction encodings. For example, the MOV (move) instruction can be used to transfer data

between two registers, or it can be used to put an immediate constant value into a register.

The number of operands in an instruction depends on what type of instruction it is, and the

syntax format can also be different. For example, immediate data are usually prefixed with “#”:
MOVS R0, #0x12 ; Set R0 ¼ 0x12 (hexadecimal)
MOVS R1, #‘A’ ; Set R1 ¼ ASCII character A
The text after each semicolon “;” is a comments. Comments do not affect the program oper-

ation but should make programs easier for humans to understand.

With GNU tool chain, the common assembly syntax is
l:
mnemonic operand1, operand2,. /* Comments */
The opcode and operands are the same as theARMassembler syntax, but the syntax for label and

comments is different. For the same instructions as in the previous example, the GNU version is
MOVS R0, #0x12 /* Set R0 ¼ 0x12 (hexadecimal) */
MOVS R1, #’A’ /* Set R1 ¼ ASCII character A */
One of the commonly required features in assembly code is constant definitions. By using

constant definitions, the program code can be more readable and can make code maintenance

easier. In ARM assembly, an example of defining a constant is
NVIC_IRQ_SETEN EQU 0xE000E100
NVIC_IRQ0_ENABLE EQU 0x1

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Instruction Set 77
.
LDR R0,¼NVIC_IRQ_SETEN ; Put 0xE000E100 into R0

; LDR here is a pseudo instruction that will be converted
; to a PC relative literal data load by the assembler

MOVS R1, #NVIC_IRQ0_ENABLE ; Put immediate data (0x1) into
; register R1

STR R1, [R0] ; Store 0x1 to 0xE000E100, this enable external
; interrupt IRQ#0
Similarly, the same code can be written with GNU tool chain assembler syntax:
.equ NVIC_IRQ_SETEN, 0xE000E100

.equ NVIC_IRQ0_ENABLE, 0x1

.
LDR R0,¼NVIC_IRQ_SETEN /* Put 0xE000E100 into R0

LDR here is a pseudo instruction that will be
converted to a PC relative load by the assembler */

MOVS R1, #NVIC_IRQ0_ENABLE /* Put immediate data (0x1) into
register R1 */

STR R1, [R0] /* Store 0x1 to 0xE000E100, this enable
external interrupt IRQ#0 */
Another typical feature in most assembly tools is allowing data to be inserted inside programs.

For example, we can define data in a certain location in the program memory and access it

with memory read instructions. In the ARM assembler, an example is
LDR R3,¼MY_NUMBER ; Get the memory location of MY_NUMBER
LDR R4, [R3] ; Read the value 0x12345678 into R4
.
LDR R0,¼HELLO_TEXT ; Get the starting address of HELLO_TEXT
BL PrintText ; Call a function called PrintText to

; display string

.
ALIGN 4

MY_NUMBER DCD 0x12345678
HELLO_TEXT DCB “Hello\n”, 0 ; Null terminated string
In the preceding example, “DCD” is used to insert a word-size data, and “DCB” is used to

insert byte-size data into the program. When inserting word-size data in program, we should

use the “ALIGN” directive before the data. The number after the ALIGN directive determines

the alignment size; in this case, the value is 4, which forces the following data to be aligned to

a word boundary. Unaligned accesses are not supported in the Cortex-M0 processor. By

ensuring the data following (MY_NUMBER) is word aligned, the program will be able to

access the data correctly, avoiding any potential alignment faults.

Again, this example can be rewritten into GNU tool chain assembler syntax:
LDR R3,¼MY_NUMBER /* Get the memory location of MY_NUMBER */
LDR R4, [R3] /* Read the value 0x12345678 into R4 */

Typ
to

Wo

Ha

Byt

Stri

Ins

Suf

S

EQ
PL,
LT,

78 Chapter 5
.
LDR R0,¼HELLO_TEXT /* Get the starting address of

HELLO_TEXT */
BL PrintText /* Call a function called PrintText to

display string */
.
.align 4

MY_NUMBER:
.word 0x12345678

HELLO_TEXT:
.asciz “Hello\n” /* Null terminated string */
A number of different directives are available in both the ARM assembler and the GNU

assembler for inserting data into a program. Table 5.3 presents a few commonly used

examples.
Table 5.3: Commonly Used Directives for Inserting Data into a Program

e of Data
Insert

ARM Assembler GNU Assembler

rd DCD
(e.g., DCD 0x12345678)

.word / .4byte
(e.g., .word 0x012345678)

lf word DCW
(e.g., DCW 0x1234)

.hword / .2byte
(e.g., .hword 0x01234)

e DCB
(e.g., DCB 0x12)

.byte
(e.g., .byte 0x012)

ng DCB
(e.g., TXT DCB “Hello\n”, 0)

.ascii /.asciz (with NULL termination)
(e.g., .ascii “Hello\n”
.byte 0 /* add NULL character */)
(e.g., .asciz “Hello\n”)

truction DCI
(e.g., DCI 0xBE00 ; Breakpoint-BKPT 0)

.word /.hword
(e.g., .hword 0xBE00
/* Breakpoint (BKPT 0) */)
Use of a Suffix

In the assembler for ARM processors, some instructions can be followed by suffixes. For

Cortex-M0, the available suffixes are shown in Table 5.4.
Table 5.4: Suffixes for Cortex-M0 Assembly Language

fix Descriptions

Update APSR (flags); for example,
ADDS R0, R1; this ADD operation will update APSR

, NE, CS, CC, MI,
VS, VC, HI, LS, GE,
GT, LE

Conditional execution. EQ ¼ Equal, NE¼ Not Equal, LT¼ Less Than, GT¼ Greater
Than, etc. On the Cortex-M0 processor, these conditions can only be applied to
conditional branches. For example,
BEQ label; branch to label if equal

Instruction Set 79
For the Cortex-M0 processor, most of the data processing instructions always update the APSR

(flags); only a few of the data operations do not update the APSR. For example, when moving

a piece of data from one register to another, it is possible to use
MOVS R0, R1 ; Move R1 into R0 and update APSR
or
MOV R0, R1 ; Move R1 into R0
The second group of suffixes is for conditional execution of instructions. In the Cortex-M0

processor, the only instruction that can be conditionally executed is a conditional branch. By

updating the APSR using data operations, or instructions like test (TST) or compare (CMP),

the program flow can be controlled. More details of this instruction will be covered later in this

chapter when the conditional branch is introduced.

Thumb Code and Unified Assembler Language (UAL)

Traditionally, programming of the ARM processors in Thumb state is done with the Thumb

Assembly syntax. To allow better portability between architectures and to use a single assembly

language syntax between different ARM processors with various architectures, recent ARM

development tools have been updated to support the Unified Assembler Language (UAL). For

users who have used ARM7TDMI in the past, the most noticeable differences are the following:

• Some data operation instructions use three operands even when the destination register is

the same as one of the source registers. In the past (pre-UAL), syntax might only use two

operands for the same instructions.

• The “S” suffix becomes more explicit. In the past, when an assembly program file was

assembled into Thumb code, most data operations were implied as instructions that

updated the APSR; as a result, the “S” suffix was not essential. With the UAL syntax,

instructions that update the APSR should have the “S” suffix to clearly indicate the

expected operation. This prevents program code from failing when being ported from

one architecture to another.

For example, a pre-UAL ADD instruction for 16-bit Thumb code is
ADD R0, R1 ; R0 ¼ R0 þ R1, update APSR
With UAL syntax, this should be written as
ADDS R0, R0, R1 ; R0 ¼ R0 þ R1, update APSR
But in most cases (dependent on tool chain being used), you can still write the instruction with

a pre-UAL style (only two operands), but the use of “S” suffix will be more explicit:
ADDS R0, R1 ; R0 ¼ R0 þ R1, update APSR

80 Chapter 5
Most development tools still accept the pre-UAL syntax, including the ARM RealView

Development Suite (RVDS) and the Keil Microcontroller Development Kit for ARM (MDK).

However, the use of UAL is recommended for new projects. For assembly development with

RVDS or Keil MDK, you can specify using UAL syntax with “THUMB” directives and pre-

UAL syntax with “CODE16” directives. The choice of assembler syntax depends on which

tool you use. Please refer to the documentation for your development suite to determine the

suitable syntax.

Instruction List

The instructions in the Cortex-M0 processor can be divided into various groups based on

functionality:

• Moving data within the processor

• Memory accesses

• Stack memory accesses

• Arithmetic operations

• Logic operations

• Shift and rotate operations

• Extend and reverse ordering operations

• Program flow control (branch, conditional branch, and function calls)

• Memory barrier instructions

• Exception-related instructions

• Other functions

In this section, the instructions are discussed in more detail. The syntax illustrated here uses

symbols “Rd,” “Rm,” and the like. In real program code, these need to be substituted with

register names R0, R1, R2, and so on.

Moving Data within the Processor

Transferring data is one of the most common tasks in a processor. In Thumb code, the

instruction mnemonic for moving data is MOV. There are several types of MOV instructions,

based on the operand type and opcode suffix.
Instruction MOV
Function
 Move register into register

Syntax (UAL)
 MOV <Rd>, <Rm>

Syntax (Thumb)
 MOV <Rd>, <Rm>

CPY <Rd>, <Rm>

Note
 Rm and Rn can be high or low registers

CPY is a pre-UAL synonym for MOV (register)

Instruction Set 81
If we want to copy a register value to another and update the APSR at the same time, we could

use MOVS/ADDS.
Instruction MOVS/ADDS
Function
 Move register into register

Syntax (UAL)
 MOVS <Rd>, <Rm>

ADDS <Rd>, <Rm>, #0

Syntax (Thumb)
 MOVS <Rd>, <Rm>

Note
 Rm and Rn are both low registers

APSR.Z, APSR.N, and APSR.C (for ADDS) update
We can also load an immediate data element into a register using the MOV instruction.
Instruction MOV
Function
 Move immediate data (sign extended) into register

Syntax (UAL)
 MOVS <Rd>, #immed8

Syntax (Thumb)
 MOV <Rd>, #immed8

Note
 Immediate data range 0 to þ255

APSR.Z and APSR.N update
If we want to load an immediate data element into a register that is out of the 8-bit value range,

we need to store the data into a program memory space and then use a memory access

instruction to read the data into the register. This can be written using a pseudo instruction

LDR, which the assembler converts into a real instruction. This process will be covered later in

this chapter.

The MOV instructions can cause a branch to happen if the destination register is R15 (PC).

However, generally the BX instruction is used for this purpose.

Another type of data transfer in the Cortex-M0 processor is Special Registers accesses. To

access the Special Registers (CONTROL, PRIMASK, xPSR, etc.), the MRS and MSR

instructions are needed. These two instructions cannot be generated in C language. However,

they can be created using inline assembler or Embedded Assembler,3 or another C compilere

specific feature like the named register variables feature in ARM RVDS or Keil MDK.
Instruction MRS
Function
 Move Special Register into register

Syntax
 MRS <Rd>, <SpecialReg>

Note
 Example:

MRSR0, CONTROL; ReadCONTROL register into R0
MRS R9, PRIMASK; Read PRIMASK register into R9
MRS R3, xPSR; Read xPSR register into R3

82 Chapter 5
Table 5.5 shows the complete list of special register symbols that are available on the Cortex-

M0 processor when MSR and MRS instructions are used.
Table 5.5: Special Register Symbols for MRS and MSR Instructions

Symbol Register Access Type

APSR Application Program Status Register (PSR) Read/Write
EPSR Execution PSR Read only
IPSR Interrupt PSR Read only
IAPSR Composition of IPSR and APSR Read only
EAPSR Composition of EPSR and APSR Read only
IEPSR Composition of IPSR and EPSR Read only
XPSR Composition of APSR, EPSR, and IPSR Read only
MSP Main stack pointer Read/Write
PSP Process stack pointer Read/Write
PRIMASK Primary exception mask register Read/Write
CONTROL CONTROL register Read/Write in Thread mode

Read only in Handler mode
Transfer Size

Word
Half word
Byte
Instruction MSR
Table 5.6: Memor

Unsigned

LDR
LDRH
LDRB
Function
 Move register into Special Register

Syntax
 MSR <SpecialReg>, <Rd>

Note
 Example:

MSRCONTROL,R0;Write R0 intoCONTROL register
MSR PRIMASK, R9; Write R9 into PRIMASK register
Memory Accesses

The Cortex-M0 processor supports a number of memory access instructions, which support

various data transfer sizes and addressing modes. The supported data transfer sizes are Word,

Half Word and Byte. In addition, there are separate instructions to support signed and unsigned

data. Table 5.6 summarizes the memory address instruction mnemonics.

Most of these instructions also support multiple addressing modes. When the instruction

is used with different operands, the assembler will generate different instruction encoding.
y Access Instructions for Various Transfer Sizes

Load Signed Load Signed/Unsigned Store

LDR STR
LDRSH STRH
LDRSB STRB

Important
It is important to make sure the memory address accessed is aligned. For example, a word size
access can only be carried out on address locations when address bits[1:0] are set to zero, and
a half word size access can only be carried out on address locations when an address bit[0] is
set to zero. The Cortex-M0 processor does not support unaligned transfers. Any attempt at
unaligned memory access results in a hard fault exception. Byte-size transfers are always aligned
on the Cortex-M0 processor.

Instruction Set 83
For memory read operations, the instruction to carry out single accesses is LDR (load):
Instruction LDR/LDRH/LDRB
Function R
ead single memory data into register

Syntax L
DR <Rt>, [<Rn>, <Rm>] ; Word read

LDRH <Rt>, [<Rn>, <Rm>] ; Half Word read
LDRB <Rt>, [<Rn>, <Rm>] ; Byte read
Note R
t ¼ memory[Rn þ Rm]
Rt, Rn and Rm are low registers
The Cortex-M0 processor also supports immediate offset addressing modes:
Instruction LDR/LDRH/LDRB
Function R
ead single memory data into register

Syntax L
DR <Rt>, [<Rn>, #immed5] ; Word read

LDRH <Rt>, [<Rn>, #immed5] ; Half Word read
LDRB <Rt>, [<Rn>, #immed5] ; Byte read
Note R
t ¼ memory[Rn þ ZeroExtend (#immed5 << 2)] ; Word
Rt ¼ memory[Rn þ ZeroExtend(#immed5 << 1)] ; Half word
Rt ¼ memory[Rn þ ZeroExtend(#immed5)] ; Byte
Rt and Rn are low registers
The Cortex-M0 processor supports a useful PC relative load instruction for allowing efficient

literal data accesses. This instruction can be generated when we use the LDR pseudo

instruction for putting an immediate data value into a register. These data are stored alongside

the instructions, called literal pools.
Instruction LDR
Function
 Read single memory data word into register

Syntax
 LDR <Rt>, [PC, #immed8] ; Word read

Note
 Rt ¼ memory[WordAligned(PCþ4) þ ZeroExtend(#immed8 << 2)]

Rt is a low register, and targeted address must be a word-aligned address,
the reason for adding 4.
(Continued)

84 Chapter 5
Instruction LDR
Example:
LDR R0,¼

LDR R0, [

LDR R0, l
0x12345678 ; A pseudo instruction that uses literal load
; to put an immediate data into a register

PC, #0x40] ; Load a data in current program address
; with offset of 0x40 into R0

abel ; Load a data in current program
; referenced by label into R0
There is also an SP-related load instruction, which supports a wider offset range. This

instruction is useful for accessing local variables in C functions because often the local

variables are stored on the stack.
Instruction
 LDR
Function R
ead single memory data word into register

Syntax L
DR <Rt>, [SP, #immed8] ; Word read

Note R
t ¼ memory[SP þ ZeroExtend(#immed8 << 2)]

Rt is a low register
The Cortex-M0 processor can also sign extends the read data automatically using the

LDRSB and LDRSH instructions. This is useful when a signed 8-bit/16-bit data type is used,

which is common in C programs.
Instruction LDRSH/LDRSB
Function R
ead single signed memory data into register

Syntax L
DRSH <Rt>, [<Rn>, <Rm>] ; Half word read

LDRSB <Rt>, [<Rn>, <Rm>] ; Byte read

Note R
t ¼ SignExtend(memory[Rn þ Rm])

Rt, Rn and Rm are low registers
For single data memory writes, the instruction is STR (store):
Instruction STR/STRH/STRB
Function W
rite single register data into memory

Syntax S
TR <Rt>, [<Rn>, <Rm>] ; Word write

STRH <Rt>, [<Rn>, <Rm>] ; Half Word write
STRB <Rt>, [<Rn>, <Rm>] ; Byte write
Note m
emory[Rn þ Rm] ¼ Rt
Rt, Rn and Rm are low registers

Instruction Set 85
Like the load operation, the store operation supports an immediate offset addressing mode:
Instruction STR/STRH/STRB
Function
 Write single memory data into memory

Syntax
 STR <Rt>, [<Rn>, #immed5] ; Word write

STRH <Rt>, [<Rn>, #immed5] ; Half Word write
STRB <Rt>, [<Rn>, #immed5] ; Byte write
Note
 memory[Rn þ ZeroExtend(#immed5 << 2)] ¼ Rt ; Word
memory[Rn þ ZeroExtend(#immed5 << 1)] ¼ Rt ; Half word
memory[Rn þ ZeroExtend(#immed5)] ¼ Rt ; Byte
Rt and Rn are low registers
An SP-relative store instruction, which supports a wider offset range, is also available. This

instruction is useful for accessing local variables in C functions because often the local vari-

ables are stored on the stack.
Instruction STR
Function
 Write single memory data word into memory

Syntax
 STR <Rt>, [SP, #immed8] ; Word write

Note
 memory[SP þ ZeroExtend(#immed8 << 2)] ¼ Rt

Rt is a low register
One of the important features in ARM processors is the ability to load or store multiple

registers with one instruction. There is also an option to update the base address register to the

next location. For load/store multiple instructions, the transfer size is always in word size.

Instruction LDM (Load Multiple)
Function
 Read multiple memory data word into registers, base address register update by memory read

Syntax
 LDM <Rn>, {<Ra>, <Rb> ,..} ; Load multiple registers from memory

Note
 Ra ¼ memory[Rn],

Rb ¼ memory[Rnþ4],
.
Rn, Ra, Rb .. are low registers. Rn is on the list of registers to be updated by memory read.
For example,
LDM R2, {R1, R2, R5 e R7} ; Read R1,R2,R5,R6 and R7 from memory.
Instruction LDMIA (Load Multiple Increment After)/LDMFD e Base Address Register Update

to Subsequence Address
Function
 Read multiple memory data word into registers and update base register

Syntax
 LDMIA <Rn>!, {<Ra>, <Rb> ,..} ; Load multiple registers from memory

; and increment base register after completion

Note
 Ra ¼ memory[Rn],
(Continued)

86 Chapter 5
Instruction LDMIA (Load Multiple Increment After)/LDMFD e Base Address Register Update

to Subsequence Address

Rb ¼ memory[Rnþ4],
.
and then update Rn to last read address plus 4
Rn, Ra, Rb .. are low registers. For example,
LDMIA R0!, {R1, R2, R5 e R7} ; Read multiple registers, R0 update to address after last
read operation.
LDMFD is another name for the same instruction, which was used for restoring data from
a Full Descending stack, in traditional ARM systems that use software managed stacks.
Instruction STMIA (Store Multiple Increment After)/STMEA
Function
 Write multiple register data into memory and update base register

Syntax
 STMIA <Rn>!, {<Ra>, <Rb> ,..} ; Store multiple registers to memory

; and increment base register after completion

Note
 memory[Rn] ¼ Ra,

memory[Rnþ4] ¼ Rb,
.
and then update Rn to last store address plus 4
Rn, Ra, Rb .. are low registers. For example,
STMIA R0!, {R1, R2, R5 e R7} ; Store R1, R2, R5, R6, and R7 to memory

; and update R0 to address after where R7 stored
STMEA is another name for the same instruction, which was used for
storing data to an Empty Ascending stack, in traditional ARM systems that
use software managed stack.
If <Rn> is in the register list, it must be the first register in the register list.
Stack Memory Accesses

Two memory access instructions are dedicated to stack memory accesses. The PUSH

instruction is used to decrement the current stack pointer and store data to the stack. The POP

instruction is used to read the data from the stack and increment the current stack pointer. Both

PUSH and POP instructions allow multiple registers to be stored or restored. However, only

low registers, LR (for PUSH operation) and PC (for POP operation), are supported.
Instruction PUSH
Function
 Write single or multiple registers (low register and LR) into memory and
update base register (stack pointer)
Syntax
 PUSH {<Ra>, <Rb> ,..} ; Store multiple registers to memory and
; decrement SP to the lowest pushed data address

PUSH {<Ra>, <Rb>, .., LR} ; Store multiple registers and LR to
; memory and decrement SP to the lowest pushed data address
(Continued)

Instruction Set 87
Instruction PUSH
Note
 memory[SP-4] ¼ Ra,
memory[SP-8] ¼ Rb,
.
and then update SP to last store address. For example,
PUSH {R1, R2, R5 e R7, LR} ; Store R1, R2, R5, R6, R7, and LR to stack
Instruction POP
Function
 Read single or multiple registers (low register and PC) from memory and
update base register (stack pointer)
Syntax
 POP {<Ra>, <Rb> ,..} ; Load multiple registers from memory
; and increment SP to the last emptied stack address plus 4

POP {<Ra>, <Rb>, .., PC} ; Load multiple registers and PC from
; memory and increment SP to the last emptied stack
; address plus 4
Note
 Ra ¼ memory[SP],
Rb ¼ memory[SPþ4],
.
and then update SP to last restored address plus 4. For example,
POP {R1, R2, R5 e R7} ; Restore R1, R2, R5, R6, R7 from stack
By allowing the Link Register (LR) and Program Counter (PC) to be used with the PUSH and

the POP instructions, a function call can combine the register restore and function return

operations into a single instruction. For example,
my_function
PUSH {R4, R5, R7, LR} ; Save R4, R5, R7 and LR (return address)
. ; function body
POP {R4, R5, R7, PC} ; Restore R4, R5, R7 and return
Arithmetic Operations

The Cortex-M0 processor supports a number of arithmetic operations. The most basic are add,

subtract, twos complement, and multiply. For most of these instructions, the operation can be

carried out between two registers, or between one register and an immediate constant.
Instruction ADD
Function
 Add two registers

Syntax (UAL)
 ADDS <Rd>, <Rn>, <Rm>

Syntax (Thumb)
 ADD <Rd>, <Rn>, <Rm>

Note
 Rd ¼ Rn þ Rm, APSR update.

Rd, Rn, Rm are low registers.

88 Chapter 5
Instruction ADD

Function Add an immediate constant into a register
Syntax (UAL) ADDS <Rd>, <Rn>, #immed3
ADDS <Rd>, #immed8

Syntax (Thumb)
 ADD <Rd>, <Rn>, #immed3

ADD <Rd>, #immed8

Note
 Rd ¼ Rn þ ZeroExtend(#immed3), APSR update, or

Rd ¼ Rd þ ZeroExtend(#immed8), APSR update.
Rd, Rn, Rm are low registers.
Instruction ADD
Function
 Add two registers without updating APSR

Syntax (UAL)
 ADD <Rd>, <Rm>

Syntax (Thumb)
 ADD <Rd>, <Rm>

Note
 Rd ¼ Rd þ Rm.

Rd, Rm can be high or low registers.
Instruction ADD
Function
 Add stack pointer to a register without updating APSR

Syntax (UAL)
 ADD <Rd>, SP, <Rd>

Syntax (Thumb)
 ADD <Rd>, SP

Note
 Rd ¼ Rd þ SP.

Rd can be high or low register.
Instruction ADD
Function
 Add stack pointer to a register without updating APSR

Syntax (UAL)
 ADD SP, <Rm>

Syntax (Thumb)
 ADD SP, <Rm>

Note
 SP ¼ SP þ Rm.

Rm can be high or low register.
Instruction ADD

Function Add stack pointer to a register without updating APSR

Syntax (UAL)
 ADD <Rd>, SP, #immed8

Syntax (Thumb)
 ADD <Rd>, SP, #immed8

Note
 Rd ¼ SP þ ZeroExtend(#immed8 <<2).

Rd is a low register.

Instruction Set 89
Instruction ADD

Function Add an immediate constant to stack pointer
Syntax (UAL) ADD SP, SP, #immed7
Syntax (Thumb) ADD SP, #immed7

Note S
P ¼ SP þ ZeroExtend(#immed7 <<2).

This instruction is useful for C functions to adjust the SP for local variables.
Instruction ADR (ADD)
Function A
dd an immediate constant with PC to a register without updating APSR

Syntax (UAL) A
DR <Rd>, <label> (normal syntax)

ADD <Rd>, PC, #immed8 (alternate syntax)

Syntax (Thumb) A
DR <Rd>, (normal syntax)

ADD <Rd>, PC, #immed8 (alternate syntax)

Note R
d ¼ (PC[31:2]<<2) þ ZeroExtend(#immed8 <<2).

This instruction is useful for locating a data address within the program memory
near to the current instruction. The result address must be word aligned.
Rd is a low register.
Instruction ADC

Function Add with carry and update APSR

Syntax (UAL)
 ADCS <Rd>, <Rm>

Syntax (Thumb)
 ADC <Rd>, <Rm>

Note
 Rd ¼ Rd þ Rm þ Carry

Rd and Rm are low registers.
Instruction SUB
Function
 Subtract two registers

Syntax (UAL)
 SUBS <Rd>, <Rn>, <Rm>

Syntax (Thumb)
 SUB <Rd>, <Rn>, <Rm>

Note
 Rd ¼ Rn � Rm, APSR update.

Rd, Rn, Rm are low registers.
Instruction SUB

Function Subtract a register with an immediate constant

Syntax (UAL)
 SUBS <Rd>, <Rn>, #immed3

SUBS <Rd>, #immed8

Syntax (Thumb)
 SUB <Rd>, <Rn>, #immed3

SUB <Rd>, #immed8

Note
 Rd ¼ Rn � ZeroExtend(#immed3), APSR update, or

Rd ¼ Rd � ZeroExtend(#immed8), APSR update.
Rd, Rn are low registers.

90 Chapter 5
Instruction SUB

Function Subtract SP by an immediate constant
Syntax (UAL) SUB SP, SP, #immed7
Syntax (Thumb) SUB SP, #immed7

Note S
P ¼ SP - ZeroExtend(#immed7 <<2).

This instruction is useful for C functions to
adjust the SP for local variables.
Instruction SBC

Function Subtract with carry (borrow)
Syntax (UAL) SBCS <Rd>, <Rd>, <Rm>

Syntax (Thumb) S
BC <Rd>, <Rm>

Note R
d ¼ Rd e Rm e Borrow, APSR update.

Rd and Rm are low registers.
Instruction
 RSB
Function R
everse Subtract (negative)

Syntax (UAL) R
SBS <Rd>, <Rn>, #0

Syntax (Thumb) N
EG <Rd>, <Rn>

Note R
d ¼ 0 e Rm, APSR update.

Rd and Rm are low registers.
Instruction MUL

Function Multiply

Syntax (UAL) M
ULS <Rd>, <Rm>, <Rd>

Syntax (Thumb) M
UL <Rd>, <Rm>

Note R
d¼ Rd * Rm, APSR.N, and APSR.Z update.

Rd and Rm are low registers.
There are also a few compare instructions that compare (using subtract) values and update flags

(APSR), but the result of the comparison is not stored.
Instruction CMP
Function C
ompare

Syntax (UAL) C
MP <Rn>, <Rm>

Syntax (Thumb) C
MP <Rn>, <Rm>

Note C
alculate Rn � Rm, APSR update but

subtract result is not stored.

Instruction Set 91
Instruction CMP

Function Compare
Syntax (UAL) CMP <Rn>, #immed8
Syntax (Thumb) CMP <Rn>, #immed8

Note C
alculate Rd e ZeroExtended(#immed8), APSR update but

subtract result is not stored. Rn is a low register.
Instruction CMN

Function Compare negative

Syntax (UAL) C
MN <Rn>, <Rm>

Syntax (Thumb) C
MN <Rn>, <Rm>

Note C
alculate RneNEG(Rm), APSR update but subtract result is not

stored. Effectively the operation is an ADD.
Logic Operations

Another set of essential operations in most processors is made up of logic operations. For

logical operations, the Cortex-M0 processor has a number of instructions available, including

basic features like AND, OR, and the like. In addition, it has a number of instructions for

compare and testing.
Instruction AND
Function
 Logical AND

Syntax (UAL)
 ANDS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 AND <Rd>, <Rm>

Note
 Rd ¼ AND(Rd, Rm), APSR.N, and APSR.Z update.

Rd and Rm are low registers.
Instruction ORR
Function
 Logical OR

Syntax (UAL)
 ORRS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 ORR <Rd>, <Rm>

Note
 Rd ¼ OR(Rd, Rm), APSR.N, and APSR.Z update.

Rd and Rm are low registers.
Instruction EOR

Function Logical Exclusive OR
Syntax (UAL) EORS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 EOR <Rd>, <Rm>

Note
 Rd ¼ XOR(Rd, Rm), APSR.N, and APSR.Z update.

Rd and Rm are low registers.

92 Chapter 5
Instruction BIC

Function Logical Bitwise Clear
Syntax (UAL) BICS <Rd>, <Rd>, <Rm>

Syntax (Thumb) B
IC <Rd>, <Rm>

Note R
d ¼ AND(Rd, NOT(Rm)), APSR.N, and APSR.Z update.

Rd and Rm are low registers.
Instruction MVN

Function Logical Bitwise NOT

Syntax (UAL)
 MVNS <Rd>, <Rm>

Syntax (Thumb)
 MVN <Rd>, <Rm>

Note
 Rd ¼ NOT(Rm), APSR.N, and APSR.Z update.

Rd and Rm are low registers.
Instruction TST

Function Test (bitwise AND)

Syntax (UAL)
 TST <Rn>, <Rm>

Syntax (Thumb)
 TST <Rn>, <Rm>

Note
 Calculate AND(Rn, Rm), APSR.N, and APSR.Z update, but

the AND result is not stored.
Rd and Rm are low registers.
Shift and Rotate Operations

The Cortex-M0 also supports shift and rotate instructions. It supports both arithmetic shift

operations (the datum is a signed integer value where MSB needs to be reserved) as well as

logical shift.
Instruction ASR
Function
 Arithmetic Shift Right

Syntax (UAL)
 ASRS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 ASR <Rd>, <Rm>

Note
 Rd ¼ Rd >> Rm, last bit shift out is copy to APSR.C,

APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
Instruction ASR
Function
 Arithmetic Shift Right

Syntax (UAL)
 ASRS <Rd>, <Rm>, #immed5
(Continued)

Instruction Set 93
Instruction ASR
Arithmetic Shift Rig

Logical Shift Lef

Logical Shift Rig
Syntax (Thumb)
 ASR <Rd>, <Rm>, #immed5

Note
 Rd ¼ Rm >> immed5, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
When ASR is used, the MSB of the result is unchanged, and the Carry flag is updated using the

last bit shifted out (Figure 5.3).
ht (ASR)

CRegister

Figure 5.3:
Arithmetic Shift Right.
For logical shift operations, the instructions are LSL (Figure 5.4) and LSR (Figure 5.5).
Instruction LSL
Function
 Logical Shift Left

Syntax (UAL)
 LSLS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 LSL <Rd>, <Rm>

Note
 Rd ¼ Rd << Rm, last bit shifted out is copied to APSR.C,

APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
t (LSL)

C Register 0

Figure 5.4:
Logical Shift Left.

ht (LSR)

CRegister0

Figure 5.5:
Logical Shift Right.

94 Chapter 5
Instruction LSL
Rotate Right
Function L
ogical Shift Left

Syntax (UAL) L
SLS <Rd>, <Rm>, #immed5

Syntax (Thumb) L
SL <Rd>, <Rm>, #immed5

Note R
d ¼ Rm << #immed5, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
Instruction LSR
Function
 Logical Shift Right

Syntax (UAL)
 LSRS <Rd>, <Rd>, <Rm>

Syntax (Thumb)
 LSR <Rd>, <Rm>

Note
 Rd ¼ Rd >> Rm, last bit shifted out is copied to APSR.C,

APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
Instruction LSR
Function
 Logical Shift Right

Syntax (UAL)
 LSRS <Rd>, <Rm>, #immed5

Syntax (Thumb)
 LSR <Rd>, <Rm>, #immed5

Note
 Rd ¼ Rm >> #immed5, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.
There is only one rotate instruction, ROR (Figure 5.6).
(ROR)

CRegister

Figure 5.6:
Rotate Right.
Instruction ROR
Function R
otate Right

Syntax (UAL) R
ORS <Rd>, <Rd>, <Rm>

Syntax (Thumb) R
OR <Rd>, <Rm>

Note R
d ¼ Rd rotate right by Rm bits, last bit shifted out is copied

to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Instruction Set 95
If a rotate left operation is needed, this can be done using a ROR with a different offset:

Rotate LeftðData; offsetÞ ¼ ¼ Rotate RightðData; ð32� offsetÞÞ

Extend and Reverse Ordering Operations

The Cortex-M0 processor supports a number of instructions that can perform data reordering or

extraction (Figures 5.7, 5.8, and 5.9).
Instruction REV (Byte-Reverse Word)
Bit
[31:24]

Bit
[31:24]
Function
 Byte Order Reverse

Syntax
 REV <Rd>, <Rm>

Note
 Rd ¼ {Rm[7:0] , Rm[15:8], Rm[23:16], Rm[31:24]}

Rd and Rm are low registers.
Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Figure 5.7:
Instruction REV16 (Byte-Reverse Packed Half Word)

REV operation.
Function
 Byte Order Reverse within half word

Syntax
 REV16 <Rd>, <Rm>

Note
 Rd ¼ {Rm[23:16], Rm[31:24], Rm[7:0] , Rm[15:8]}

Rd and Rm are low registers.
Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Figure 5.8:
REV16 operation.

96 Chapter 5
Instruction REVSH (Byte-Reverse Signed Half Word)

Function Byte order reverse within lower half word, then sign extend result
Syntax REVSH <Rd>, <Rm>

Note
 Rd ¼ SignExtend({Rm[7:0] , Rm[15:8]})

Rd and Rm are low registers.
sign extend

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

Figure 5.9:
These reverse instructions are usually used for converting data between little endian and big

endian systems.

The SXTB, SXTH, UXT, and UXTH instructions are used for extending a byte or half word

data into a word. They are usually used for data type conversions.

REVSH operation.
Instruction SXTB (Signed Extended Byte)
Function
 SignExtend lowest byte in a word of data

Syntax
 SXTB <Rd>, <Rm>

Note
 Rd ¼ SignExtend(Rm[7:0])

Rd and Rm are low registers.
Instruction SXTH (Signed Extended Half Word)
Function
 SignExtend lower half word in a word of data

Syntax
 SXTH <Rd>, <Rm>

Note
 Rd ¼ SignExtend(Rm[15:0])

Rd and Rm are low registers.
Instruction UXTB (Unsigned Extended Byte)
Function
 Extend lowest byte in a word of data

Syntax
 UXTB <Rd>, <Rm>

Note
 Rd ¼ ZeroExtend(Rm[7:0])

Rd and Rm are low registers.

Instruction Set 97
Instruction UXTH (Unsign Extended Half Word)

Function Extend lower half word in a word of data
Syntax UXTH <Rd>, <Rm>
Note Rd ¼ ZeroExtend(Rm[15:0])
S
S
U
U

M
loop

S
B

Rd and Rm are low registers.
With SXTB or SXTH, the data are extended using bit[7] or bit[15] of the input data, whereas

for UXTB and UXTH, the data are extended using zeros. For example, if R0 is 0x55AA8765,

the result of these extended instructions is
XTB R1, R0 ; R1 ¼ 0x00000065
XTH R1, R0 ; R1 ¼ 0xFFFF8765
XTB R1, R0 ; R1 ¼ 0x00000065
XTH R1, R0 ; R1 ¼ 0x00008765
Program Flow Control

There are five branch instructions in the Cortex-M0 processor. They are essential for program

flow control like looping and conditional execution, and they allow program code to be

partitioned into functions and subroutines.
Instruction B (Branch)
Function
 Branch to an address (unconditional)

Syntax
 B <label>

Note
 Branch range is þ/� 2046 bytes of current program counter
Instruction B<cond> (Conditional Branch)
Function
 Depending of APSR, branch to an address

Syntax
 B<cond> <label>

Note
 Branch range is þ/� 254 bytes of current program counter.

For example,
CMP R0, #0x1 ; Compare R0 with 0x1
BEQ process1 ; Branch to process1 if R0 equal 1
The <cond> is one of the 14 possible condition suffixes (Table 5.7).

For example, a simple loop that runs three times could be
OVS R0, #3 ; Loop counter starting value is 3
; “loop” is an address label

UBS R0, #1 ; Decrement by 1 and update flag
GT loop ; branch to loop if R0 is Greater Than (GT) 1

Table 5.7: Condition Suffixes for Conditional Branch

Suffix Branch Condition Flags (APSR)

EQ Equal Z flag is set
NE Not equal Z flag is cleared
CS/HS Carry set / unsigned higher

or same
C flag is set

CC/LO Carry clear / unsigned lower C flag is cleared
MI Minus / negative N flag is set (minus)
PL Plus / positive or zero N flag is cleared
VS Overflow V flag is set
VC No overflow V flag is cleared
HI Unsigned higher C flag is set and Z is cleared
LS Unsigned lower or same C flag is cleared or Z is set
GE Signed greater than or equal N flag is set and V flag is set, or

N flag is cleared and V flag is cleared (N ¼¼ V)
LT Signed less than N flag is set and V flag is cleared, or

N flag is cleared and V flag is set (N !¼ V)
GT Signed greater then Z flag is cleared, and either both N flag and V flag are set, or

both N flag and V flag are cleared (Z ¼¼ 0 and N ¼¼ V)
LE Signed less than or equal Z flag is set, or either N flag set with V flag cleared, or N flag

cleared and V flag set (Z ¼¼ 1 or N !¼ V)

98 Chapter 5
The loop will execute three times. The third time, R0 is 1 before the SUBS instruction. After

the SUBS instruction, the zero flag is set, so the condition for the branch failed and the program

continues execution after the BGT instruction.
Instruction BL (Branch and Link)
Function B
ranch to an address and store return address to LR. Usually use
for function calls, and can be used for long-range branch that is
beyond the branch range of branch instruction (B <label>).
Syntax B
L <label>

Note B
ranch range is þ/� 16MB of current program counter.

For example,
BL functionA ; call a function called functionA
Instruction BX (Branch and Exchange)
Function B
ranch to an address specified by a register, and change
processor state depending on bit[0] of the register.
Syntax B
X <Rm>

Note B
ecause the Cortex-M0 processor only supports Thumb code,

bit[0] of the register content (Rm) must be set to 1, otherwise it
means it is trying to switch to the ARM state and this will
generate a fault exception.

Instruction Set 99
BL is commonly used for calling a subroutine or function. When it is executed, the address of

the next instruction will be stored to the Link Register (LR), with the LSB set to 1. When the

subroutine or function completes the required task, it can then return to the calling program by

executing a “BX LR” instruction (Figure 5.10).
main
…
BL func1 ; call Function1

MOV R4, R0 ; next instruction
…

func1 ; Function 1
…
…
…
BX LR ; Return

LR set to address of next
instruction, and LSB set to

1

Load return
address in LR into

PC

Figure 5.10:
Function call and return using BL and BX instructions.
BX can also be used to branch to an address that has an offset that is more than the normal

branch instruction. Because the target is specified by a 32-bit register, it can branch to any

address in the memory map.
Instruction BLX (Branch and Link with Exchange)
Function B
ranch to an address specified by a register, save return address to LR,
and change processor state depending on bit[0] of the register.
Syntax B
LX <Rm>

Note B
ecause the Cortex-M0 processor only supports Thumb code, the bit

[0] of the register content (Rm) must be set to 1, otherwise it means it
is trying to switch to the ARM state and this will create a fault
exception.
BLX is used when a function call is required but the address of the function is held inside

a register (e.g., when working with function pointers).

Memory Barrier Instructions

Memory barrier instructions are often needed when the memory system is complex. In some

cases, if the memory barrier instruction is not used, race conditions could occur and cause

system failures. For example, in some ARM processors that support simultaneous bus transfers

(as a processor can have multiple memory interfaces), the transfer sequence of these transfers

might overlap. If the software code relies on strict ordering of memory access sequences, it

100 Chapter 5
could result in software errors in corner cases. The memory barrier instructions allow the

processor to stop executing the next instruction, or stop starting a new transfer, until the current

memory access has completed.

Because the Cortex-M0 processor only has a single memory interface to the memory system

and does not have a write buffer in the system bus interface, the memory barrier instruction is

rarely needed. However, memory barriers may be necessary on other ARM processors that

have more complex memory systems. If the software needs to be portable to other ARM

processors, then the uses of memory barrier instructions could be essential. Therefore, the

memory barrier instructions are supported on the Cortex-M0 to provide better compatibility

between the Cortex-M0 processor and other ARM processors.

There are three memory barrier instructions that support on the Cortex-M0 processor:

• DMB

• DSB

• ISB
Instruction DMB
Function
 Data Memory Barrier

Syntax
 DMB

Note
 Ensures that all memory accesses are completed before new

memory access is committed
Instruction DSB
Function
 Data Synchronization Barrier

Syntax
 DSB

Note
 Ensures that all memory accesses are completed before the next

instruction is executed
Instruction ISB
Function
 Instruction Synchronization Barrier

Syntax
 ISB

Note
 Flushes the pipeline and ensures that all previous instructions are

completed before executing new instructions
Architecturally, there are various cases where these instructions are needed. Although in

practice omitting the memory barrier instruction might not cause any issue on the Cortex-M0,

it could be an issue when the same software is used on another ARM processor. For example,

after changing the CONTROL register with MSR instruction, architecturally an ISB should be

Instruction Set 101
used after writing to the CONTROL register to ensure subsequent instructions use the updated

settings. Although the Cortex-M0 omits the ISB instruction in this case, the omission does not

cause an issue.

Another example is memory remap control. In some microcontrollers, a hardware register can

change the memory map. After writing to the memory map switching register, you need to use

the DSB instruction to ensure the write has been completed and memory configuration has

been updated before carrying out the next step. Otherwise, if the memory switching is delayed,

possibly because of a write buffer in the system bus interface (e.g., the Cortex-M3 has a write

buffer in the system bus interface to allow higher performance), and the processor starts to

access the switched memory region immediately, the access could be using the old memory

mapping, or the transfer could become corrupted by the memory map switching.

Memory barrier instruction is also needed when the program contains self-modifying code. For

example, if an application changes its own program code, the instruction execution that follows

should use the updated program code. However, if the processor is pipelined or has a fetch

buffer, the processor may have already fetched an old copy of the modified instruction. In this

case, the program should use a DSB operation to ensure the write to the memory is completed;

then it should use an ISB instruction to ensure the instruction fetch buffer is updated with the

new instructions.

More details about memory barriers can be found in the ARMv6-M Architecture Reference

manual (reference 3).

Exception-Related Instructions

The Cortex-M0 processor provides an instruction called supervisor call (SVC). This instruction

causes the SVC exception to take place immediately if the exception priority level of SVC is

higher than current level.
Instruction SVC
Function S
upervisor call

Syntax S
VC #<immed8>

SVC <immed8>

Note T
rigger the SVC exception. For example,

SVC #3 ; SVC instruction, with parameter, equals 3.
Alternative syntax without the “#” is also allowed. For example,

SVC 3 ; this is the same as SVC #3.
An 8-bit immediate data element is used with SVC instruction. This parameter does not affect

the SVC exception directly, but it can be extracted by the SVC handler and be used as an input

to the SVC function. Typically the SVC can be used to provide access to system service or the

102 Chapter 5
application programming interface (API), and this parameter can be used to indicate which

system service is required.

If the SVC instruction is used in an exception handler that has the same or a higher priority than

the SVC, this will cause a fault exception. As a result, the SVC cannot be used in the hard fault

handler, the NMI handler, or the SVC handler itself.

Besides using MSR instruction, the PRIMASK special register can also be changed using an

instruction called CPS:
Instruction CPS
Function
 Change processor state: enable or disable interrupt

Syntax
 CPSIE I ; Enable Interrupt (Clearing PRIMASK)

CPSID I ; Disable Interrupt (Setting PRIMASK)

Note
 PRIMASK only block external interrupts, SVC, PendSV, SysTick. But

it does not block NMI and the hard fault handler.
The switching of PRIMASK to disable and enable the interrupt is commonly used for timing

critical code.

Sleep Mode FeatureeRelated Instructions

The Cortex-M0 processor can enter sleep mode by executing the Wait-for-Interrupt (WFI) and

Wait-for-Event (WFE) instructions. Note that for the Cortex-M1 processor, as the design is

implemented in a FPGA design, which does not have sleep mode, these two instructions

execute as NOP and will not cause the processor to stop.
Instruction WFI
Function
 Wait for Interrupt

Syntax
 WFI

Note
 Stops program execution until an interrupt arrives or until the

processor enters a debug state.
WFE is just like WFI, except that it can also be awakened by events. An event can be an

interrupt, the execution of an SEV instruction (see next page), or the entering of a debug state.

A previous event also affects a WFE instruction: Inside the Cortex-M0 processor, there is an

event register that records whether an event has occurred (exceptions, external events, or the

execution of an SEV instruction). If the event register is not set when the WFE is executed, the

WFE instruction execution will cause the processor to enter sleep mode. If the event register is

set when WFE is executed, it will cause the event register to be cleared and the processor

proceeds to the next instruction.

Instruction Set 103
Instruction WFE
Function
 Wait for Event

Syntax
 WFE

Note
 If the internal event register is set, it clears the internal event register and

continues execution. Otherwise, stop program execution until an event (e.g.,
an interrupt) arrives or until the processor enters a debug state.
WFE can also be awakened by an external event input signal, which is normally used in

a multiprocessing environment.

The Send Event (SEV) instruction is normally used in multiprocessor systems to wake up other

processors that are in sleep mode by means of the WFE instruction. For single-processor

systems, where the processor does not have a multiprocessor communication interface or the

multiprocessor communication interface is not used, the SEV can only affect the local event

register inside the processor itself.
Instruction SEV
Function
 Send event to all processors in multiprocessing environment (including itself)

Syntax
 SEV

Note
 Set local event register and send out an event pulse to other microprocessor in

a multiple processor system
Other Instructions

The Cortex-M0 processor supports an NOP instruction. This instruction can be used to produce

instruction alignment or to introduce delay.
Instruction NOP
Function
 No operation

Syntax
 NOP

Note
 The NOP instruction takes one cycle minimum on Cortex-M0. In general, delay

timing produced by NOP instruction is not guaranteed and can vary among
different systems (e.g., memory wait states, processor type). If the timing delay
needs to be accurate, a hardware timer should be used.
The breakpoint instruction is used to provide a breakpoint function during debug. Usually

a debugger, replacing the original instruction, inserts this instruction. When the breakpoint is

hit, the processor would be halted, and the user can then carry out the debug tasks through the

debugger. The Cortex-M0 processor also has a hardware breakpoint unit. This is limited to four

104 Chapter 5
breakpoints. Because many microcontrollers use flash memory, which can be reprogrammed

a number of times, using software breakpoint instruction allows more breakpoints to be set at

no extra cost. The breakpoint instruction has an 8-bit immediate data field. This immediate

value does not affect the breakpoint operation directly, but the debugger can extract this value

and use it for debug operation.
Instruction BKPT
Function
 Breakpoint

Syntax
 BKPT #<immed8>

BKPT <immed8>

Note
 BKPT instruction can have an 8-bit immediate data field. The debugger can

use this as an identifier for the BKPT. For example,
BKPT #0 ; breakpoint, with immediate field equal zero

Alternative syntax without the “#” is also allowed. For example,
BKPT 0 ; This is the same as BKPT #0.
The YIELD instruction is a hint instruction targeted for embedded operating systems. This

is not implemented in the current releases of the Cortex-M0 processor and executes as

NOP.

When used in multithread systems, YIELD can indicate that the current thread is delayed (e.g.,

waiting for hardware) and can be swapped out. In this case, the processor does not have to

spend too much time on an idle task and can switch to other tasks earlier to get better system

throughput. On the Cortex-M0 processor, this instruction is executed as an NOP (no operation)

because it does not have special support for multithreading. This instruction is included for

better software compatibility with other ARM processors.
Instruction YIELD
Function
 Indicate task is stalled

Syntax
 YIELD

Note
 Execute as NOP on the Cortex-M0 processor
Pseudo Instructions

Apart from the instructions listed in the previous section, a few pseudo instructions are also

available. The pseudo instructions are provided by the assembler tools, which convert them

into one or more real instructions.

The most commonly used pseudo instruction is the LDR. This allows a 32-bit immediate data

item to be loaded into a register.

Instruction Set 105
Pseudo Instruction LDR
Function
 Load a 32-bit immediate data into register Rd

Syntax
 LDR <Rd>, ¼immed32

Note
 This is translated to a PC-related load from a literal pool. For example,

LDR R0, ¼0x12345678 ; Set R0 to hexadecimal value 0x12345678
LDR R1, ¼10 ; Set R1 to decimal value 10
LDR R2, ¼‘A’ ; Set R2 to character ‘A’
Pseudo LDR

Instruction
Function
 Load a data in specified address (label) into register

Syntax
 LDR <Rd>, label

Note
 The address of label must be word aligned and should be closed to the

current program counter. For example, you can put a data item in program
ROM using DCD and then access this data item using LDR.
LDR R0, CONST_NUM ; Load CONST_NUM (0x17) in R0
.
ALIGN 4 ; make sure next data are word aligned

CONST_NUM DCD 0x17 ; Put a data item in program code
Other pseudo instructions depend on the tool chain being used. For more information, please

refer to the tools documentation for details.

CHAPTER 6

Instruction Usage Examples

Overview

In the previous chapter we looked at the instruction set of the Cortex-M0 processor. In this

chapter we will see how these instructions are used to carry out various operations. The

examples in this chapter are useful for understanding the instruction set. Because most

embedded programmers write their program in C, there is no need for most application to write

code in assembly, as illustrated in these examples.

The following examples are written based on ARM assembly syntax. For the GNU assembler,

the syntax is different in a number of ways, as highlighted in the previous chapter.

Program Control

If-Then-Else

One the most important functions of the instruction set is to handle conditional branches. For

example, if we need to carry out the task

if (counter > 10) then
The D

Copyri
counter ¼ 0

else
counter ¼ counter + 1
Assume the R0 is used as a “counter” variable; the preceding operation can be implemented

as
CMP R0, #10 ; compare to 10
BLE incr_counter ; if less or equal, then branch
MOVS R0, #0 ; counter ¼ 0
B counter_done ; branch to counter_done
incr_counter

ADDS R0, R0, #1 ; counter ¼ counter þ1
counter_done
.

The program code first carries out a compare and then executes a conditional branch. The

program then carries out a required task and finishes at the program address labeled as

“counter_done.”
efinitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10006-0

ght � 2011 Man Cheung Joseph Yiu. Publishd by Elsevier Inc. All rights reserved

107

http://dx.doi.org/10.1016/B978-0-12-385477-3.10006-0

108 Chapter 6
Loop

Another important program control operation is looping. For example,

Total ¼ 0;
for (i¼0;i<5;i¼iþ1)
To

Br

No

Co
AP

Br
Lin
the

Br
a r
the
ins
Br
sto
to
ins
ind
ins
tal ¼ Total þ i;
Assume “Total” is R0 and “i” is R1; the program can be implemented as

MOVS R0, #0 ; Total ¼ 0
MOVS R1, #0 ; i ¼ 0

loop
ADDS R0, R0, R1 ; Total ¼ Total þ i
ADDS R1, R1, #1 ; i ¼ i þ 1
CMP R1, #5 ; compare i to 5
BLT loop ; if less than then branch to loop
More on the Branch Instructions

As Table 6.1 illustrates, there are various branch instructions.
Table 6.1: Various Branch Instructions

anch Type Examples

rmal branch. Branch always carries out. B label
(Branch to address marked as “label”.)

nditional branch. Branch depends on the current status of
SR and the condition specified in the instruction.

BEQ label
(Branch if Z flag is set, which results from
a equal comparison or ALU operation
with result of zero.)

anch and link. Branch always carries out and updates the
k Register (LR, R14) with the instruction address following
executed BL instruction.

BL label
(Branch to address “label”, and Link
Register updated to the instruction after
this BL instruction.)

anch and exchange state. Branch to address stored in
egister. The LSB of the register should be set to 1 to indicate
Thumb state. (Cortex-M0 does not support ARM
truction, so the Thumb state must be used.)

BX LR
(Branch to address stored in the Link
Register. This instruction is often used for
function return.)

anch and link with exchange state. Branch to address
red in a register, with the Link Register (LR/R14) updated
the instruction address following the executed BLX
truction. The LSB of the register should be set to 1 to
icate the Thumb state. (Cortex-M0 does not support ARM
truction, so can use this Thumb state must be used.)

BLX R4
(Branch to address stored in the R4, and
LR is updated to the instruction following
the BLX instruction. This instruction is
often used for calling functions addressed
by function pointers.)
The BL instruction (Branch and Link) is usually used for calling functions. It can also be used

for normal branch operations when a long branch range is required. If the branch target offset is

more than 16MB, we can use the BX instruction instead. An example is illustrated in Table 6.2.

Table 6.2: Instruction for Branch Range

Branch Range Available Instruction

Under þ/� 254 bytes B label
B<cond> label

Under þ/� 2KB B label
Under þ/� 16MB BL label
Over þ/� 16MB LDR R0,¼label; Load the address value of label in R0

BX R0; Branch to address pointed to by R0, or
BLX R0; Branch to address pointed to by R0 and update LR

Instruction Usage Examples 109
Typical Usages of Branch Conditions

A number of conditions are available for the conditional branch. They allow the result of

signed and unsigned data operations or compare operations to be used for branch control. For

example, if we need to carry out a conditional branch after a compare operation “CMP R0, R1,”

we can use one of the conditional branch instructions shown in Table 6.3.
Table 6.3: Conditional Branch Instructions for Value Comparison

Required Branch Control Unsigned Data Signed Data

If (R0 equal R1) then branch BEQ label BEQ label
If (R0 not equal R1) then branch BNE label BNE label
If (R0 > R1) then branch BHI label BGT label
If (R0 >¼ R1) then branch BCS label / BHS label BGE label
If (R0 < R1) then branch BCC label / BLO label BLT label
If (R0 <¼ R1) then branch BLS label BLE label
To detect value overflow in add or subtract operations, we can use the instructions shown in

Table 6.4.
Table 6.4: Conditional Branch Instructions for Overflow Detection

Required Branch Control Unsigned Data Signed Data

If (overflow (R0 þ R1)) then branch BCS label BVS label
If (no_overflow (R0 þ R1)) then branch BCC label BVC label
If (overflow (R0 � R1)) then branch BCC label BVS label
If (no_overflow (R0 � R1)) then branch BCS label BVC label
To detect whether an operation result is a positive value or negative value (signed data), the

“PL” and “MI” suffixes can be used for the conditional branch (Table 6.5).
Table 6.5: Conditional Branch Instructions for Positive or Negative Value Detection

Required Branch Control Unsigned Data Signed Data

If (result >¼ 0) then branch Not applicable BPL label
If (result < 0) then branch Not applicable BMI label

110 Chapter 6
Apart from using the compare (CMP) instruction, conditional branches can also be controlled

by the result of arithmetic operations and logical operations, or instructions like compare

negative (CMN) and test (TST). For example, a simple loop that executes five times can be

written as
loop

loop

Ins

BL

LD
BLX
MOVS R0, #5 ; Loop counter
SUBS
BNE

LDR
TST
BEQ

truct

funct

R R0
R0
R0, R0, #1 ; Decrement loop counter
loop ; if result is not 0 then branch to loop
A polling loop that waits until a status register bit 3 to be set can be written as
LDR R0, ¼Status ; Load address of status register in R0

R2, #0x8 ; Bit 3 is set
MOVS
R1, [R0] ; Read the status register
R1, R2 ; Compute “R1 AND 0x8”
loop ; if result is 0 then try again
Function Calls and Function Returns

When carrying out function call (or subroutine call), we need to save the return address, which

is the address of the instruction following the call instruction, so that we can resume the

execution of the current instruction sequence. There are two instructions that can be used for

the function call, as shown in Table 6.6.
Table 6.6: Instructions for Function or Subroutine Calls

ion Example Scenarios

ion Target function address is fixed, and the offset
is within þ/� 16MB.

, ¼function; (other registers could also be used) Target function address can be changed during
run time, or the offset is over þ/� 16MB.
After executing the BL/BLX instructions, the return address is stored in the Link Register (LR/

R14) for function return when the function completed. In the simple cases, the function

executed will be terminated using “BX LR” (Figure 6.1).

If the value of LR can be changed during “FunctionA,” we will need to save the return

address to prevent it from being lost. This happens when the BL or BLX instruction is executed

within FunctionA, for example, when a nested function call is required. For illustration,

Figure 6.2 shows when FunctionA calls another function, called FunctionB.

In the Cortex-M0 processor, you can push multiple low registers (R0 to R7) and the return

address in LR onto the stack with just one instruction. Similarly, you can carry out the pop

...

BL FunctionA

...

FunctionA

...

BX LR

...

...

...

Function/subroutine call

PC changed to “FunctionA”,
and LR changed to address
of the instruction after BL

Return

PC changed to value stored
in LR to resume execution
of instructions after BL

Figure 6.1:
Simple function call and function return.

...

BL FunctionA

...

FunctionA

...

POP {PC}

...

...

...

Function/subroutine call

PC changed to “FunctionA”,
and LR changed to address
of the instruction after BL

Return

PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

BL FunctionB

FunctionB

...

BX LR

PUSH {LR}

Function/subroutine call

PC changed to “FunctionB”, and LR
changed to instruction address after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

Return

PC changes to value stored in
LR to resume execution of
instructions after BL FunctionB

Save return
address for
FunctionA to
stack.

Figure 6.2:
Nested function call and function return.

Instruction Usage Examples 111
operation to low registers and the Program Counter (PC) in one instruction. This allows you to

combine register values restore and return with a single instruction. For example, if the

registers R4 to R6 are being modified in “FunctionA,” and needed to be saved to the stack,

we can write “FunctionA,” as shown in Figure 6.3.

...

BL FunctionA

...

FunctionA

...

POP {R4-R6, PC}

...

...

...

Function/subroutine call

PC changed to “FunctionA”,
and LR changed to address
of instruction after BL

Return

Registers are restored and
PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

BL FunctionB

FunctionB

...

BX LR

PUSH {R4-R6, LR}

Function/subroutine call

PC changed to “FunctionB”, and LR
change to address of instruction after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

Return

PC changed to value stored in
LR to resume execution of
instructions after BL FunctionB

Save return
address for
FunctionA and
registers to stack.

Figure 6.3:
Using push and pop of multiple registers in functions.

112 Chapter 6
Branch Table

In C programming, sometime we use the “switch” statement to allow a program to branch to

multiple possible address locations based on an input. In assembly programming, we can

handle the same operation by creating a table of branch destination addresses, issue a load

(LDR) to the table with offset computed from the input, and then use BX to carry out the

branch. In the following example, we have a selection input of 0 to 3 in R0, which allows the

program to branch to Dest0 to Dest3. If the input value is larger than 3, it will cause a branch
to the default case:
Bran
CMP R0, #3 ; Compare input to maximum valid choice

BHI default_case ; Branch to default case if higher than 3
MOVS R2, #4 ; Multiply branch table offset by 4
MULS R0, R2, R0 ; (size of each entry)
LDR R1,¼BranchTable ; Get base address of branch table
LDR R2,[R1,R0] ; Get the actual branch destination
BX R2 ; Branch to destination
ALIGN 4 ; Alignment control. The table has

; to be word aligned to prevent unaligned read

chTable ; table of each destination addresses

defa

Dest

Dest

Dest

Dest

add_

Instruction Usage Examples 113
DCD Dest0
DCD Dest1
DCD Dest2
DCD Dest3
ult_case

. ; Instructions for default case
0

. ; Instructions for case ‘0’
1

. ; Instructions for case ‘1’
2

. ; Instructions for case ‘2’
3

. ; Instructions for case ‘3’
Additional examples of complex branch conditional handling are presented in Chapter 16.

Data Accesses

Data accesses are vital to embedded applications. The Cortex-M0 processor provides a number

of load (memory read) and store (memory write) instructions with various address modes. Here

we will go through a number of typical examples of how these instructions can be applied.

Simple Data Accesses

Normally the memory locations (physical addresses) of software variables are defined by the

linker. However, we can write the software code to access to the variables as long as we

know the symbol of the variables. For example, if we need to calculate the sum of an integer

array “DataIn” with 10 elements (32-bit each) and put the result in another variable called

“Sum” (also 32-bit), we can use the following assembly code:
LDR r0,¼DataIn; Get the address of variable 'DataIn'

MOVS r1, #10 ; loop counter
MOVS r2, #0 ; Result - starting from 0
loop

LDM r0!,{r3} ; Load result and increment address
ADDS r2, r3 ; add to result
SUBS r1, #1 ; increment loop counter
BNE add_loop
LDR r0,¼Sum ; Get the address of variable 'Sum'
STR r2,[r0] ; Save result to Sum
In the preceding example, we use the LDM instruction rather than a normal LDR instruction. This

allows us to read thememory and increment the address to the next array element at the same time.

When using assembly to access data, we need to pay attention to a few things:

• Use correct instruction for corresponding data size. Different instructions are available for

different data sizes.

• Make sure that the access is aligned. If an access is unaligned, it will trigger a fault excep-

tion. This can happen if an instruction of incorrect data size is used to access a data.

114 Chapter 6
• Various addressing modes are available and can simplify your assembly codes. For

example, when programming/accessing a peripheral, you can set a register to its base

address value and then use an immediate offset addressing mode for accessing each

register. In this way, you do not have to set up the register address every time a different

register is accessed.

Example of Using Memory Access Instruction

To demonstrate how different memory access instructions can be used, this section presents

several simple examples of memory copying functions. The most basic approach is to copy the

data byte by byte, thus allowing any number of bytes to be copied, and this approach does not

have memory alignment issues:
copy

copy
LDR r0,¼0x00000000 ; Source address

LDR r1,¼0x20000000 ; Destination address
LDR r2,¼100 ; number of bytes to copy
_loop

LDRB r3, [r0] ; read 1 byte
ADDS r0, r0, #1 ; increment source pointer
STRB r3, [r1] ; write 1 byte
ADDS r1, r1, #1 ; increment destination pointer
SUBS r2, r2, #1 ; decrement loop counter
BNE copy_loop ; loop until all data copied
The program code uses a number of add and subtract instructions in the loop, which reduce the

performance. We could modify the code to reduce the program size using a register offset

address mode:
LDR r0,¼0x00000000 ; Source address

LDR r1,¼0x20000000 ; Destination address
LDR r2,¼100 ; number of bytes to copy, also
_loop ; acts as loop counter

SUBS r2, r2, #1 ; decrement offset and loop counter
LDRB r4,[r0, r2] ; read 1 byte
STRB r4,[r1, r2] ; write 1 byte
BNE copy_loop ; loop until all data copied
By using the loop counter as a memory offset, we have reduced the code size and improved

execution speed. The only side effect is that the copying operation will start from the end

of the memory block and finish at the start of the memory block.

For copying large amounts of data, we can use multiple load and store instructions to increase

the performance. Because the load store multiple instructions can only be used with word

accesses, we usually use them in memory-copying functions only when we know that the size

of the memory being copied is large and the data are word aligned:
LDR r0,¼0x00000000 ; Source address
LDR r1,¼0x20000000 ; Destination address
LDR r2,¼128 ; number of bytes to copy, also

copy

func

Instruction Usage Examples 115
_loop ; acts as loop counter

LDMIA r0!,{r4-r7} ; Read 4 words and increment r0
STMIA r1!,{r4-r7} ; Store 4 words and increment r1
LDMIA r0!,{r4-r7} ; Read 4 words and increment r0
STMIA r1!,{r4-r7} ; Store 4 words and increment r1
LDMIA r0!,{r4-r7} ; Read 4 words and increment r0
STMIA r1!,{r4-r7} ; Store 4 words and increment r1
LDMIA r0!,{r4-r7} ; Read 4 words and increment r0
STMIA r1!,{r4-r7} ; Store 4 words and increment r1
SUBS r2, r2, #64 ; Each time 64 bytes are copied
BNE copy_loop ; loop until all data copied
In the preceding code, each loop iteration copies 64 bytes. This greatly increases the

performance of data transfer.

Another type of useful memory access instruction is the load and store instruction with

stack pointer-related addressing. This is commonly used for local variables, as C compilers

often store simple local variables on the stack memory. For example, let’s say we need to

create two local variables in a function called “function1.” The code can be written as

follows:
tion1
SUB SP, SP, #0x8 ; Reserve 2 words of stack
;(8 bytes) for local variables
;Data processing in function
MOVS r0, #0x12 ; set a dummy value
STR r0, [sp, #0] ; Store 0x12 in 1st local variable
STR r0, [sp, #4] ; Store 0x12 in 2nd local variable
LDR r1, [sp, #0] ; Read from 1st local variable
LDR r2, [sp, #4] ; Read from 2nd local variable
ADD SP, SP, #0x8; Restore SP to original position
BX LX
In the beginning of the function, a stack pointer adjustment is carried out so that the data

reserved will not be overwritten by further stack push operations. During the execution of

the function, SP-related addressing with immediate offset allows the local variables to be

accessed efficiently. The value of SP can also be copied to another register if further stack

operations are required or if the some of the local variables are in byte or half-word size

(in ARMv6-M, SP-related addressing mode only supports word-size data). In such cases,

load/store instructions accessing the local variables would use the copied version of SP

(Figure 6.4).

At the end of the function, the local variables can be discarded and we restore the SP value to

the position as when the function started using an ADD instruction.

Data Type Conversion

The Cortex-M0 processor supports a number of instructions for converting data among

different data types.

SP value at
beginning of

function1

Memory
Address

SP value at after
adjustment

Data space
reserved for local

variables

Stack space for
further stack

push

Figure 6.4:
Reserving two words of stack space for local variables.

116 Chapter 6
Conversion of Data Size

On ARM compilers, different data types have different sizes. Table 6.7 shows a number of

commonly used data types and their corresponding sizes on ARM compilers.

When converting a data value from one type to another type with a larger size, we need to sign-

extend or zero-extend it. A number of instructions are available to handle this conversion

(Table 6.8).
Table 6.7: Size of Commonly Used Data Types in C Compilers for ARM

C Data Type Number of Bits

“char,” “unsigned char” 8
“enum” 8/16/32 (smallest

is chosen)
“short,” “unsigned short” 16
“int,” “unsigned int” 32
“long,” “unsigned long” 32

Table 6.8: Instructions for Signed-Extend and Zero-Extend Data Value Operations

Conversion Operation Instruction

Converting an 8-bit signed data value to 32-bit or 16-bit signed data value SXTB (signed-extend byte)
Converting a 16-bit signed data value to a 32-bit signed data value SXTH (signed-extend half word)
Converting an 8-bit unsigned data value to a 32-bit or 16-bit data value UXTB (zero extend byte)
Converting a 16-bit unsigned data value to a 32-bit data value UXTH (zero extend half word)

Instruction Usage Examples 117
If the data are in the memory, we can read the data and carry out the zero-extend or signed-

extend operation in a single instruction (Table 6.9).
Table 6.9: Memory Read Instructions with Signed-Extend and Zero Extend Data Value Operations

Conversion Operation Instruction

Read an 8-bit signed data value from memory and convert it to a 16-bit or 32-bit signed value LDRSB
Read a 16-bit signed data value from memory and convert it to a 32-bit signed value LDRSH
Read an 8-bit unsigned data value from memory and convert it to a 16-bit or 32-bit value LDRB
Read a 16-bit unsigned data value from memory and convert it to a 32-bit value LDRH
Endian Conversion

The memory system of a Cortex-M0 microcontroller can be in either little endian configuration

or big endian configuration. It is defined in hardware and cannot be changed by programming.

Occasionally we might need to convert data between little endian and big endian format.

Table 6.10 presents several instructions to handle this situation.
Table 6.10: Instructions for Conversion between Big Endian and Little Endian Data

Conversion Operation Instruction

Convert a little endian 32-bit value to big endian, or vice versa REV
Convert a little endian 16-bit unsigned value to big endian, or vice versa REV16
Convert a little endian 16-bit signed value to big endian, or vice versa REVSH
Data Processing

Most of the data processing operations can be carried out in a simple instruction sequence. However,

there are situations when more steps are required. Here we will look at a number of examples.
64-Bit/128-Bit Add

Adding two 64-bit values together is fairly straightforward. Assume that you have two 64-bit

values (X and Y) stored in four registers. You can add them together using ADDS followed

up by ADCS instruction:
LDR r0,¼0xFFFFFFFF ; X_Low (X ¼ 0x3333FFFFFFFFFFFF)
LDR r1,¼0x3333FFFF ; X_High
LDR r2,¼0x00000001 ; Y_Low (Y ¼ 0x3333000000000001)
LDR r3,¼0x33330000 ; Y_High
ADDS r0,r0,r2 ; lower 32-bit
ADCS r1,r1,r3 ; upper 32-bit

118 Chapter 6
In this example, the result is in R1, R0, which is 0x66670000 and 0x00000000. The operation

can be extended to 96-bit values, 128-bit values, or more by increasing the number of

ADCS instructions in the sequence (Figure 6.5).
X word #0X word #1X word #2X word #3

ADDSADCSADCSADCS

carrycarrycarry

Result
word #0

Result
word #1

Result
word #2

Result
word #3

Y word #0Y word #1Y word #2Y word #3

carry

Figure 6.5:
Adding of two 128-bit numbers.
64-Bit/128-Bit Sub

The operation of 64-bit subtract is similar to the one for 64-bit add. Assume that you have

two 64-bit values (X and Y) in four registers. You can subtract them (X � Y) using

SUBS followed by SBCS instruction:
LDR r0,¼0x00000001 ; X_Low(X ¼ 0x0000000100000001)
LDR r1,¼0x00000001 ; X_High
LDR r2,¼0x00000003 ; Y_Low(Y ¼ 0x0000000000000003)
LDR r3,¼0x00000000 ; Y_High
SUBS r0,r0,r2 ; lower 32-bit
SBCS r1,r1,r3 ; upper 32-bit
In this example, the result is in R1, R0, which is 0x00000000 and 0xFFFFFFFE. The operation

can be extended to 96-bit values, 128-bit values, or more by increasing the number of SBCS

instructions in the sequence (Figure 6.6).
Integer Divide

Unlike the Cortex-M3/M4 processor, the Cortex-M0 processor does not have integer divide

instructions. For users who program their application in C language, the C compiler auto-

matically inserts the required C library function that handles integer divide if required. Users

who prefer to write their application entirely in assembly language can create an assembly

function like that shown in Figure 6.7, which handles unsigned integer divide.

X word #0X word #1X word #2X word #3

SUBSSBCSSBCSSBCS

borrowborrowborrow

Result
word #0

Result
word #1

Result
word #2

Result
word #3

Y word #0Y word #1Y word #2Y word #3

borrow

Figure 6.6:
Subtracting two 128-bit values.

N = 0x80000000

Quotient = 0

Set loop control

Tmp = 0

Shift Dividend left by
1, MSB shift into Tmp

Tmp variable for
calculation

Tmp >= Divisor?

Tmp = Tmp -
Divisor

Quotient =
Quotient + N

N = N >> 1

Decrement loop
counter

N = 0?

Remainder = Tmp

Initialize result

Y

N

Y

N

Figure 6.7:
Simple unsigned integer divide function.

Instruction Usage Examples 119

120 Chapter 6
The divide function contains a loop that iterates 32 times and computes 1 bit of the result

each time. Instead of using an integer loop counter, the loop control is done by a value N,

which has 1 bit set (one hot), and shifts right by 1 bit each time the loop is executed.

The corresponding assembly code can be written as follows:
simp

simp

simp

simp
le_divide

; In
;
;
; Ou
;
;
PUS
MOV
MOV
LSL
MOV

LSL
ADC
CMP
BCC
ADD

LSR
BNE
MOV
POP
BX

; In
; Ou
PUS
MOV
puts
R0 ¼ dividend
R1 ¼ divider
tputs
R0 ¼ quotient
R1 ¼ remainder
H {R2-R4} ; Save registers to stack

R2, R0 ; Save dividend to R2 as R0 will be changed
S R3, #0x1 ; loop control
S R3, R3, #31 ; N ¼ 0x80000000
S R0, #0 ; initial Quotient
S R4, #0 ; initial Tmp
MOV

le_divide_loop

S R2, R2, #1 ; Shift dividend left by 1 bit, MSB go into carry
S R4, R4, R4 ; Shift Tmp left by 1 bit, carry move into LSB

R4, R1
simple_divide_lessthan

S R0, R0, R3 ; Increment quotient
S R4, R4, R1
SUB

le_divide_lessthan

S R3, R3, #1 ; N ¼ N >> 1

simple_divide_loop
R1, R4 ; Put remainder in R1, Quotient is already in R0
{R2-R4}; Restore used register
LR ; Return
This simple example does not handle signed data and there is no special handling for

divide-by-zero cases. If you need to handle signed data division, you can create a wrapper

to convert the dividend and divisor into unsigned data first, and then run the unsigned

divide and convert the result back to the signed value afterward.

Unsigned Integer Square Root

Another mathematical calculation that is occasionally needed in embedded systems is the

square root. Because the square root can only deal with positive numbers (unless complex

numbers are used), the following example only handles unsigned integers (Figure 6.8). For the

following implementation, the result is rounded to the next lower integer.

The corresponding assembly code can be written as follows:
le_sqrt

put : R0
tput : R0 (square root result)
H {R1-R3} ; Save registers to stack
S R1, #0x1 ; Set loop control register

LSL

simp
ADD
MOV
MUL
CMP
BLS

simp
LSR
BNE
MOV
POP
BX

Instruction Usage Examples 121
S R1, R1, #15 ; R1 ¼ 0x00008000
S R2, #0 ; Initialize result
MOV

le_sqrt_loop

S R2, R2, R1 ; M ¼ (M þ N)
S R3, R2 ; Copy (M þ N) to R3
S R3, R3, R3 ; R3 ¼ (M þ N)^2

R3, R0
simple_sqrt_lessequal

S R2, R2, R1 ; M ¼ (M � N)
SUB
le_sqrt_lessequal
S R1, R1, #1 ; N ¼ N >> 1
simple_sqrt_loop
R0, R2 ; Copy to R0 and return
{R1-R3} ;
LR ; Return
N = 0x8000

M = 0

M = M + N

M = M - N

y

N

N = N>>1

N = 0

y

N

Return M

M^2 > Input

Initial result

Loop control
and bit mask

Result too big,
restore previous

result

Try a smaller bit
mask

Check if all bits been
tested

Figure 6.8:
Simple unsigned integer square root function.
Bit and Bit Field Computations

Bit data processing is common in microcontroller applications. From the previous divide

example code, we have already seen some basic bit computation on the Cortex-M0 processor.

Here we will cover a few more examples of bit and bit field processing.

To extract a bit from a value stored in a register, we first need to determine how the result

will be used. If the result is to be used for controlling a conditional branch, the best

122 Chapter 6
solution is to use shift or rotate instructions to copy the required bit in the Carry flag in

the APSR, and then carry out the conditional branch using a BCC or BCS instruction. For

example,
LSRS R0, R0, #<nþ1> ; Shift bit “n” into carry flag in APSR
BCS <label> ; branch if carry is set
If the result is going to be used for other processing, then we could extract the bit by a logic

shift operation. For example, if we need to extract bit 4 in the register R0, this can be carried

out as follows:
LSLS R0, R0, #27 ; Remove un-needed top bits
LSRS R0, R0, #31 ; Move required bit into bit 0
This extraction method can be generalized to support the extraction of bit fields. For example,

if we need to extract a bit field in a data value that is “W” bits wide, starting with bit position

“P” (LSB of the bit field), we can extract the bit field using the following instruction:
LSLS R0, R0, #(32-W-P) ; Remove un-needed top bits
LSRS R0, R0, #(32-W) ; Align required bits to bit 0
For example, if we need to extract an 8-bit-width bit field from bit 4 to bit 11 (Figure 6.9), we

can use this instruction sequence:
LSLS R0, R0, #(32-8-4) ; Remove un-needed top bits
LSRS R0, R0, #(32-8) ; Align required bits to bit 0
0413 11

LSLS R0, R0,#(32-8-4)

0413 1124

LSRS R0, R0,#(32-8)

0713

left 20 bits
removed

20 bits of 0 shifted in

Right 24 bits
removed

24 bits of 0 shifted in

Required bit field

Figure 6.9:
Bit field extract operation.

Instruction Usage Examples 123
In a similar way, we can clear the bit field in a register by a few shift and rotate instructions

(Figure 6.10):
RORS R0, R0, #4 ; Shift unneeded bit to bit 0
LSRS R0, R0, #8 ; Align required bits to bit 0
RORS R0, R0, #(32-8-4) ; store value to original position
0413 11

Rotate right by 4 bits
(RORS R0, R0,#4)

0713 1124

LSRS R0, R0,#8

031 19

Bit field to be
clear rotated

to LSB

0

Bit field shifted
out and

replaced by 0

Bit field to be cleared

RORS R0, R0,#20

20
23

24

031 12

0

4
Rotate value to
restore original

position
11

Bit field
removed

Figure 6.10:
Bit field clear operation.
For masking other bit patterns, we can use the Bit Clear (BICS) instruction. For

example,
LDR R1, ¼Bit_Mask ; Bit to clear
BICS R0, R0, R1 ; Clear bits that are not required
The “Bit_Mask” is a value that reflects the bit pattern you want to clear. The BICS instruction

does not have any limitation of the bit pattern to be cleared, but it might require a slightly larger

program size, as the program might need to store the value of the “Bit_Mask” pattern as

a word-size constant.

CHAPTER 7

Memory System

Overview

In this chapter we will look into the memory architecture of the Cortex-M0 processor and how

it affects software development.

The Cortex-M0 processor has a 32-bit system bus interface with 32-bit address lines (4 GB of

address space). The system bus is based on a bus protocol called AHB-Lite (Advanced High-

performance Bus), which is a protocol defined in the Advanced Microcontroller Bus Archi-

tecture (AMBA) standard. The AMBA standard is developed by ARM, and is widely used in

the semiconductor industry.

Although the AHB-Lite protocol provides high-performance accesses to the memory system,

very often a secondary bus segment can also be found for slower devices including peripherals.

In ARM microcontrollers, the peripheral bus system is normally based on the Advanced

Peripheral Bus (APB) protocol. The APB is connected to the AHB-Lite via a bus bridge and

may run at a different clock speed compared to the AHB system bus. The data path on the APB

is also 32-bit, but the address lines are often less than 32-bit as the peripheral address space is

relatively small (Figure 7.1).
32-bit System bus (AHB Lite)Cortex-M0

Program Memory
(e.g. Flash)

Data Memory
(e.g. SRAM) Bus Bridge

32-bit Peripheral bus (APB)

Peripheral
(e.g. UART)

Peripheral
(e.g. Watchdog timer)

External memory
interface

External bus
(optional)

Microcontroller

Peripheral
(e.g. Timer)

Peripheral
(e.g. I/O)

Figure 7.1:
Separation of system and peripheral bus in typical 32-bit microcontrollers.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10007-2

Copyright � 2011 Man Cheung Joseph Yiu. Publishd by Elseiver Inc. All rights reserved.

125

Administrator
高亮

Administrator
高亮

Administrator
高亮

http://dx.doi.org/10.1016/B978-0-12-385477-3.10007-2

126 Chapter 7
Because of the separation ofmain systembus and peripheral bus, and in some caseswith separated

clock frequency controls, an application might need to initialize some clock control hardware in

the microcontroller before accessing the peripherals. In some cases, there can be multiple peri-

pheral bus segments in a microcontroller running at different clock frequencies. Besides allowing

some part of the system to run at a slower speed, the separation of bus segments also provides

the possibility of power reduction by allowing the clock to a peripheral system to be stopped.

Depending on the microcontroller design, some high-speed peripherals might be connected

to the AHB-Lite system bus instead of the APB. This is because the AHB-Lite protocol

requires fewer clock cycles for each transfer when compared to the APB. The bus protocol

behavior affects the system operation and the programmer’s view on the memory system in

a number of ways. This subject will be covered in various places in this chapter.

Memory Map

The 4GB memory space of the Cortex-M0 processor is architecturally divided into a number

of regions (Figure 7.2). Each region has its recommended usage, and the memory access

behavior could depend on which memory region you are accessing to. This memory region
Code
0x00000000

SRAM

Peripheral

RAM

External device

Internal Private
 Peripheral Bus

Reserved

0x1FFFFFFF
0x20000000

0x3FFFFFFF
0x40000000

0x5FFFFFFF
0x60000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF
0xE0000000
0xE00FFFFF
0xE0100000

0xFFFFFFFF

Memory map

Reserved

DWT (Data
Watchpoint unit)

BP
(Breakpoint unit)

Reserved

NVIC
(Nested Vectored

Interrupt Controller)

Debug Control
Reserved

ROM Table

0xE0000000

0xE0001000

0xE0002000

0xE0003000

0xE000E100

0xE000ED00

0xE000F000

0xE00FEFFF
0xE00FF000
0xE00FFFFF

Memory map of the
Private Peripheral Bus

System Control Space
(SCS) 0xE000E000

SysTick Timer 0xE000E010
Reserved 0xE000E000

Reserved 0xE000E020

Figure 7.2:
Architecturally defined memory map of the Cortex-M0 processor.

Administrator
高亮

Administrator
标注
初始化外设时钟

Administrator
高亮

Administrator
高亮

Administrator
高亮

Memory System 127
definition helps software porting between different ARM Cortex microcontrollers, as they

all have similar arrangements.

Despite having an architecturally defined memory map, the actual usage of the memory map is

very flexible. There are only a few limitationsdfor example, a few memory regions that are

allocated for peripherals do not allow program code execution, and a number of internal

components have a fixed memory address to ensure software portability.

Next we will look into the usage of each region.
Code Region (0x00000000e0x1FFFFFFF)

The size of the code region is 512 MB. It is primarily used to store program code,

including the exception vector table, which is a part of the program image. It can

also be used for data memory (connection to RAM).

SRAM Region (0x20000000e0x3FFFFFFF)

The SRAM region is the located in the next 512 MB of the memory map. It is

primarily used to store data, including stack. It can also be used to store program

code. For example, in some cases you might want to copy program code from

slow external memory to the SRAM and execute it from there. Despite the name

given to this region (it is called “SRAM”), the actual memory devices being

used could be SRAM, SDRAM, or some other type.

Peripheral Region (0x40000000e0x5FFFFFFF)

The peripheral region also has the size of 512 MB. It is primarily used for peripherals

and can also be used for data storage. However, program execution is not allowed in

the peripheral region. The peripherals connected to this memory region can be either

the AHB-Lite peripheral or APB peripherals (via a bus bridge).

RAM Region (0x60000000e0x9FFFFFFF)

The RAM region consists of two 512 MB blocks, which results in total of 1 GB

of space. Both 512 MB memory blocks are primarily used to stored data, and in

most cases the RAM region can be used as a 1GB continuous memory space.

The RAM region can also be used for program code execution. The only differ-

ences between the two halves of the RAM region is the memory attributes,

which might cause differences in cache behavior if a system-level cache

(level-2 cache) is used. Memory attributes will be covered in more detail later

in this chapter.

Device Region (0xA0000000e0xDFFFFFFF)

The external device region consists of two 512 MB memory blocks, which results in

a total of 1 GB of space. Both 512MBmemory blocks are primarily used for peripherals

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

128 Chapter 7
and I/O usage. The device region does not allow program execution, but it can be used for

general data storage. Similar to the RAM region, the two halves of the device region have

different memory attributes.

Internal Private Peripheral Bus (PPB) (0xE0000000e0xE00FFFFF)

The internal PPB memory space is allocated for peripherals inside the processor, such

as the interrupt controller NVIC, as well as the debug components. The internal PPB

memory space is 1 MB in size, and program execution is not allowed in this memory

range.
Within the PPB memory range, a special range of memory is defined as the System

Control Space (SCS). The SCS address is from 0xE000E000 to 0xE000EFFF. It

contains the interrupt control registers, system control registers, debug control

registers, and the like. The NVIC registers are part of the SCS memory space. The

SCS also contains an optional timer called the SysTick. This will be covered in

Chapter 10.
Reserved Memory Space (0xE0100000e0xFFFFFFFF)

The last section of the memory map is a 511 MB reserved memory space. This may be

reserved in some microcontrollers for vendor-specific usages.
Although the Cortex-M0 processor has this fixed memory map, the memory usage is very

flexible. For example, it can have multiple SRAM memory blocks placed in the SRAM region

as well as the CODE region, and it can execute program code from external memory

components located in RAM region. Microcontroller vendors can also add their own system-

level memory features, such as system-level cache, if needed.

So how does the memory map of a typical real system look like? For a typical microcontroller

developed with the Cortex-M0 processor, normally you can find the following elements:

• Flash memory (for program code)

• Internal SRAM (for data)

• Internal peripherals

• External memory interface (for external memories as well as external peripherals (optional))

• Interfaces for other external peripherals (optional)

After putting all these components together, an example microcontroller could be illustrated as

shown in Figure 7.3.

Figure 7.3 shows how some memory regions can be used. However, in many low-cost

microcontrollers, the system designs do not have any external memory interface or Secure

Digital (SD) card interface. In these cases, some of the memory regions, like the external RAM

or the external device regions, might not be used.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
标注
与OS相关

Administrator
高亮

Administrator
高亮

On chip flash
memory

(CODE region)

On chip SRAM
(SRAM region)

Cortex-M0

(Internal PPB region)

NVIC Debug

External Memory
Interface

(RAM, Device
regions)

SD Card
interface

(Device region)

AHB to APB
bridge

(Peripheral region)

System bus

Peripheral
bus

I/O

I/O

UART

UART

Timer

Timer

I2C

(Peripheral region)

Microcontroller

External SRAM,
Flash

(RAM region)

LCD module
(Device region)

SD card

Figure 7.3:
Examples of various memory regions in a microcontroller design.

Memory System 129
Program Memory, Boot Loader, and Memory Remapping

Usually the program memory of the Cortex-M0 is implemented with on chip flash memory.

However, it is also possible that the program is stored externally or using other types of

memory devices (e.g. EEPROM).

When the Cortex-M0 processor comes out of reset, it accesses the vector table in address

zero for initial MSP value and reset vector value, and it then starts the program execution from

the reset vector. To ensure that the system works correctly, a valid vector table and a valid

program memory must be available in the system to prevent the processor from executing

rogue program code.

Usually this is done by a flash memory starting from address zero. However, an off-the-shelf

microcontroller product might not have any program in the flash memory before the user

Administrator
高亮

Administrator
下划线

Administrator
高亮

130 Chapter 7
programs it. To allow the processor to start up correctly, some Cortex-M0 based micro-

controllers come with a boot loader, a small program located on the microcontroller chip that

executes after the processor powers up and branches to the user application in the flash

memory only if the flash is programmed. The boot loader is preprogrammed by the chip

manufacturer. Sometimes it is stored on the on-chip flash memory with a separate memory

section from user applications (to allow the user to update the program without affecting the

boot loader); other times is it stored on a nonvolatile memory that is separate from the user

programmable flash memory (to prevent the users from accidentally erasing the boot loader).

When a boot loader is present, it is common for the microcontroller vendor to implement

a memory map-switching feature called “remap” on the system bus. The switching of the

memory map is controlled by a hardware register, which is programmed when the boot loader

is executed. There are various types of remap arrangements. One common remap arrangement

is to allow the boot loader to be mapped to the start of the memory during the power-up phase

using address alias, as shown in Figure 7.4.
Address
0x00000000

CODE
region

User
flash

Boot loader alias

Boot loader

Memory map at power up
with remap turned on

Processor fetch reset
vector from boot loader

alias and start
executing boot loader

Address
0x00000000

CODE
region

User
flash

Boot loader

Memory map after remap
turned off

Boot loader turn off
remap (address alias),

and execute user
application if flash is

programmed.

Figure 7.4:
An example of a memory-remap implementation with the boot loader.
The boot loader might also support additional features like hardware initialization (clock and

PLL setup), supporting of multiple boot configurations, firmware protection, or even flash

erase utilities. The memory remap feature is implemented on the system bus and is not a part of

the Cortex-M0 processor, therefore different microcontrollers from different vendors have

different implementations.

Another common type of remap feature implemented on some ARM microcontrollers allows

an SRAM block to be remapped to address 0x0 (Figure 7.5). Normally nonvolatile memory

used on microcontrollers like flash memory is slower than SRAM.When the microcontroller is

running at a high clock rate, wait states would be required if the program is executed from the

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Address
0x00000000

User
flash

SRAM (code)

Memory map before SRAM is
remapped

Processor copies
program code into

SRAM, and then remap
SRAM to 0x0

Address
0x00000000

Memory map after SRAM is
remapped

SRAM is remapped to
address 0x0 for zero
wait state accesses.

SRAM (data)

User flash

SRAM (code)

SRAM (code)
alias

SRAM (data)

Figure 7.5:
A different example of memory-remap implementationdSRAM for fast program accesses.

Memory System 131
flash memory. By allowing an SRAM memory block to be remapped to address 0x0, then the

program can be copied to SRAM and executed at maximum speed. This also avoids wait states

in vector table fetch, which affects interrupt latency.

Data Memory

The data memory in Cortex-M0 processor is used for software variables, stack memory, and, in

some cases, heap memory. Sometimes local variables in C functions could be stored onto

the stack memory. The heap memory is needed when the applications use C functions that

require dynamically allocated memory space.

In most embedded applications without operating systems (OSs), only one stack is used

(only the main stack pointer is required). In this case, the data memory can be arranged as

shown in (Figure 7.6).

Because the stack operation is based on a full descending stack arrangement, and heap memory

allocation is ascending, it is common to put the stack at the end of the memory block and

heap memory just after normal memory to get the most efficient arrangement.

For embedded applications with embedded OS, each task might have its own stack memory

range (see Figure 4.15 from Chapter 4). It is also possible for each task to have its own

allocated memory block, with each memory block containing a memory layout consisting of

stack, heap, and data.

Little Endian and Big Endian Support

The Cortex-M0 processor supports either the little endian or big endian memory format

(Figures 7.7 and 7.8). The microcontroller vendor makes the choice when the system is

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Address
0x20000000

Address
0x3FFFFFFF

SRAM

SRAM
region

Data

Heap data

Stack spaceStack grow
direction

Heap grow
direction

(e.g. Global variables,
static data, data

structures)

Figure 7.6:
An example of common SRAM usage.

132 Chapter 7
designed, and embedded programmers cannot change it. Software developers must configure

their development tools project options to match the endianness of the targeted

microcontroller.

The big endian mode supported on the Cortex-M0 processor is called the Byte-Invariant

big endian mode, or “BE8.” It is one of the big endian modes in ARM architectures.

Traditional ARM processors, like ARM7TDMI, use a different big endian mode called the

Word-Invariant big endian mode, or “BE32.” The difference between the two is on the

hardware interface level and does not affect the programmer’s view.
Byte 3 Byte 2 Byte 1 Byte 00x00000000

Byte 7 Byte 6 Byte 5 Byte 40x00000004

Byte 0xB Byte 0xA Byte 9 Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Figure 7.7:
Little endian 32-bit memory.
Most of the Cortex-M0 processorebased microcontrollers are using the little endian config-

uration. With the little endian arrangement, the lowest byte of a word-size data is stored in bit

0 to bit 7 (Figure 7.7).

In the big endian configuration, the lowest byte of a word-size data is stored in bit 24 to bit 31

(Figure 7.8)

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Byte 3Byte 2Byte 1Byte 00x00000000

Byte 7Byte 6Byte 5Byte 40x00000004

Byte 0xBByte 0xAByte 9Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Figure 7.8:
Big endian 32-bit memory.

Memory System 133
Both memory configurations support data handling of different sizes. The Cortex-M0

processor can generate byte, half-word, and word transfers. When the memory is accessed, the

memory interface selects the data lanes base on the transfer size and the lowest two bits of the

address. Figure 7.9 illustrates the data access for little endian systems.
Address Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Data[31:24] Data[23:16] Data[15:8] Data[7:0]

Data[15:8] Data[7:0]

Data[15:8] Data[7:0]

Data[7:0]

0x00000001

Data[7:0]

Data[7:0]

0x00000000 Word

0x00000000 Half word

0x00000002 Half word

0x00000000 Byte

Byte

0x00000002 Byte

0x00000003 Byte Data[7:0]

Figure 7.9:
Data access in little endian systems.
Similarly, a big endian system supports data access of different sizes (Figure 7.10).

Note that there are two exceptions in big endian configurations: (1) the instruction fetch is

always in little endian, and (2) the accesses to Private Peripheral Bus (PPB) address space is

always in little endian.

Data Type

The Cortex-M0 processor supports different data types by providing various memory access

instructions for different transfer sizes and by providing a 32-bit AHB-LITE interface, which

Administrator
高亮

Data[31:24]Data[23:16]Data[15:8]Data[7:0]

Data[15:8]Data[7:0]

Data[15:8]Data[7:0]

Data[7:0]

Data[7:0]

Data[7:0]

Data[7:0]

Address Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

0x00000001

0x00000000 Word

0x00000000 Half word

0x00000002 Half word

0x00000000 Byte

Byte

0x00000002 Byte

0x00000003 Byte

Figure 7.10:
Data access in big endian system.

134 Chapter 7
supports 32-bit, 16-bit, and 8-bit transfers. For example, in C language development, the data

types presented in Table 7.1 are commonly used.
Table 7.1: Commonly Used Data Types in C Language Development

Type Number of Bits in ARM Instructions

“char”, “unsigned char” 8 LDRB, LDRSB, STRB
“enum” 8/16/32 (smallest

is chosen)
LDRB, LDRH, LDR,
STRB, STRH, STR

“short”, “unsigned short” 16 LDRH, LDRSH, STRH
“int”, “unsigned int” 32 LDR, STR
“long”, “unsigned long” 32 LDR, STR
If “stdint.h” in C99 is used, the data types shown in Table 7.2 are available.
Table 7.2: Commonly Used Data Types Provided in “stdint.h” in C99

Type Number of Bits in ARM Instructions

“int8_t”, “uint8_t” 8 LDRB, LDRSB, STRB
“int16_t”, “uint16_t” 16 LDRH, LDRSH, STRH
“int32_t”, “uint32_t” 32 LDR, STR
For other data types that require a larger size (e.g., int64_t, uint64_t), the C compilers auto-

matically convert the data transfer into multiple memory access instructions.

Note that for peripheral register accesses, the data type being used should match the hardware

register size. Otherwise the peripheral might ignore the transfer or not functioning as expected.

Administrator
高亮

Memory System 135
In most cases, peripherals connected to the peripheral bus (APB) should be accessed using

word-size transfers. This is because APB protocol does not have transfer size signals, hence all

the transfers are assumed to be word size. Therefore, peripheral registers accessed via the APB

are normally declared to be “volatile unsigned integers.”

Effect of Hardware Behavior to Programming

The design of the processor hardware and the behavior of the bus protocol affect the software

in a number of ways. In a previous section, we mentioned that peripherals connected to the

APB are usually accessed using word-size transfers because of the nature of the APB protocol.

In this section, we will look into other similar aspects.

Data Alignment

The Thumb instruction set supported by the Cortex-M0 processor can only generate aligned

transfers (Figure 7.11). It means that the transfer address must be a multiple of the transfer size.

For example, a word size transfer can only access addresses like 0x0, 0x4, 0x8, 0xC, and so

forth. Similarly, a half-word transfer can only access addresses like 0x0, 0x2, 0x4, and so forth.

All byte data accesses are aligned.

If the program attempts to generate an unaligned transfer, this will result in a fault exception

and cause the hard fault handler to be executed. In normal cases, C compilers do not generate
byte

byte

byte

byte

Byte

0

Byte

1

Byte

2

Byte

3

Byte size

transfers

Half word

transfershalf word

half word

word Word transfer

Aligned transfers

Byte

0

Byte

1

Byte

2

Byte

3

Half word

transfers

Half word

lower
byte

lower 3 bytes

Word

transfers

Unaligned transfers

upper
byte

upper
byte

lower half word

upper half word

upper 3 bytes
lower
byte

Figure 7.11:
Example of aligned and unaligned transfers (little endian memory).

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

136 Chapter 7
any unaligned transfers, but an unaligned transfer can still be generated if a C program directly

manipulated a pointer.

Unaligned transfers can also be generated accidentally when programming in assembly

languagedfor example, when load store instructions of wrong transfer size is used. In the case

of a half-word data type located in address 0x1002, which is an aligned data type, it can be

accessed using LDRH, LDRSH, or STRH instructions without problems. But if the program

code used LDR or STR instruction to access the data, an unaligned access fault would be

triggered.

Access to Invalid Addresses

Unlike most 8-bit or 16-bit processors, a memory access to an invalid memory address

generates a fault exception on ARMCortex-M0microcontrollers. This provides better program

error detection and allows software bugs to be detected earlier.

In the AHB system connected to the Cortex-M0 processor, the address decoding logic detects

the address being accessed and the bus system response with an error signal if the access is

going to an invalid location. The bus error can be caused by either data access or instruction

fetch.

One exception to this behavior is the branch shadow instruction fetch. Because of the pipeline

nature of the Cortex-M0 processor, instructions are fetched in advanced. Therefore, if the

program execution reaches the end of a valid memory region and a branch is executed, there

might be chance that the addresses beyond the valid instruction memory region could have

been fetched, resulting in a bus fault in the AHB system. However, in this case the bus fault

would be ignored if the faulted instruction is not executed because of the branch.

Use of Multiple Load and Store Instructions

The multiple load and store instructions in the Cortex-M0 processor can greatly increase the

system performance when used correctly. For example, it can be used to speed up data transfer

processes or as a way to adjust the memory pointer automatically.

When handling peripheral accesses, we need to avoid the use of LDMor STM instructions. If the

Cortex-M0 processor receives an interrupt request during the execution of LDM or STM

instructions, the LDM or STM instruction will be abandoned and the interrupt service will be

initiated. At the end of the interrupt service, the program execution will return to the interrupted

LDM or STM instruction and restart from the first transfer of the interrupted LDM or STM.

As a result of this restart behavior, some of the transfers in this interrupt LDM or STM

instruction could be carried out twice. It is not a problem for normal memory devices, but if the

access is carried on a peripheral, then the repeating of the transfer could cause error. For

Administrator
高亮

Administrator
下划线

Administrator
高亮

Memory System 137
example, if the LDM instruction is used for reading a data value in a First-In-First-Out (FIFO)

buffer, then some of the data in the FIFO could be lost as the read operation is repeated.

As a precaution, we should avoid the use of LDM or STM instructions on peripheral accesses

unless we are sure that the restart behavior does not cause incorrect operation to the peripheral.

Memory Attributes

The Cortex-M0 processor can be used with wide range of memory systems and devices. To

make porting of software between different devices easier, a number of memory attribute

settings are available for each region in the memory map. Memory attributes are characteristics

of the memory accesses; they can affect data and instruction accesses to memory as well as

accesses to peripherals.

In the ARMv6-M architecture, which is used by the Cortex-M0 processor, a number of

memory access attributes are defined for different memory regions:

• Executable. The shareable attribute defines whether program execution is allowed in

that memory region. If a memory region is define as nonexecutable, in ARM documenta-

tion it is marked as eXecute Never (XN).

• Bufferable. When a data write is carried out to a bufferable memory region, the write trans-

fer can be buffered, which means the processor can continue to execute the next instruction

without waiting for the current write transfer to complete.

• Cacheable. If a cache device is present on the system, it can keep a local copy of the data-

during a data transfer and reuse it the next time the same memory location is accessed to

speed up the system. The cache device can be a cache memory unit or a small buffer

in a memory controller.

• Shareable. The shareable attribute defines whether more than one processor can access

a shareable memory region. If a memory region is shareable, the memory system needs

to ensure coherency between memory accesses by multiple processors in this region.

For most users of the Cortex-M0 products, only the XN attribute is relevant because it defines

which regions can be used for program execution. The other attributes are used only if cache

unit or multiple processors are used. Because the Cortex-M0 processor does not have an

internal cache unit, in most cases these memory attributes are not used. If a system-level cache

is used or when the memory controller has a built-in cache, then these memory attributes,

exported by the processor via the AHB interface, could be used.

Based on the memory attributes, various memory types are architecturally defined and are used

to define what type of devices could be used in each memory region:

• Normal memory. Normal memories can be shareable or nonshareable and cacheable or

noncacheable. For cacheable memories, the caching behavior can be further be divided

into Write Through (WT) or Write Back Write Allocate (WBWT).

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

138 Chapter 7
• Device memory. Device memories are noncacheable. They can be shareable or

nonshareable.

• Strongly-ordered (SO) memory.Amemory region that is nonbufferable, noncacheable, and

transfers to/from a strongly ordered region takes effect immediately. Also, the orders of

strongly ordered transfers on the memory interface must be identical to the orders of the

corresponding memory access instructions (no access reordering for speed optimization;

the Cortex-M0 does not have any access reordering feature). Strongly ordered memory

regions are always shareable.

The memory attribute for each memory region in the Cortex-M0 processor is defined using

these memory type definitions (Table 7.3). During the memory accesses, the memory attributes

are exported from the processor to the AHB system.

The PPB memory region is defined as strongly ordered (SO). This means the memory region is

nonbufferable and noncacheable. In the Cortex-M0, operations following an access to

a strongly order region do not begin until the access has been completed. This behavior is

important for changing registers in the System Control Space (SCS), where we often expect the

operation of changing a control register to take place immediately, before next instruction is

executed.

In some other ARM processors like the Cortex-M3, there can also be default memory access

permission for each region. Because the Cortex-M0 processor does not have a separated
Table 7.3: Memory Attribute Map

Address Region Memory Type Cache XN Descriptions

0x00000000e
0x1FFFFFFF

CODE Normal WT d Memory for program code including
vector table

0x20000000e
0x3FFFFFFF

SRAM Normal WBWA d SRAM, typically used for data and
stack memory

0x40000000e
0x5FFFFFFF

Peripheral Device d XN Typically used for on-chip devices

0x60000000e
0x7FFFFFFF

RAM Normal WBWA d Normal memory with Write Back,
Write Allocate cache attributes

0x80000000e
0x9FFFFFFF

RAM Normal WT d Normal memory with Write Through
cache attributes

0xA0000000e
0xBFFFFFFF

Device Device, shareable d XN Shareable device memory

0xC0000000e
0xDFFFFFFF

Device Device d XN Nonshareable device memory

0xE0000000e
0xE00FFFFF

PPB Strongly ordered,
shareable

d XN Internal private peripheral bus

0xE0100000e
0xFFFFFFFF

Reserved Reserved d d Reserved (vendor-specific usage)

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Memory System 139
privileged and nonprivileged (user) access level, the processor is in the privilege access level

all the time and therefore does not have a memory map for default memory access permission.

In practice, most of the memory attributes and memory type definitions are unimportant

(apart from the XN attribute) to users of Cortex-M0 microcontrollers. However, if the software

code has to be reused on high-end processors, especially on systems with multiple processors

and cache memories, these details can be important.

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

CHAPTER 8

Exceptions and Interrupts

What Are Exceptions and Interrupts?

Exceptions are events that cause changes in program flow control outside a normal code

sequence. When it happens, the program that is currently executing is suspended, and a piece of

code associated with the event (the exception handler) is executed. The events could either be

external or internal. When an event is from an external source, it is commonly known as an

interrupt or interrupt request (IRQ). Exceptions and interrupts are supported in almost all

modern processors. In microcontrollers, the interrupts can also be generated using on-chip

peripherals or by software.

The software code that is executed when an exception occurs is called exception handler. If the

exception handler is associated with an interrupt event, then it can also be called an interrupt

handler, or interrupt service routine (ISR). The exception handlers are part of the program code

in the compiled program image.

When the exception handler has finished processing the exception, it will return to the inter-

rupted program and resume the original task. As a result, the exception handling sequence

requires some way to store the status of the interrupted program and allow this information to

be restored after the exception handler has completed its task. This can be done by a hardware

mechanism or by a combination of hardware and software operations. In the next couple of

chapters, we will see how the Cortex-M0 processor handles this process.

It is common to divide exceptions into multiple levels of priority, and while running an

exception handler of a low priority exception, a higher priority exception can be triggered and

serviced. This is commonly known as a nested exception. The priority level of an exception

could be programmable or fixed. Apart from priority settings, some exceptions (including most

interrupts) can also be disabled or enabled by software.

Exception Types on the Cortex-M0 Processor

The Cortex-M0 processor contains a built-in interrupt controller, which supports up to 32

interrupt request (IRQ) inputs, and a nonmaskable interrupt (NMI) input. Depending on the

design of the microcontroller product, the IRQ and the NMI can be generated either from on-

chip peripherals or external sources. In addition, the Cortex-M0 processor also supports

a number of internal exceptions.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10008-4

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

141

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

http://dx.doi.org/10.1016/B978-0-12-385477-3.10008-4

142 Chapter 8
Each exception source in the Cortex-M0 processor has a unique exception number. The

exception number for NMI is 2, and the exception numbers for the on-chip peripherals and

external interrupt sources are from 16 to 47. The other exception numbers, from 1 to 15, are for

system exceptions generated inside the processor, although some of the exception numbers in

this range are not used.

Each exception type also has an associated priority. The priority levels of some exceptions are

fixed and some are programmable. Table 8.1 shows the exception types, exception numbers,

and priority levels.
Table 8.1: List of Exceptions in the Cortex-M0 Processor

Exception Number Exception Type Priority Descriptions

1 Reset �3 (Highest) Reset
2 NMI �2 Nonmaskable interrupt
3 Hard fault �1 Fault handling exception
4e10 Reserved NA d
11 SVC Programmable Supervisor call via SVC

instruction
12e13 Reserved NA d
14 PendSV Programmable Pendable request for

system service
15 SysTick Programmable System tick timer
16 Interrupt #0 Programmable External interrupt #0
17 Interrupt #1 Programmable External interrupt #1
. . . .
47 Interrupt #31 Programmable External interrupt #31
Nonmaskable Interrupt (NMI)

The NMI is similar to IRQ, but it cannot be disabled and has the highest priority apart from the

reset. It is very useful for safety critical systems like industrial control or automotive.

Depending on the design of the microcontroller, the NMI could be used for power failure

handling, or it can be connected to a watchdog unit to restart a system if the system stopped

responding. Because the NMI cannot be disabled by control registers, the responsiveness is

guaranteed.

Hard Fault

Hard fault is an exception type dedicated to handling fault conditions during program

execution. These fault conditions can be trying to execute an unknown opcode, a fault on a bus

interface or memory system, or illegal operations like trying to switch to ARM state.

Administrator
高亮

Administrator
下划线

Administrator
下划线

Exceptions and Interrupts 143
SVCall (SuperVisor Call)

SVC exception takes place when the SVC instruction is executed. SVC is usually used in

systems with an operating system (OS), allowing applications to have access to system

services.

PendSV (Pendable Service Call)

PendSV is another exception for applications with OS. Unlike the SVC exception, which

must start immediately after the SVC instruction has been executed, PendSV can be

delayed. The OS commonly uses PendSV to schedule system operations to be carried out

only when high-priority tasks are completed.

SysTick

The System Tick Timer inside the NVIC is another feature for OS application. Almost all

operating systems need a timer to generate regular interrupt for system maintenance work like

context switching. By integrating a simple timer in the Cortex-M0 processor, porting an OS

from one device to another is much easier. The SysTick timer and its exception are optional in

the Cortex-M0 microcontroller implementation.

Interrupts

The Cortex-M0 microcontroller could support from 1 to 32 interrupts. The interrupt signals

could be connected from on-chip peripherals or from an external source via the I/O port. In

some cases (depending on the microcontroller design), the external interrupt number might not

match the interrupt number on the Cortex-M0 processor.

External interrupts need to be enabled before being used. If an interrupt is not enabled, or if the

processor is already running another exception handler with same or higher priority, the

interrupt request will be stored in a pending status register. The pended interrupt request can

be triggered when the priority level allowsdfor example, when a higher-priority interrupt

handler has been completed and returned. The NVIC can accept interrupt request signals in

the form of a high logic level, as well as an interrupt pulse (with a minimum of one clock

cycle). Note that in the external interface of a microcontroller, the external interrupt signals

can be active high or active low, or they can have programmable configurations.

Exception Priority Definition

In the Cortex-M0 processor, each exception has a priority level. The priority level affects

whether the exception will be carried out or if it will wait until later (stay in a pending state).

The Cortex-M0 processor supports three fixed highest priority levels and four programmable

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
标注
电平触发、脉冲触发、高电平有效或者低电平有效，或者可配置的

Administrator
高亮

144 Chapter 8
levels. For exceptions with programmable priority levels, the priority level configuration

registers are 8 bits wide, but only the two MSBs are implemented (Figure 8.1).
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented Not implemented, read as zero

Figure 8.1:
A priority-level register with 2 bits implemented.
Because bit 5 to bit 0 are not implemented, they are always read as zero, and write to these bits

are ignored. With this setup, we have possible priority levels of 0x00 (high priority), 0x40,

0x80, and 0xC0 (low priority). This is similar to the Cortex-M3 processor, except that on the

Cortex-M3 processor it has at least 3 bits implemented, and therefore the Cortex-M3 processor

has at least eight programmable priority levels, whereas the Cortex-M0 processor has only

four. When combine with the three fixed priority levels, the Cortex-M0 processor has total of

seven priority levels (Figure 8.2).
Programmable
Exceptions

Reset

NMI

Hard Fault

0

-1

-2

-3

0x40

0x80

0xC0

0

0xFF

Highest priority

Lowest priority

Implemented
Exception Priority

Levels on Cortex-M0

-1

-2

-3

Architectural
priority range

0x40

0x80

0xC0

Figure 8.2:
Available priority levels in the Cortex-M0 processor.
The reason for removing the LSB of the priority level register instead of the MSB is to make it

easier to port software from one Cortex-M0/M3 device to another. In this way, a program

written for devices with wider priority width registers is likely to be able run on devices with

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
标注
4个可编程优先级和3个固定优先级，共7个

Administrator
高亮

Administrator
标注
最高位代表的级别高，用低三位表示多优先级的系统，移植到低两位时，省略了bit2，优先级顺序错乱；反之用高三位表示时，则没有这个问题。

Exceptions and Interrupts 145
narrower priority widths. If the MSB is removed instead of the LSB, you might get an inversion

of priority level arrangement among several exceptions during porting of the application. This

might result in an exception that is expected to have a lower exception priority preempting

another exception that was expected to have a higher priority.

If an enabled exception event occurs (e.g., interrupt, SysTick timer, etc.) while no other

exception handler is running, and the exception is not blocked because of PRIMASK (the

interrupt masking register, see descriptions in Chapter 3), then the processor will accept it and

the exception handler will be executed. The process of switching from a current running task to

an exception handler is called preemption.

If the processor is already running another exception handler but the new exception has higher

priority level than the current level, then preemption will also take place. The running

exception handler will be suspended, and the new exception handler will be executed. This is

commonly known as nested interrupt or nested exception. After the new exception handler

is completed, the previous exception handler can resume execution and return to thread when it

is completed.

However, if the processor is already running another exception handler that has the same or

a higher priority level, the new exception will have to wait by entering a pending state. A

pending exception can wait until the current exception level changesdfor example, after the

running exception handler has been completed and returned, and the current priority level has

been lowered to be below the priority level of the pending exception. The pending status of

exceptions can be accessed via memory-mapped registers in the NVIC. It is possible to clear

the pending status of an exception by writing to an NVIC register in software. If the pending

status of an exception is cleared, it will not be executed.

If two exceptions happen at the same time and they have the same programmed priority level,

the exception with the lower exception type number will be processed first. For example, if

both IRQ #0 and IRQ #1 are enabled, both have the same priority level, and both are asserted at

the same time, IRQ #0 will be handled first. This rule only applies when the processor is

accepting the exceptions, but not when one of these exceptions is already being processed.

The interrupt nesting support in the Cortex-M0 processor does not require any software

intervention. This is different from traditional ARM7TDMI, as well as some 8-bit and 16-bit

microcontroller architectures where interrupts are disabled automatically during interrupt

services and require additional software processing to enable nest interrupt supports.

Vector Table

Traditionally, in processors like the ARM7TDMI, the starting address of the exception handler

is fixed. Because the ARM7TDMI has only one IRQ input, multiple IRQs have to share the

same IRQ handler starting point, and the handler has to access the status of the interrupt

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
标注
Cortex-M0是硬件管理中断嵌套，不需要软件介入

146 Chapter 8
controller to determine which interrupt to be serviced. In the Cortex-M0 processor, the built-in

interrupt controller NVIC supports vectored interrupts, which means the exception vectors for

different interrupts are separated and the starting-of-interrupt-service routines are located

automatically without software intervention.

When the Cortex-M0 processor starts to process an interrupt request, it needs to locate the

starting address of the exception handler. This information is stored in the beginning of the

memory space, called the vector table (Figure 8.3). The vector table contains the exception

vectors for available exceptions in the system, as well as the starting value of the main stack

pointer (MSP).

The order of exception vector being stored is the same order of the exception number. Because

each vector is one word (four bytes), the address of the exception vector is the exception

number times four. Each exception vector is the starting address of the exception handler, with

the LSB set to 1 to indicate that the exception handler is in Thumb code.
MSP initial value
Reset vector
NMI vector

Had Fault vector

SVC vector

PendSV vector

Not used
Not used
Not used

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000034
0x00000038
0x0000003C
0x00000040
0x00000044
0x00000048
0x0000004C

Not used
Not used
Not used
Not used

Not used
Not used

SysTick vector
Interrupt#0 vector
Interrupt#1 vector
Interrupt#2 vector
Interrupt#3 vector

Memory
Address

Exception
Number

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Note: LSB of each vector must be
set to 1 to indicate Thumb state

Figure 8.3:
Vector table.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Exceptions and Interrupts 147
Some of the spaces in the vector table are not used because the Cortex-M0 only has a few

system exceptions. Some of the unused exceptions are used on other ARM processors like the

Cortex-M3/M4 processor, as these processors have additional system exceptions.
Exception Sequence Overview

Acceptance of Exception Request

The processor accepts an exception if the following conditions are satisfied:

• For interrupt and SysTick interrupt requests, the interrupt has to be enabled

• The processor is not running an exception handler of the same or a higher priority

• The exception is not blocked by the PRIMASK interrupt masking register

Note that for SVC exception, if the SVC instruction is accidentally used in an exception

handler that has the same or a higher priority than the SVC exception itself, it will cause the

hard fault exception handler to execute.

Stacking and Unstacking

To allow an interrupted program to be resumed correctly, some parts of the current state of the

processor must be saved before the program execution switches to the exception handler that

services the occurred exception. Different processor architectures have different ways to do

this. In the Cortex-M0 processor, the architecture uses a mixture of automatic hardware

arrangement and, only if necessary, additional software steps for saving and restoring processor

status.

When an exception is accepted on the Cortex-M0 processor, some of the registers in the

register banks (R0 to R3, R12, R14), the return address (PC), and the Program Status Register

(xPSR) are pushed to the current active stack memory automatically. The Link Register

(LR/R14) is then updated to a special value to be used during exception return (EXC_RE-

TURN, to be introduced later in this chapter), and then the exception vector is automatically

located and the exception handler starts to execute.

At the end of the exception handling process, the exception handler executes a return using the

special value (EXC_RETURN, previously generated in LR) to trigger the exception return

mechanism. The processor checks to determine if there is any other exception to be serviced. If

not, the register values previously stored on the stack memory are restored and the interrupted

program is resumed.

The actions of automatically saving and restoring of the register contents are called

“stacking” and “unstacking” (Figure 8.4). These mechanisms allow exception handlers to

be implemented as normal C functions, thereby reducing the software overhead of exception

Administrator
下划线

Administrator
标注
中断屏蔽寄存器

Administrator
波浪线

Administrator
波浪线

Administrator
高亮

Administrator
标注
硬件自动完成中断保护，在需要的时候额外进行软件来保存

Exception handlerHandler
mode

Thread
mode

Interrupt

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Figure 8.4:
Stacking and unstacking of registers at exception entry and exit.

148 Chapter 8
handling as well as the circuit size (no need to have extra banked registers), and hence lowering

the power consumption of the design.

The registers not saved by the automatic stacking process will have to be saved and restored

by software in the exception handler, if the exception handler had modified them. However,

this does not affect the use of normal C functions as exception handlers, because it is

a requirement for C compilers to save and restore the other registers (R4-R11) if they will

be modified during the C function execution.

Exception Return Instruction

Unlike some other processors, there is no special return instruction for exception handlers.

Instead, a normal return instruction is used and the value load into PC is used to trigger the

exception return. This allows exception handlers to be implemented as a normal C function.

Two different instructions can be used for exception return:
BX <Reg>; Load a register value into PC (e.g., “BX LR”)
and
POP {<Reg1>,< Reg2>,..,PC}; POP instruction with PC being one of the registers

being updated
When one of these instructions is executed with a special value called EXC_RETURN being

loaded into the program counter (PC), the exception return mechanism will be triggered. If the

value being loaded into the PC does not match the EXC_RETURN pattern, then it will be

executed as a normal BX or POP instruction.

Administrator
标注
没被自动压栈并且将被中断程序修改的寄存器需要软件保存和提取，这是C编译器需要做的，不需要人为操作。

Administrator
高亮

Exceptions and Interrupts 149
Tail Chaining

If an exception is in a pending state when another exception handler has been completed,

instead of returning to the interrupted program and then entering the exception sequence again,

a tail-chain scenario will occur. When tail chain occurs, the processor will not have to restore

all register values from the stack and push them back to the stack again. The tail chaining of

exceptions allows lower exception processing overhead and hence better energy efficiency

(Figure 8.5).
Exception handler AHandler
mode

Thread
mode

Interrupt B

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Interrupt A
Interrupt occur

Interrupt cleared
by ISR

Exception handler B

Exception
Return

Tail-chaining

Figure 8.5:
Tail chaining of an interrupt service routine.
Late Arrival

Late arrival is an optimization mechanism in the Cortex-M0 to speed up the processing of higher-

priority exceptions. If a higher priority exception occurs during the stacking process of a lower-

priority exception, the processor switches to handle the higher-priority exception first (Figure 8.6).

Because processing of either interrupt requires the same stacking operation, the stacking

process continues as normal when the late-arriving, higher-priority interrupt occurs. At the end

of the stacking process, the vector for the higher-priority exception is fetched instead of the

lower-priority one.

Without the late arrival optimization, a processor will have to preempt and enter the exception

entry sequence again at the beginning of the lower-priority exception handler. This results in

longer latency as well as larger stack memory usage.

Exception handler BHandler
mode

Thread
mode

Interrupt B
(high priority)

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Interrupt A
(low priority)

Interrupt occur
Interrupt cleared

by ISR

Exception handler A

Exception
Return

Late arrival
(processor switch to
process interrupt B)

Figure 8.6:
Late arrival optimization.

150 Chapter 8
EXC_RETURN

The EXC_RETURN is a special architecturally defined value for triggering and helping the

exception return mechanism. This value is generated automatically when an exception is

accepted and is stored into the Link Register (LR, or R14) after stacking. The EXC_RETURN

is a 32-bit value; the upper 28 bits are all set to 1, and bits 0 to 3 are used to provide information

for the exception return mechanism (Table 8.2).
Bit

Des

Val
Bit 0 of EXC_RETURN on the Cortex-M0 processor is reserved and must be 1.

Bit 2 of EXC_RETURN indicates whether the unstacking should restore registers from the

main stack (using MSP) or process stack (using PSP).

Bit 3 of EXC_RETURN indicates whether the processor is returning to Thread mode or

Handler mode.
Table 8.2: Bit Fields in EXC_RETURN Value

s 31:28 27:4 3 2 1 0

criptions EXC_RETURN
indicator

Reserved Return mode Return stack Reserved Reserved

ue 0xF 0xFFFFFF 1 (thread) or
0 (handler)

0 (main stack) or 1
(process stack)

0 1

Exceptions and Interrupts 151
Table 8.3 shows the valid EXC_RETURN values for the Cortex-M0 processor.
Table 8.3: Valid EXC_RETURN Value

EXC_RETURN Condition

0xFFFFFFF1 Return to Handler mode (nested exception case)
0xFFFFFFF9 Return to Thread mode and use the main stack for return
0xFFFFFFFD Return to Thread mode and use the process stack for

return
Because the EXC_RETURN value is loaded into LR automatically at the exception entry, the

exception handler treats it as a normal return address. If the return address does not need to be

saved onto the stack, the exception handler can trigger the exception return and return to the

interrupt program by executing “BX LR,” just like a normal function. Alternatively, if the

exception handler needs to execute function calls, it will need to push the LR to the stack. At

the end of the exception handler, the stacked EXC_RETURN value can be loaded into PC

directly by a POP instruction, thus triggering the exception return sequence and the return to

the interrupt program.

The following diagrams show situations in which different EXC_RETURN values are

generated and used.

If the thread is using main stack (CONTROL register bit 1 is zero), the value of the LR will be

set to 0xFFFFFFF9 when it enters an exception and 0xFFFFFFF1 when a nested exception is

entered, as shown in Figure 8.7.

If the thread is using process stack (CONTROL register bit 1 is set to 1), the value of LR will be

0xFFFFFFFD when entering the first exception and 0xFFFFFFF1 when entering a nested

exception, as shown in Figure 8.8.

As a result of EXC_RETURN format, a normal return instruction cannot return to an address in

the range of 0xFFFFFFFX, because this will be treated as an exception return rather than

a normal one. However, because the address range 0xFXXXXXXX is reserved and should not

contain program code, it is not a problem.
Details of Exception Entry Sequence

When an exception takes place, a number of things happen:

• The stack pointer stacks and updates

• The processor fetches the vector and updates it to the PC

• The registers update (LR, IPSR, NVIC registers)

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program

Exception return

Unstacking

Interrupt Service
Routine #2

Interrupt Service
Routine #1

StackingExecution
status

Interrupt event
#1

Thread mode Handler
mode

Handler
mode

Handler
mode Thread mode

LR = 0xFFFFFFF9 LR = 0xFFFFFFF1

Main StackMain Stack Main Stack

Handler

Thread

Exception return

Interrupt event
#2

Figure 8.7:
LR set to EXC_RETURN values at exceptions (main stack is used in Thread mode).

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program
Unstacking

Interrupt Service
Routine #2

Interrupt Service
Routine #1

Stacking

Interrupt event
#1

Thread mode Handler
mode

Handler
mode

Handler
mode Thread mode

LR = 0xFFFFFFFD LR = 0xFFFFFFF1

Main StackProcess Stack Process Stack

Execution
status

Handler

Thread

Exception return

Exception return

Figure 8.8:
LR set to EXC_RETURN values at exceptions (process stack is used in Thread mode).

Exceptions and Interrupts 153
Stacking

When an exception takes place, eight registers are pushed to the stack automatically

(Figure 8.9). These registers are R0 to R3, R12, R14 (the Link Register), the return address

(address of the next instruction, or Program Counter), and the program status register (xPSR).

The stack being used for stacking is the current active stack. If the processor was in Thread

mode when the exception happened, the stacking could be done using either the process stack

or the main stack, depending on the setting in the CONTROL register bit 1. If CONTROL[1]

was 0, the main stack would be used for the stacking.
Thread
mode

Handler
mode

ISR execution

Thread

Stacking

Using
main
stackUsing main stack

(CONTROL[1] = 0)

Use main
stack

Figure 8.9:
Exception stacking in nested interrupt with the main stack used in Thread mode.
If the processor was in Thread mode and CONTROL[1] was set to 1 when the exception

occurred, the stacking will be done using the process stack (Figure 8.10).
Thread
mode

Handler
mode

ISR execution

Thread

Stacking

Using
process
stackUsing process stack

(CONTROL[1] = 1)

Using main
stackIRQ

Stacking

Using
main
stack

Higher priority
IRQ

Nested ISR
execution

Using main
stack

Figure 8.10:
Exception stacking in nested interrupt with process stack used in Thread mode.

154 Chapter 8
For nested exceptions, the stacking always uses the main stack because the processor is already

in Handler mode, which can only use the main stack.

The reason for the registers R0eR3, R12, PC, LR, and xPSR to be saved to stack is that these

are called “caller saved registers.” According to the AAPCS (ARM Architecture Procedure

Call Standard, reference 4), a C function does not have to retain the values of these registers. To

allow exception handlers to be implemented as normal C functions, these registers have to

be saved and restored by hardware, so that when the interrupt program resumes, all these

registers will be the same as they were before the exception occurred.

The grouping of the register contents that are pushed onto the stack during stacking is

called a “stack frame” (Figure 8.11). In the Cortex-M0 processor, a stack frame is always

double word aligned. This ensures that the stack implementation conforms to the AAPCS

standard (reference 4). If the position of the last pushed data could be in an address that is

not double word aligned, the stacking mechanism automatically adjusts the stacking

position to the next double-word-aligned location and sets a flag (bit 9) in the stacked xPSR

to indicate that the double word stack adjustment has been made.
Old SP0x20008000
xPSR (bit 9 is 0)
Return Address

R1
R0

R3
R2

LR
R12

New SP
0x20007FDC

A stack
frame

0x20007FFC

0x20007FE0

Old SP
0x20008000

xPSR (bit 9 is 1)
Return Address

R1
R0

R3
R2

LR
R12

New SP
0x20007FDC

A stack
frame

Unused
0x20007FFC

0x20007FE0

0x20007FF8

0x20007FD8

0x20007FF4

SP was double word
aligned

SP was not double
word aligned

Figure 8.11:
Stack frame and double word stack alignment.
During unstacking, the processor checks the flag in the stacked xPSR and adjusts the stack

pointer accordingly.

The stacking of registers is carried out in the order shown in Figure 8.12.

When the stacking has been completed, the stack pointer is updated, and the main stack pointer

is selected as the current stack pointer (handlers always use the main stack), then the exception

vector will be fetched.

Return
Address xPSRR0 R1 R2 R3 R12 LR

(R14)
Stacking

start

Fetch
exception

vector

Figure 8.12:
Order of register stacking during the exception sequence in the Cortex-M0 processor.

Exceptions and Interrupts 155
Vector Fetch and Update PC

After the stacking is done, the processor then fetches the exception vector from the vector table.

The vector is then updated to the PC, and the instruction fetch of the exception handler

execution starts from this address.

Registers Update

As the exception handler starts to execute, the value of LR is updated to the corresponding

EXC_RETURN value. This value is to be used for exception return. In addition, the IPSR is

also updated to the exception number of the currently serving exception.

In addition, a number of NVIC registers might also be updated. This includes the status

registers for external interrupts if the exception taken is an interrupt, or the Interrupt Control

and Status Register if it is a system exception.

Details of Exception Exit Sequence

When an exception return instruction is executed (loading of EXC_RETURN into PC by POP

or BX instruction), the exception exit sequence begins. This includes the following steps:

• Unstacking of registers

• Fetching and executing from the restored return address

Unstacking of Registers

To restore the registers to the state they were in before the exception was taken, the register

values that were stored on to the stack during stacking are read (POP) and restored back to the

registers (Figure 8.13). Because the stack frame can be stored either on the main stack or

on the processor stack, the processor first checks the value of the EXC_RETURN being

used. If bit 2 of EXC_RETURN is 0, it starts the unstacking from the main stack. If this bit

is 1, it starts the unstacking from the process stack.

After the unstacking is done, the stack pointer needs to be adjusted. During stacking,

a 4-byte space might have been included in the stack memory so as to ensure the stack

frame is double word aligned. If this is the case, the bit 9 of the stack xPSR would be set

to 1, and the value of SP could be adjusted accordingly to remove the 4-byte padding space.

xPSR

R0

R1

R2

R3

R12

LR

Return
Address

(PC)

xPSR

R0

R1

R2

R3

R12

LR

Return
Address

(PC)

Restore
Registers

Unstacked xPSR[9]=0

SP = SP + 36

Adjust SP due to
previous stack frame

double word alignment

SP selection update

Unstacking
using PSP

Unstacking
using MSP

SP = SP + 32

EXC_RETURN[2] =0 EXC_RETURN[2] =1

MSP selected
(CONTROL[1] = 0)

PSP selected
(CONTROL[1] = 1)

Resume program
execution

EXC_RETURN[2] =0 EXC_RETURN[2] =1

Unstacked xPSR[9]=1

Exception Return
executed

Figure 8.13:
Unstacking at the exception exit.

156 Chapter 8

Exceptions and Interrupts 157
In addition, the current SP selection may be switched back to the process stack if bit 2 of

EXC_RETURN was set to 1 and bit 3 of the EXC_RETURN was set, indicating the exception

exit is returning to Thread mode.

Fetch and Execute from Return Address

After the exception return process is completed, the processor can then fetch instructions from

the restored return address in the program counter and resume execution of the interrupted

program.

CHAPTER 9

Interrupt Control and System Control

Overview of the NVIC and System Control Block Features

The Nested Vectored Interrupt Controller (NVIC) is an integrated part of the Cortex-M0

processor. It is closely linked to the processor core logic and provides the functions of interrupt

control and system exception support.

Apart from the NVIC, there is also a System Control Block (SCB), which shares the same

System Control Space (SCS) memory address range. The SCB contains features for operating

system support, like an internal timer for the SysTick exception. The OS-related features will

be covered in Chapter 10.

The NVIC features were explored in Chapter 3. Those features include the following:

• Flexible interrupt management include enable/disable, priority configurations

• Hardware nested interrupt support

• Vectored exception entry

• Interrupt masking

The NVIC in the Cortex-M0 processor supports up to 32 external interrupts and one

nonmaskable interrupt (NMI). The interrupt input requests can be level triggered, or they can

be pulsed with a minimum of one clock cycle. Each external interrupt can be enabled or

disabled independently, and its pending status can also be set or clear manually.

The NVIC control registers are memory mapped and can be easily accessed in C language. The

location of the NVIC registers starts from address 0xE000E100. For the Cortex-M0 processor,

the accesses to the NVIC register must be in word size. (Note that in the Cortex-M3 processor,

access to the NVIC can be in the form of word, half-word, or byte transfers.)

Similar to the NVIC registers, the SCB registers are also word accessible, and the address starts

from 0xE000E010. The SCB registers handle features like the SysTick timer operations,

system exception management and priority control, and sleep mode control.

Interrupt Enable and Clear Enable

The Interrupt Enable control register is a programmable register that is used to control the

enable/disable of the interrupt requests (exception 16 and above). The width of this register

depends on how many interrupts are supported; the maximum size is 32 bit and the minimum
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10009-6

Copyright � 2011 Man Cheung Joseph Yiu. Publishd by Elsevier Inc. All rights reserved.

159

http://dx.doi.org/10.1016/B978-0-12-385477-3.10009-6

160 Chapter 9
size is 1 bit. This register is programmed via two separate addresses. To enable an interrupt,

the SETENA address is used, and to disable an interrupt, the CLRENA address is used

(Table 9.1).
Table 9.1: Interrupt Enable Set and Clear Register

Address Name Type Reset Value Descriptions

0xE000E100 SETENA R/W 0x00000000 Set enable for interrupt 0 to 31. Write 1 to set
bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status

0xE000E180 CLRENA R/W 0x00000000 Clear enable for interrupt 0 to 31. Write 1 to
clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status
Separating the set and clear operations in two different addresses has various advantages. First,

it reduces the steps needed for enabling an interrupt, thus getting small code and shorter

execution time. For example, to enable interrupt #2, we only need to program the NVIC with

one access:
*((v

*((v
olatile unsigned long *)(0xE000E100))¼0x4;//Enable interrupt #2
or in assembly,
LDR R0,¼0xE000E100 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to set interrupt enable
The second advantage is that this arrangement prevents race conditions between multiple

application processes that can result in the loss of programmed control information. For

example, if the enable control is implemented using a simple read/write register, a read-

modify-write process is required for enabling an interrupt (e.g., interrupt #2 in this case), and if

between the read operation and write operation, an interrupt occurred and the ISR changed

another bit in the interrupt-enabled register, the change done by the ISR could be overwritten

when the interrupted program resumed.

An interrupt enable can be cleared with the use of similar code, only the address is different.

For example, to disable interrupt #2, we use the following code:
olatile unsigned long *)(0xE000E180))¼0x4;//Disable interrupt #2

Interrupt Control and System Control 161
Or in assembly
Ad

0xE

0xE
LDR R0,¼0xE000E180; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to clear interrupt enable
In normal application development, it is best to use the NVIC control functions provided in the

CMSIS-compliant device driver library to enable or disable interrupts. This gives your

application code the best software portability. CMSIS is part of the device driver library from

your microcontroller vendor and is covered in Chapter 4. To enable or disable interrupt using

CMSIS, the functions provided are as follows:
void NVIC_EnableIRQ(IRQn_Type IRQn); // Enable Interrupt e
// IRQn value of 0 refer to Interrupt #0

void NVIC_DisableIRQ(IRQn_Type IRQn); // Disable Interrupt e

// IRQn value of 0 refer to Interrupt #0
Interrupt Pending and Clear Pending

If an interrupt takes place but cannot be processed immediatelydfor example, if the processor

is serving a higher-priority interruptdthe interrupt request will be pended. The pending

status is held in a register and will remain valid until the current priority of the processor is

lowered so that the pending request is accepted or until the application clears the pending

status manually.

The interrupt pending status can be accessed or modified, through the Interrupt Set Pending

(SETPEND) and Interrupt Clear Pending (CLRPEND) register addresses (Table 9.2). Similar

to the Interrupt Enable control register, the Interrupt Pending status register is physically one

register, but it uses two addresses to handle the set and clear the bits. This allows each bit to be
Table 9.2: Interrupt Pending Set and Clear Register

dress Name Type Reset Value Descriptions

000E200 SETPEND R/W 0x00000000 Set pending for interrupt 0 to 31. Write 1 to set
bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status

000E280 CLRPEND R/W 0x00000000 Clear pending for interrupt 0 to 31. Write 1 to
clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status

162 Chapter 9
modified independently, without the risk of losing information because of race conditions

between two application processes.

The Interrupt Pending status register allows an interrupt to be triggered by software.

If the interrupt is already enabled, no higher-priority exception handler is running, and

no interrupt masking is set, then the interrupt service routine will be carried out almost

immediately. For example, if we want to trigger interrupt #2, we can use the

following code:
*((v
*((v

*((v

void
void
uint
olatile unsigned long *)(0xE000E100))¼0x4; //Enable interrupt #2
olatile unsigned long *)(0xE000E200))¼0x4; //Pend interrupt #2
or in assembly,
LDR R0,¼0xE000E100 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to set interrupt enable
LDR R0,¼0xE000E200 ; Setup address in R0
STR R1,[R0] ; write to set pending status
In some cases we might need to clear the pending status of an interrupt. For example, when an

interrupt-generating peripheral is being reprogrammed, we can disable the interrupt for this

peripheral, reprogram its control registers, and clear the interrupt pending status before re-

enabling the peripheral (in case unwanted interrupt requests might be generated during

reprogramming). For example, to clear the pending status of interrupt 2, we can use the

following code:
olatile unsigned long *)(0xE000E280))¼0x4;// Clear interrupt #2
// pending status
or in assembly,
LDR R0,¼0xE000E280 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to clear pending status
In the CMSIS-compliant device driver libraries, three functions are provided for accessing the

pending status registers:
NVIC_SetPendingIRQ(IRQn_Type IRQn); // Set pending status of a interrupt
NVIC_ClearPendingIRQ(IRQn_Type IRQn); // Clear pending status of a interrupt
32_t NVIC_GetPendingIRQ(IRQn_Type IRQn); // Return true if the interrupt pending

//status is 1
Interrupt Priority Level

Each external interrupt has an associated priority-level register. Each of them is 2 bits wide,

occupying the two MSBs of the Interrupt Priority Level Registers. Each Interrupt Priority

Level Register occupies 1 byte (8 bits). NVIC registers in the Cortex-M0 processor can only be

0xE000E400 IRQ 0
0xE000E404 4
0xE000E408 8
0xE000E40C 12
0xE000E410 16
0xE000E414 20
0xE000E418 24
0xE000E41C 28

078232431Bit 6

IRQ 1
5
9
13
17
21
25
29

IRQ 2
6
10
14
18
22
26
30

IRQ 3
7
11
15
19
23
27
31

22 1530 16 14

Figure 9.1:
Interrupt Priority Level Registers for each interrupt.

Interrupt Control and System Control 163
accessed using word-size transfers, so for each access, four Interrupt Priority Level Registers

are accessed at the same time (Figure 9.1).

The unimplemented bits are read as zero. Write values to those unimplemented bits are

ignored, and read values of the unimplemented bits return zeros (Table 9.3).
Table 9.3: Interrupt Priority Level Registers (0xE000E400e0xE000E41C)

Address Name Type Reset Value Descriptions

0xE000E400 IPR0 R/W 0x00000000 Priority level for interrupt 0 to 3
[31:30] Interrupt priority 3
[23:22] Interrupt priority 2
[15:14] Interrupt priority 1
[7:6] Interrupt priority 0

0xE000E404 IPR1 R/W 0x00000000 Priority level for interrupt 4 to 7
[31:30] Interrupt priority 7
[23:22] Interrupt priority 6
[15:14] Interrupt priority 5
[7:6] Interrupt priority 4

0xE000E408 IPR2 R/W 0x00000000 Priority level for interrupt 8 to 11
[31:30] Interrupt priority 11
[23:22] Interrupt priority 10
[15:14] Interrupt priority 9
[7:6] Interrupt priority 8

0xE000E40C IPR3 R/W 0x00000000 Priority level for interrupt 12 to 15
[31:30] Interrupt priority 15
[23:22] Interrupt priority 14
[15:14] Interrupt priority 13
[7:6] Interrupt priority 12

0xE000E410 IPR4 R/W 0x00000000 Priority level for interrupt 16 to 19
0xE000E414 IPR5 R/W 0x00000000 Priority level for interrupt 20 to 23
0xE000E418 IPR6 R/W 0x00000000 Priority level for interrupt 24 to 27
0xE000E41C IPR7 R/W 0x00000000 Priority level for interrupt 28 to 31

164 Chapter 9
Because each access to the priority level register will access four of them in one go, if we

only want to change one of them, we need to read back the whole word, change 1 byte,

and then write back the whole value. For example, if we want to set the priority level of

interrupt #2 to 0xC0, we can do it by using the following code:
unsi
temp
temp
*((v

void

uint
gned long temp; // a temporary variable
¼ *((volatile unsigned long *)(0xE000E400)); // Get IPR0
¼ temp & (0xFF00FFFF) j (0xC0 << 16); // Change Priority level
olatile unsigned long *)(0xE000E400)) ¼ temp; // Set IPR0
Or in assembly, we use this code:
LDR R0,¼0xE000E400; Setup address in R0
LDR R1,[R0] ; Get PRIORITY0
MOVS R2, #0xFF ; Byte mask
LSLS R2, R2, #16 ; Shift mask to interrupt #2’s position
BICS R1, R1, R2 ; R1 ¼ R1 AND (NOT(0x00FF0000))
MOVS R2, #0xC0 ; New value for priority level
LSLS R2, R2, #16 ; Shift left by 16 bits
ORRS R1, R1, R2 ; Put new priority level
STR R1,[R0] ; write back value
Alternatively, if the mask value and new value are fixed in the application code, we can set the

mask value and new priority level values using LDR instructions to shorten the code:
LDR R0,¼0xE000E400 ; Setup address in R0
LDR R1,[R0] ; Get PRIORITY0
LDR R2,¼0x00FF0000 ; Mask for interrupt #2’s priority
BICS R1, R1, R2 ; R1 ¼ R1 AND (NOT(0x00FF0000))
LDR R2,¼0x00C00000 ; New value for interrupt #2’s priority
ORRS R1, R1, R2 ; Put new priority level
STR R1,[R0] ; write back value
With CMSIS-compliant device driver libraries, the interrupt priority level can be accessed by

two functions:
NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority); // Set the priority
// level of an interrupt or a system exception

32_t NVIC_GetPriority(IRQn_Type IRQn); // return the priority
// level of an interrupt or a system exception
Note that these two functions automatically shift the priority level values to the implemented

bits of the priority level registers. Therefore, when we want to set the priority value of interrupt

#2 to 0xC0, we should use this code:
NVIC_SetPriority(2, 0x3); // priority value 0x3 is shifted to become 0xC0
The Interrupt Priority Level Registers should be programmed before the interrupt is enabled.

Usually this is done at the beginning of the program. Changing of interrupt priority when the

interrupt is already enabled should be avoided, as this is architecturally unpredictable in the

Interrupt Control and System Control 165
ARMv6-M architecture and is not supported in Cortex-M0 processor. The case is different for the

Cortex-M3/M4 processor. The Cortex-M3/M4 processor supports the dynamic switching of

interrupt priority levels. Another difference between the Cortex-M3 processor and Cortex-M0

processor is that the interrupt priority registers can be accessed using byte or half word transfers in

the Cortex-M3, so that you can access an individual priority level setting with byte-size accesses.

More details of the differences between various Cortex-M processors are covered in Chapter 21.

Generic Assembly Code for Interrupt Control

For users who are programming the Cortex-M0 processor using assembly language, it could be

handy to have a set of generic functions for handling interrupt control in the NVIC. For C

language users, a function library is already provided in the Cortex Microcontroller Software

Interface Standard (CMSIS). The CMSIS is included in the device driver libraries from all

major microcontroller vendors and is openly accessible. More about the CMSIS is covered in

Chapter 4.

Enable and Disable Interrupts

The enable and disable of interrupts are quite simple. The following functionsd“nvic_
set_enable” and “nvic_clr_enable”drequire the interrupt number as input, which is

stored in R0 before the function call:
;--------------------
; Enable IRQ
; - input R0 : IRQ number. E.g., IRQ#0 ¼ 0
ALIGN
nvic_set_enable FUNCTION

PUSH {R1, R2}
LDR R1,¼0xE000E100 ; NVIC SETENA
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;--------------------
; Disable IRQ
; - input R0 : IRQ number. E.g., IRQ#0 ¼ 0
ALIGN
nvic_clr_enable FUNCTION

PUSH {R1, R2}
LDR R1,¼0xE000E180 ; NVIC CLRENA
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;--------------------

166 Chapter 9
To use the functions, just put the interrupt number in R0, and call the function. For example,
MOVS R0, #3 ; Enable Interrupt #3
BL nvic_set_enable
The FUNCTION and ENDFUNC keywords are used to identify the start and end of a function

in the ARM assembler (including the Keil MDK). This is optional. The “ALIGN” keyword

ensures correct alignment of the starting of the function.
Set and Clear Interrupt Pending Status

The assembly functions for setting and clearing interrupt pending status are similar to the ones

used for enabling and disabling interrupts. The only changes are labels and NVIC register

address values:

;--------------------
; Set IRQ Pending status
; - input R0 : IRQ number. E.g., IRQ#0 ¼ 0
ALIGN
nvic_set_pending FUNCTION

PUSH {R1, R2}
LDR R1,¼0xE000E200 ; NVIC SETPEND
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;--------------------
; Clear IRQ Pending
; - input R0 : IRQ number. E.g., IRQ#0 ¼ 0
ALIGN
nvic_clr_pending FUNCTION

PUSH {R1, R2}
LDR R1,¼0xE000E280 ; NVIC CLRPEND
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;--------------------
Note that sometimes clearing the pending status of an interrupt might not be enough to stop the

interrupt from happening. If the interrupt source generates an interrupt request continuously

(level output), then the pending status could remain high, even if you try to clear it at the NVIC.

Setting up Interrupt Priority Level

The assembly function to set up the priority level for an interrupt is a bit more complex. First, it

requires two input parameters: the interrupt number and the new priority level. Second, the

Interrupt Control and System Control 167
calculation of priority level register address has to be modified, as there are up to eight priority

registers. Finally, it needs to perform a read-modify-write operation to the correct byte inside

the 32-bit priority level register, as the priority level registers are word access only:
Pri
;--------------------
; Set interrupt priority
; - input R0 : IRQ number. E.g., IRQ#0 ¼ 0
; - input R1 : Priority level
ALIGN
nvic_set_priority FUNCTION

PUSH {R2-R5}
LDR R2,¼0xE000E400 ; NVIC Interrupt Priority #0
MOV R3, R0 ; Make a copy of IRQ number
MOVS R4, #3 ; clear lowest two bit of IRQ number
BICS R3, R4
ADDS R2, R3 ; address of priority register in R2
ANDS R4, R0 ; byte number (0 to 3) in priority register
LSLS R4, R4, #3 ; Number of bits to shift for priority & mask
MOVS R5, #0xFF ; byte mask
LSLS R5, R5, R4 ; byte mask shift to right location
MOVS R3, R1
LSLS R3, R3, R4 ; Priority shift to right location
LDR R4, [R2] ; Read existing priority level
BICS R4, R5 ; Clear existing priority value
ORRS R4, R3 ; Set new level
STR R4, [R2] ; Write back
POP {R2-R5}
BX LR ; Return
ENDFUNC
;--------------------
In most applications, however, you can use a much simpler code to set up priority levels of

multiple interrupts in one go at the beginning of the program. For example, you can predefine

the priority levels in a table of constant values and then copy it to the NVIC priority level

registers using a short instruction sequence:
LDR R0,¼PrioritySettings ; address of priority setting table
LDR R1,¼0xE000E400 ; address of interrupt priority registers
LDMIA R0!,{R2-R5} ; Read Interrupt Priority 0-15
STMIA R1!,{R2-R5} ; Write Interrupt Priority 0-15
LDMIA R0!,{R2-R5} ; Read Interrupt Priority 16-31
STMIA R1!,{R2-R5} ; Write Interrupt Priority 16-31
.
ALIGN 4 ; Ensure that the table is word aligned
oritySettings ; Table of priority level values (example values)
DCD 0xC0804000 ; IRQ 3- 2- 1- 0
DCD 0x80808080 ; IRQ 7- 6- 5- 4
DCD 0xC0C0C0C0 ; IRQ 11-10- 9- 8
DCD 0x40404040 ; IRQ 15-14-13-12
DCD 0x40404080 ; IRQ 19-18-17-16
DCD 0x404040C0 ; IRQ 23-22-21-20
DCD 0x4040C0C0 ; IRQ 27-26-25-24
DCD 0x004080C0 ; IRQ 31-30-29-28

168 Chapter 9
Exception Masking Register (PRIMASK)

In some applications, it is necessary to disable all interrupts for a short period of time for time-

critical processes. Instead of disabling all interrupts and restoring them using the interrupt

enable/disable control register, the Cortex-M0 processor provides a separate feature for this

usage. One of the special registers, called PRIMASK (introduced in Chapter 3), can be used to

mask all interrupts and system exceptions, apart from the NMI and hard fault exceptions.

The PRIMASK is a single bit register and is set to 0 at reset. When set to 0, interrupts and system

exceptions are allowed. When set to 1, only NMI and hard fault exceptions are allowed. Effec-

tively, when it is set to 1, it changes the current priority level to 0 (the highest programmable level).

There are various ways to program the PRIMASK register. In assembly language, you can set

or clear the PRIMASK register using the MSR instruction. For example, you can use the

following code to set PRIMASK (disable interrupt):
void
void
MOVS R0, #1 ; New value for PRIMASK
MSR PRIMASK, R0 ; Transfer R0 value to PRIMASK
You can enable the interrupt in the same way, by just changing the R0 value to 0.

Alternatively, you can use the CPS instructions to set or clear PRIMASK:
CPSIE i ; Clear PRIMASK (Enable interrupt)
CPSID i ; Set PRIMASK (Disable interrupt)
In C language, users of CMSIS device drivers can use the following function to set and clear

PRIMASK. Even if CMSIS is not used, most C compilers for ARM processors handle these

two functions automatically as intrinsic functions:
__enable_irq(void); // Clear PRIMASK
__disable_irq(void); // Set PRIMASK
These two functions get compiled into the CPS instructions.

It is important to clear the PRIMASK after the time-critical routine is finished.

Otherwise the processor will stop accepting new interrupt requests. This applies even if the

__disable_irq() function (or setting of PRIMASK) is used inside an interrupt handler.

This behavior differs from that of the ARM7TDMI; in the ARM7TDMI processor, the I-bit can

be reset (to enable interrupts) at exception return because of the restoration of the CPSR. When

in the Cortex-M processors, PRIMASK and xPSR are separated and therefore the interrupt

masking is not affected by exception return.
Interrupt Inputs and Pending Behavior

The Cortex-M0 processor supports interrupt requests in the form of a level trigger as well as pulse

input. This feature involves a number of pending status registers associated with interrupt inputs,

Interrupt Control and System Control 169
including theNMI input. For each interrupt input, there is a 1-bit register called the pending status

register that holds the interrupt request even if the interrupt request is de-asserted (e.g., an interrupt

pulse generated from external hardware connected via the I/O port). When the exception starts to

be served by the processor, the hardware clears the pending status automatically.

In the case of NMI it is almost the same, apart from the fact that the NMI request is usually served

almost immediately because it is the highest priority interrupt type. Otherwise it is quite similar to

the IRQs: the pending status register forNMI allows software to triggerNMI and allows newNMI

to be held in pending state if the processor is still serving the previous NMI request.

Simple Interrupt Process

Most peripherals developed for ARM processors use level trigger interrupt output. When an

interrupt event take place, the interrupt signal connect from the peripheral to the NVIC will be

asserted. The signal will remain high until the processor clears the interrupt request at the

peripheral during the interrupt service routine. Inside the NVIC, the pending status register of

the interrupt is set when the interrupt is detected and is cleared as the processor accepts and

starts the interrupt service routine execution (Figure 9.2).
Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking
Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set
Entering the interrupt handler cause

the pending status to be cleared

Exception
return

Unstacking

Thread

Interrupt service routine clears the
interrupt request at the peripheral

Thread

Figure 9.2:
A simple case of interrupt activation and pending status behavior.
Some interrupt sources might generate interrupt requests in the form of a pulse (for at least one

clock cycle). In this case, the pending status register will hold the request until the interrupt is

being served (Figure 9.3).

If the interrupt request is not carried out immediately and is de-asserted, and the pending status

is cleared by software, then the interrupt request will be ignored and the processor will not

execute the interrupt handler (Figure 9.4). The pending status can be cleared by writing to the

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking
Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Unstacking

Thread

Thread

Figure 9.3:
A simple case of pulsed interrupt activation and pending status behavior.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking
Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Unstacking

Thread

Thread

Figure 9.4:
Interrupt pending status is cleared and is not taken by the processor.

170 Chapter 9
NVIC CLRPEND register. This is often necessary when setting up a peripheral, and the

peripheral might have generated a spurious interrupt request previously.

If the interrupt request is still asserted by the peripheral when the software clears the pending

status, the pending status will be asserted again immediately (Figure 9.5).

Now let us go back to the normal interrupt processing scenarios. If the interrupt request from

the peripheral is not cleared during the execution of the exception handler, the pending status

will be activated again at the exception return and will cause the exception handler to be

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Processor operation Thread (interrupt X is not accepted due to disabled or masked by PRIMASK)

Assertion of interrupt request
cause pending status to be set

Pending status cleared by software

Thread

Pending status re-asserted

Figure 9.5:
Interrupt pending status is cleared and then reasserted.

Interrupt Control and System Control 171
executed again. This might happen if the peripheral got more data to be processed (for

example, a data receiver might want to hold the interrupt request high, as long as data remain in

its received data FIFO) (Figure 9.6).
Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking
Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set
Entering the interrupt handler cause

the pending status to be cleared

Exception
return

Interrupt handler X

Exception return while interrupt
asserted cause pending status

to get activated

Interrupt handler entered
again and clear the

pending status

Interrupt request remain high

Interrupt re-entered

Vector fetch

Figure 9.6:
Interrupt request remain high at interrupt exit cause reentering of the same interrupt handler.
For pulsed interrupts, if the interrupt request is pulsed several times before the processor starts the

interrupt service routine (for example, the processor could be handling another interrupt request),

then the multiple interrupt pulses will be treated as just one interrupt request (Figure 9.7).

If the pulsed interrupt request is triggered again during the execution of the interrupt service

routine, it will be processed as a new interrupt request and will cause the interrupt service

routine to be entered again after the interrupt exit (Figure 9.8).

Interrupt request X

Interrupt pending
status X

Processor mode

reldnaHreldnaH

Processor operation Interrupt Handler Y

Vector fetch

Interrupt Handler X

Multiple interrupt pulses before the
processor start processing the interrupt

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Unstacking

Thread

Thread

Exception
return

The processor cannot process interrupt X
until handler Y is completed

Figure 9.7:
Multiple interrupt request pulses can be merged into one request.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread
Stacking

Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

New activation of the interrupt request cause the
pending status to be set again during the execution

of interrupt handler

Exception
return

Unstacking

Thread

Thread

Vector fetch

Interrupt Handler X

Figure 9.8:
Interrupt pending status can be asserted by a new interrupt request even during its handler

execution.

172 Chapter 9
The second interrupt request does not cause the interrupt to be serviced immediately because it

is at the same priority level as the current execution priority. Once the processor exits the

handler, then the current priority level is lowered, thus allowing the pending interrupt request to

be serviced.

The pending status of an interrupt can be activated even when the interrupt is disabled.

Therefore, when reprogramming a peripheral and setting up its interrupt and if the previous

Interrupt Control and System Control 173
state of the peripheral is unknown, you might need to clear its interrupt pending status in the

NVIC before reenabling the interrupt in the NVIC. This can be done by writing to the Interrupt

Clear Pending register in address 0xE000E280.

Interrupt Latency

Under normal situations, the interrupt latency of the Cortex-M0 processor is 16 cycles. The

interrupt latency is defined as from the processor clock cycle the interrupt is asserted, to the

start of the execution of the interrupt handler. This interrupt latency assumes the following:

• The interrupt is enabled and is not masked by PRIMASK or other executing exception

handlers.

• The memory system does not have any wait state. If the memory system has wait state, the

interrupt could be delayed by wait states that occur at the last bus transfer before interrupt

processing, stacking, vector fetch, or instruction fetch at the start of the interrupt handler.

There are some situations that can result in different interrupt latency:

• Tail chaining of interrupt. If the interrupt request occurs just as another exception handler

returns, the unstacking and stacking process can be skipped, thus reducing the interrupt

latency.

• Late arrival. If the interrupt request occurs during the stacking process of another lower-

priority interrupt, the late arrival mechanism allows the new high-priority intercept to take

place first. This can result in lower latency for the higher-priority interrupt.

These two behaviors allow interrupt latency to be reduced to a minimum. However, in some

embedded applications, zero jitter interrupt response is required. Fortunately, the Cortex-M0

processor is equipped with a zero jitter feature.

On the interface of the Cortex-M0 processor, there is an 8-bit signal called IRQLATENCY,

which is connected to the NVIC. This signal can be used to control the interrupt latency

behavior. If this signal is connected to a 0, then the Cortex-M0 processor will start to process

the interrupt request as soon as possible. If the signal is set to a specific value depending on the

timing of the memory system, then it can enable the zero jitter behavior to force the interrupt

latency to a higher number of cycles, but it is guaranteed to have zero jitter. The IRQLA-

TENCY signal is normally controlled by configurable registers developed by microcontroller

vendors and is not visible on the microcontroller interface.

Control Registers for System Exceptions

Besides the external interrupts, some of the system exceptions can also have programmable

priority levels and pending status registers. First, we will look at the priority level registers for

system exceptions. On the Cortex-M0 processor, only the three OS-related system exceptions

174 Chapter 9
have programmable priority levels. These include SVC, PendSV, and SysTick. Other system

exceptions, like NMI and hard fault, have fixed priority levels (Figure 9.9).
SVC0xE000ED1C
0xE000ED20 SysTick

078232431Bit 622 153 16 14
PendSV SHPR3

SHPR2

Figure 9.9:
Priority Level Registers for programmable system exceptions.
The unimplemented bits are read as zero. Write to those unimplemented bits are ignored. On

the Cortex-M0 processor, only the System Handler Priority Register 2 (SHPR2) and SHPR3

are implemented (Table 9.4). SHPR1 is not available on the Cortex-M0 processor (it is

available on the ARMv7-M architecturedfor example, the Cortex-M3 processor).
Table 9.4: System Handler Priority Level Registers (0xE000ED1Ce0xE000ED20)

Address Name Type Reset Value Descriptions

0xE000ED1C SHPR2 R/W 0x00000000 System Handler Priority Register 2
[31:30] SVC priority

0xE000ED20 SHPR3 R/W 0x00000000 System Handler Priority Register 3
[31:30] SysTick priority
[23:22] PendSV priority
Users of CMSIS-compliant device drivers can access to the SHPR2 and SHPR3 registers using

the register names shown in Table 9.5.
Table 9.5: CMSIS Register Names for System Handler Priority Level Registers

Register CMSIS Register Name Descriptions

SHPR2 SCB->SHP[0] System Handler Priority Register 2
SHPR3 SCB->SHP[1] System Handler Priority Register 3
Another NVIC register useful for system exception handling is the Interrupt Control State

Register (ISCR) (Table 9.6). This register allows the NMI exception to be pended by software,

and it accesses the pending status of PendSV and SysTick exceptions. This register also

provides information useful for the debugger, such as the current active exception number and

whether or not any exception is currently pended. Because the SysTick implementation is

optional, the SysTick exception pending set/clear bits are only available when the SysTick

option is presented. As a result, bits 26 and 25 of this register might not be available.

Users of the CMSIS-compliant device driver library can access ICSR using the register name

“SCB->ICSR.”

Table 9.6: Interrupt Control State Register (0xE000ED04)

Bits Field Type Reset Value Descriptions

31 NMIPENDSET R/W 0 Write 1 to pend NMI, write 0 has no effect.
On reads return pending state of NMI.

30:29 Reserved d d Reserved
28 PENDSVSET R/W 0 Write 1 to set PendSV, write 0 has no effect.

On reads return the pending state of
PendSV.

27 PENDSVCLR R/W 0 Write 1 to clear PendSV, write 0 has no effect.
On reads return the pending state of PendSV.

26 PENDSTSET R/W 0 Write 1 to pend SysTick, write 0 has no
effect.
On reads return the pending state of SysTick.

25 PENDSTCLR R/W 0 Write 1 to clear SysTick pending, write 0 has
no effect. On reads return the pending state
of SysTick.

24 Reserved d d Reserved.
23 ISRPREEMPT RO d During debugging, this bit indicates that an

exception will be served in the next running
cycle, unless it is suppressed by debugger
using the C_MASKINTS in Debug Control
and Status Register.

22 ISRPENDING RO d During debugging, this bit indicates that an
exception is pended.

21:18 Reserved d d Reserved.
17:12 VECTPENDING RO d Indicates the exception number of the highest

priority pending exception. If it is read as 0, it
means no exception is currently pended.

11:6 Reserved d d Reserved.
5:0 VECTACTIVE RO d Current active exception number, same as

IPSR. If the processor is not serving an
exception (Thread mode), this field reads
as 0.

Interrupt Control and System Control 175
Some of the fields (e.g., the ISRPREEMPT and ISRPENDING fields) in the ICSR are used

by the debug system only. In most cases, application code only uses the ICSR to control or

check the system exception pending status.

System Control Registers

The NVIC address range (from 0xE000E000 to 0xE000EFFF) also covers a number of system

control registers. Therefore, the whole memory range for NVIC is referred to as the System

Control Space (SCS). A few of these registers are for the SysTick timer; they will be introduced

in the next chapter, where the OS supporting features will be covered. Here the rest of the

system control registers are introduced.

176 Chapter 9
CPU ID Base Register

The CPU ID Base register is a read-only register containing the processor ID (Figure. 9.10). It

allows application software as well the debugger to determine the processor core type and

version information.
Implementer
0x410xE000ED00

04232431 3tiB 20 151619

Variant
0x0

Constant
0xC

Part number
0xC20

Revision
0x0

Figure 9.10:
CPU ID Base Register.
The current release of the Cortex-M0 processor (r0p0) has CPU ID values of 0x410CC200.

The variant (bit[23:20]) or revision numbers (bit[3:0]) advance for each new release of the

core. The CPUID register can be accessed with CMSIS-compliant device drivers such as

“SCB->CPUID” (Table. 9.7).
Table 9.7: CPU ID Base Register (0xE000ED00)

Bits Field Type Reset Value Descriptions

31:0 CPU ID RO 0x410CC200
(r0p0)

CPU ID value. Used by debugger as well as
application code to determine processor type
and revision.
Software can also use this register to determine the CPU type. Bit[7:4] of the CPUID is “0” for

the Cortex-M0, “1” for Cortex-M1, “3” for Cortex-M3, and “4” for Cortex-M4.

Application Interrupt and Reset Control Register

The Application Interrupt and Reset Control Register (AIRCR) has several functions

(Table. 9.8). It allows an application to request a system reset, determine the endianness of

the system, and clear all exception active statuses (this can be done by the debugger only).

It can be accessed in CMSIS-compliant device drivers such as “SCB->AIRCR.”

The VECTKEY field is used to prevent accidental write to this register from resetting the

system or clearing of the exception status.

The application can use the ENDIANNESS bit as well as the debugger to determine the

endianness of the system. This endianness of a Cortex-M0 processor system cannot be

changed, as the setup is defined by the microcontroller vendor.

The SYSRESETREQ bit is used to request a system reset. When a value of 1 is written to

this bit with a valid key, it causes a signal called SYSRESETREQ on the processor to be

Table 9.8: Application Interrupt and Reset Control Register (0xE000ED0C)

Bits Field Type Reset Value Descriptions

31:16 VECTKEY (during write
operation)

WO d Register access key. When writing to this
register, the VECTKEY field needs to be set
to 0x05FA; otherwise the write operation
would be ignored.

31:16 VECTKEYSTAT (during
read operation)

RO 0xFA05 Read as 0xFA05.

15 ENDIANNESS RO 0 or 1 1 indicates the system is big endian.
0 indicates the system is little endian.

14:3 Reserved d d Reserved.
2 SYSRESETREQ WO d Write 1 to this bit causes the external

signal SYSRESETREQ to be asserted.
1 VECTCLRACTIVE WO d Write 1 to this bit causes

dexception active status to be cleared
dprocessor to return to Thread mode
dIPSR to be cleared
This bit can be only be used by
a debugger.

0 Reserved d d Reserved.

Interrupt Control and System Control 177
asserted. The actual reset timing of the system depends on how this signal is connected. There

can be a small delay from the time this bit is written to the actual reset, depending on the

design of the system reset control. In typical microcontroller design, the SYSRESETREQ

generates system reset for the processor and most parts of the system, but it should not affect

the debug system of the microcontroller. This allows the debug operation to work correctly

even when the software triggers a reset.

To reset the system using the AIRCR register, you can use the CMSIS function:
void

__DS

__di
*((v
whil
NVIC_SystemReset(void);
Alternatively, the following code can be used:
B(); // Data Synchronization Barrier (include for portability)
// Ensure all memory accessed are completed

sable_irq(); // Disable interrupts
olatile unsigned long *)(0xE000ED0C))¼0x05FA0004;//System reset
e(1); // dead loop, waiting for reset
The “while” loop after the write prevents the processor from executing more instructions after

the reset request has been issued. The disabling of interrupt is optional; if an interrupt is

generated when the system reset request is set, and if the actual reset is delayed because of the

reset controller design, there is a chance that the processor will enter the exception handler as

the system reset starts. In most cases, it is not an issue, but we can prevent this from happening

178 Chapter 9
by setting the exception mask register PRIMASK to disable interrupts before setting the

SYSRESETREQ bit.

The use of the DSB instruction allows the code to be used with other ARM processors that

have write buffers in the memory interface. In these processors, a memory write operation

might be delayed, and if the system reset and memory write happened at the same time, the

memory could become corrupted. By inserting a DSB, we can make sure the reset will not

happen until the last memory access is completed. Although this is not required in the

Cortex-M0 (because there is no write buffer in the Cortex-M0), the DSB is included for better

software portability.

The same reset request code can be written in assembly. In the following example code, the

step to setting up PRIMASK is optional:
Loop

Bit

31:
9

8:4
3

2:0
DSB ; Data Synchronization Barrier
CPSID i ; Set PRIMASK
LDR R0,¼0xE000ED0C ; AIRCR register address
LDR R1,¼0x05FA0004 ; Set System reset request
STR R1,[R0] ; write back value

B Loop ; dead loop, waiting for reset
The debugger uses the VECTCLRACTIVE bit to clear exception statusdfor example, when

the debugger tries to rerun a program without resetting the processor. Application code running

on the processor should not use this feature.

Configuration and Control Register

The Configuration and Control Register (CCR) in the Cortex-M0 processor is a read-only

register (Table. 9.9). It determines the double word stack alignment behavior and the trapping

of unaligned access. On the ARMv6-M architecture, such as the Cortex-M0 processor, these

behaviors are fixed and not configurable. This register is included to make it compatible to

ARMv7-M architecture such as the Cortex-M3 processor. On the Cortex-M3 processor, these

two behaviors are controllable.
Table 9.9: Configuration and Control Register (0xE000ED14)

s Field Type Reset Value Descriptions

10 Reserved d d Reserved.
STKALIGN RO 1 Double word exception stacking alignment

behavior is always used.
Reserved d d Reserved.
UNALIGN_TRP RO 1 Instruction trying to carry out an unaligned

access always causes a fault exception.
Reserved d d Reserved.

Interrupt Control and System Control 179
The STKALIGN bit is set to 1, indicating that when exception stacking occurs, the stack frame

is always automatically aligned to a double-word-aligned memory location. The

UNALIGN_TRP bit is set to 1, indicating that when an instruction attempts to carry out an

unaligned transfer, a fault exception will result. Users of CMSIS-compliant device drivers can

access to the Configuration Control Register using the register name “SCB->CCR.”

CHAPTER 10

Operating System Support Features

Overview of the OS Support Features

The Cortex-M0 processor includes a number of features that target the embedded operating

system (OS). These include the following:

• A SysTick timer. This 24-bit down counter can be used to generate a SysTick exception at

regular intervals.

• A second stack pointer called the process stack pointer. This feature allows the stack of the

applications and the OS kernel to be separated.

• An SVC exception and SVC instruction. Applications use the SVC to access OS services

via the exception mechanism.

• A PendSVexception. The PendSV can be used by an OS, device drivers, or the application

to generate service requests that can be deferred.

This chapter describes each of these features and provides some example usages.
Why Use an Embedded OS?

When the term “operating system” is mentioned, most people will first think of desktop

operating systems like Windows and Linux. These desktop OSs require a powerful

processor, a large amount of memory, and other hardware features to run. For embedded

devices, the type of OSs being used are very different. Embedded operating systems can

run on very low power microcontrollers with a small amount of memory (relative to

desktop machines), and they run at a much lower clock frequency. For example, the Keil

RTX, which will be covered later in this chapter, requires around 4 KB of program

code space and around 0.5 KB of SRAM. Very often these embedded systems do not even

have a display or keyboard, although you can add some display interfaces and input

devices and access these input and output interfaces via application tasks running within

the OS.

In embedded applications, an OS is normally used for managing multiple tasks. In this situ-

ation, the OS divides the processor time into a number of time slots and executes different tasks

in each slot. At the end of each time slot, the OS task scheduler is executed, and then the

execution might be switched to a different task at the beginning of the next time slot. This

switching of tasks is commonly known as context switching (Figure 10.1).
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10010-2

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

181

http://dx.doi.org/10.1016/B978-0-12-385477-3.10010-2

Task A Task B Task C Task AStart up and

Time

Context switching

initialization

Figure 10.1:
Multitasking and context switching.

182 Chapter 10
The length of each time slot depends on the hardware as well as the OS design. Some

embedded OSs switch tasks several hundred times per second.

Some embedded OSs also define priority levels for each task so that a high-priority task is

executed before lower-priority tasks. If the task has a higher priority than others, an OS might

execute the task for a number of time slots continuously until the task reaches an idle state.

Note that the priority definition in an OS is completely separate from the exception priority (for

example, the interrupt priority level). The definition of task priority is based on the OS design

and varies among different OSs.

Besides supporting multitasking, embedded OSs can also provide the functions of resource

management, memory management, power management, and an application programming

interface (API) for accessing peripherals, hardware, and communication channels (Figure 10.2).
HardwareProcessor

Embedded OS

Task A Task B Task C

Device Drivers

Peripherals

Embedded OS handles
task scheduling

Embedded OS kernel
access to SysTick and

other hardware features
which are targeted for OS

support

OS manages shared
hardware resources and

power management

Tasks access OS
features via API

Non-shared hardware
resources can be
accessed by an

application task directly
via a device driver

Figure 10.2:
Example roles of an embedded OS.

Operating System Support Features 183
Use of an embedded OS is not always beneficial, because it requires extra program memory for

the OS kernel and increases overhead in execution cycles. Most simple applications do not

require an embedded OS. However, in complex embedded applications that demand the

execution of tasks in parallel, using an OS can make the software design much easier and

reduce the chance of a system design error.

A number of embedded OSs are already available for the Cortex-M0 processor. For example,

the Keil Microcontroller Development Kit (MDK) provides a RTX kernel, which is easy to use

and free of charge. In addition, embOS from SEGGER (www.segger.com), mC/OS-II and

mC/OS-III from Micrimm (micrium.com), ThreadX from Express Logic (www.rtos.com), and

mCLinux from the open source community are also supported on the Cortex-M0 processor. The

list is growing rapidly, so by the time you read this book, some more OSs will be available for

Cortex-M0 microcontrollers.

Because the Cortex-M0 processor does not have a memory management unit (MMU), it cannot

run an embedded OS which requires virtual address capability like Windows CE or Symbian

OS. The normal Linux OS also requires an MMU, so it cannot work on the Cortex-M0, but the

mCLinux is a special version of Linux targeted at embedded devices without an MMU, and

therefore the mCLinux can work on a Cortex-M0 processor.

In the next few sections, we will cover a number of features included on the Cortex-M0 to

support efficient OS operations. The OS support features in the Cortex-M0 processor are

also available in other ARM Cortex-M profile processors including the Cortex-M3 and the

Cortex-M1. This consistency allows embedded OSs to be ported between these processors

easily.

The SysTick Timer

To allow an OS to carry out context switching regularly to support multiple tasking, the

program execution must be interrupted by a hardware source like a timer. When the

timer interrupt is triggered, an exception handler that handles OS task scheduling is

executed. The handler might also carry out other OS maintenance tasks. For the Cortex-M0

processor, a simple timer called the SysTick is included to generate this regular interrupt

request.

The SysTick timer is a 24-bit down counter. It reloads automatically after reaching zero, and

the reload value is programmable. When reaching zero, the timer can generate a SysTick

exception (exception number 15). This exception event triggers the execution of the SysTick

exception handler, which is a part of the OS.

For systems that do not required an OS, the SysTick timer can be used for other purposes like

time keeping, timing measurement, or as a interrupt source for tasks that need to be executed

regularly. The SysTick exception generation is controllable. If the exception generation is

http://www.segger.com
http://micrium.com
http://www.rtos.com

184 Chapter 10
disabled, the SysTick timer can still be used by polling, for example, by checking the current

value of the counter or polling of the counter flag.

SysTick Registers

The SysTick counter is controlled by four registers located in the System Control Space

memory region (Figure 10.3 and Tables 10.1, 10.2, 10.3, and 10.4)
0xE000E010

16

0

SysTick Control and Status Register

23

Reload value SysTick Reload Value Register0xE000E014

Current Value SysTick Current Value Register0xE000E018

TENMS SysTick Calibration Value Register0xE000E01C

31 30

Enable
TickInt
Clk Source

012

Count
Flag

Skew

NoRef

023

023

Figure 10.3:
SysTick registers.

Table 10.1: SysTick Control and Status Register (0xE000E010)

Bits Field Type Reset Value Descriptions

31:17 Reserved d d Reserved.
16 COUNTFLAG RO 0 Set to 1 when the SysTick timer reaches zero.

Clear to 0 by reading of this register.
15:3 Reserved d d Reserved.
2 CLKSOURCE R/W 0 Value of 1 indicates that the core clock is used

for the SysTick timer. Otherwise a reference
clock frequency (depending on MCU design)
would be used.

1 TICKINT R/W 0 SysTick interrupt enabler. When this bit is set,
the SysTick exception is generated when the
SysTick timer counts down to 0.

0 ENABLE R/W 0 When set to 1 the SysTick timer is enabled.
Otherwise the counting is disabled.

Table 10.2: SysTick Reload Value Register (0xE000E014)

Bits Field Type Reset Value Descriptions

31:24 Reserved d d Reserved.
23:0 RELOAD R/W Undefined Specify the reload value of the SysTick timer.

Table 10.3: SysTick Current Value Register (0xE000E018)

Bits Field Type Reset Value Descriptions

31:24 Reserved d d Reserved.
23:0 CURRENT R/W Undefined On read returns the current value of the SysTick

timer. Write to this register with any value to
clear the register and the COUNTFLAG to 0.
(This does not cause SysTick exception to
generate.)

Table 10.4: SysTick Calibration Value Register (0xE000E01C)

Bits Field Type Reset Value Descriptions

31 NOREF RO d If it is read as 1, it indicates SysTick always uses a core
clock for counting, as no external reference clock is
available. If it is 0, then an external reference clock is
available and can be used. The value is MCU design
dependent.

30 SKEW RO d If set to 1, the TENMS bit field is not accurate. The
value is MCU design dependent.

29:24 Reserved d d Reserved.
23:0 TENMS RO d Ten millisecond calibration value. The value is MCU

design dependent.

Operating System Support Features 185
For users of CMSIS-compliant device driver libraries, the SysTick registers can be accessed by

the register definitions shown in Table 10.5 and included in CMSIS.
Table 10.5: SysTick Register Names in CMSIS

Name Register Address

SysTick->CTRL SysTick Control and Status Register 0xE000E010
SysTick->LOAD SysTick Reload Value Register 0xE000E014
SysTick->VAL SysTick Current Value Register 0xE000E018
SysTick->CALIB SysTick Calibration Value Register 0xE000E01C

186 Chapter 10
Setting up SysTick

Because the reload value and current values of the SysTick timer are undefined at reset, the

SysTick setup code needs to be in a certain sequence to prevent unexpected results

(Figure 10.4).
Disable SysTick
(Optional)

Program Reload
value register

Clear Current
value register Enable SysTickStart Done

Figure 10.4:
Setup sequence for SysTick timer.
For users of CMSIS-compliant device driver libraries, a function called SysTick_Config

(uint32_t ticks) is available that enables a SysTick exception to occur regularly. For

example,
SysTick Config (1000); //Use CMSIS function to setup SysTick exception for every 1000 cpu
//cycles.
Alternatively, you can also program the SysTick by accessing the SysTick registers directly:
SysTick->CTRL ¼ 0; // Disable SysTick
SysTick->LOAD ¼ 999; // Count down from 999 to 0
SysTick->VAL ¼ 0; // Clear current value to 0
SysTick->CTRL ¼ 0x7; // Enable SysTick, enable SysTick

// exception and use processor clock
The SysTick timer can be used with a polling method or by interrupt. Programs that use

a polling method can read the SysTick Control and Status Registers to detect the COUNT-

FLAG (bit 16). If the flag is set, the SysTick counter has counted down to 0.

For example, if we want to toggle a LED connected to an output port every 100 CPU cycles,

we can develop a simple application that uses the SysTick timer with a polling loop. The

polling loop reads the SysTick Control and Status Register and toggles the LED when a 1 is

detected in the counter flag. Because the flag is cleared automatically when the SysTick

Control and Status Register is read, there is no need to clear the counter flag (Figure 10.5).

You might wonder why the value of 99, and not 100, is written into the Reload value

register. This is because the counter counts from 99 down to 0. To obtain a regular counter

reload, or exception, from the SysTick timer, the reload value should be programmed to the

interval value minus 1.

The SysTick Calibrate Value Register can be used to provide information for calculating the

desired reload value for the SysTick. If a timing reference is available on the microcontroller,

the TENMS field in the register may provide the tick count for 10 milliseconds. In some

Cortex-M0 microcontrollers, a reference value is not available. In such cases, the NOREF bit is

set to 1 to reflect this.

Start

Initialize I/O ports

Disable SysTick

Set SysTick Reload
value to 99

Write to Current
value to clear it

Read SysTick
Control & Status

Register

Count Flag = 1

Toggle LED

Yes

No

Figure 10.5:
A simple example of using SysTick with polling.

Operating System Support Features 187
Users of CMSIS-compliant device driver libraries can also use a variable called System-

Frequency (for CMSIS version 1.0 to version 1.2) or SystemCoreClock (for CMSIS version

1.3) for reload value calculation. This software variable can be linked to clock control

functions in the device driver libraries to provide the actual processor clock frequency

being used.

Using SysTick Timer for Timing Measurement

If neither the application code nor the OS uses the SysTick timer, it can be used as a simple

solution for measuring the number of clock cycles required for a processing task. For

example, the following setup code can be used to carry out timing measurements if the

number of clock cycles is fewer than 16.7 million:
unsigned int START_TIME, STOP_TIME, DURATION;
SysTick->CTRL ¼ 0; // Disable SysTick
SysTick->LOAD ¼ 0xFFFFFF; // Count down from maximum value

188 Chapter 10
SysTick->VAL ¼ 0; // Clear current value to 0
SysTick->CTRL ¼ 0x5; // Enable SysTick, and use processor clock
while (SysTick->VAL¼¼0); // Wait until SysTick reloaded
START_TIME ¼ SysTick->VAL; // Read start time value
processing(); // Processing function being measured
STOP_TIME ¼ SysTick->VAL; // Read stop time value
SysTick->CTRL ¼ 0; // Disable SysTick
if ((SysTick->CTRL & 0x10000)¼¼0) // if no overflow

DURATION ¼ START_TIME e STOP_TIME; // Calculate total cycles
else

printf (“Timer overflowed\n”);
Because the SysTick is a down counter, the value of START_TIME is larger than the value

of STOP_TIME. The preceding example code assumes that the SysTick does not overflow

during the execution of the processing task. If the duration is more than 16.7 million cycles

(224 ¼ 16777216), a SysTick interrupt handler has to be used to count the number of times

the timer overflows.

Besides generating regular interrupts and timing measurement, the SysTick timer can also

be used to produce short delays. An example of a single-shot timer operation using the

SysTick is covered in Chapter 15.
Process Stack and Process Stack Pointer

The Cortex-M0 processor has two stack pointers (SPs): the main stack pointer (MSP) and

the process stack pointer (PSP). Both are 32-bit registers and can be referenced as R13, but

only one is used at one time. The MSP is the default stack pointer and is initialized at reset

by loading the value from the first word of the memory. For simple applications, we can use

the MSP all the time. In this case, we only have one stack region. For systems with higher

reliability requirements, usually with an embedded OS involved, we can define multiple

stack regions: one for the OS kernel and exceptions and the others for different tasks

(Figure 10.6).

The main reason for separating the kernel stack from the task’s stacks is to enable easier

context switching. During context switching, the stack pointer for the exiting application

task will have to be saved and the stack pointer will change to point to the next task’s

stack. Very often the kernel code also requires a stack to operate. The kernel stack has to

be separated to prevent data from being lost during stack pointer updates.

The separation of memory for tasks reduces the chance of a stack error by one task corrupting

another task’s stack or the OS kernel’s stack. Although a rogue task can corrupt data in the

RAM (e.g., stack overflow), an embedded OS can check the stack pointer value during context

switching to detect stack errors. As a result, it can help improve the reliability of an embedded

system.

Stack for
OS kernel and

exception handler

Stack for kernel,
exception handlers

Task A Stack for Task A

Task B Stack for Task B

Task C Stack for Task C

RAM

Memory
Address

Data and heap
memory

Figure 10.6:
Separate memory ranges for OS and application tasks.

Operating System Support Features 189
In a typical OS environment, the MSP and PSP usages are as follows:

• MSP, for the OS kernel and exception handlers

• PSP, for application tasks

The OS kernel has to keep track of the stack pointer values for each task during context

switching, and it will switch over the PSP value to allow each task to have its own stack

(Figure 10.7).

As covered in Chapter 3, the selection of the pointer is determined by the current mode of

the Cortex-M0 processor and the value of the CONTROL register. When the processor

comes out of reset, it is in Thread mode, the CONTROL register’s value is 0, and the MSP

is selected as the default SP.

From the default state, the current stack pointer selection can be changed to use PSP by

programming the CONTROL register. Note that an ISB instruction should be used (an

ARMv6-M architectural recommendation) after programming the CONTROL register bit 1 to

1. You can also switch back to MSP by clearing bit 1 of the CONTROL register (Figure 10.8).

If an exception occurs, the processor will enter Handler mode and the MSP will be selected.

The stacking process that pushes R0-R3, R12, LR, PC, and xPSR can be carried out using

either MSP or PSP, depending on the value of the CONTROL register before the exception.

When an exception handler is completed, the PC is loaded with the EXC_RETURN value.

Depending on the value of the lowest 4 bits of the EXC_RETURN, the processor can return to

Thread mode with MSP selected, Thread mode with PSP selected, or Handler mode with MSP

OS
kernel,

interrupts

Task A

Task B

Task C

RAM

Memory
Address

Task A Task B Task C Task AStart up and Task B

Time

Context switching

MSP
initialized

Task A SP
initialized Task A

SP saved
Task A SP
restored

Task B SP
initialized Task B SP

saved

Task C SP
initialized

Stack grow

Stack for OS
kernel &

exception
(MSP)

Stack for
Task A
(PSP)

Stack for
Task B
(PSP)

Stack for
Task C
(PSP)

PSP switching by
context switching code

Task C SP
saved

Task A
SP saved

Task B SP
restored

Task B SP
saved

Switch to
Task B SP

z

initialization

Figure 10.7:
MSP and PSP activities with a simple OS running three tasks.

Reset

Thread mode,
CONTROL[1] = 0

MSP == SP

Setting CONTROL[1] to 1 Thread mode,
CONTROL[1] = 1

PSP == SP
Setting CONTROL[1] to 0

Handler mode

MSP == SP

Exception

Stacking
using main

stack

Exception

Stacking
using process

stackException Return

EXC_RETURN = ?
0xFFFFFFFD

Exception
(nested)

0xFFFFFFF1

0xFFFFFFF9

Unstacking
using main

stack

Unstacking
using main

stack

Unstacking
using process

stack

Figure 10.8:
Switching of stack pointer selection by software or exception entry/exit.

190 Chapter 10

Operating System Support Features 191
selected. The value of the CONTROL register is updated to match bit 2 of the EXC_RETURN

value.

The value of MSP and PSP can be accessed using the MRS and MSR instructions. In

general, changing the value of the currently selected stack pointer in C language is a bad idea

because access to local variables and function parameters can be dependent on the stack

pointer value. If it is changed, the values of these variables cannot be accessed.

If you are using CMSIS-compliant device driver libraries, you can access the value of the MSP

and PSP with the functions presented in Table 10.6.
Table 10.6: CMSIS Functions for Accessing MSP and PSP

Functions Description

uint32_t __get_MSP(void) Read the current value of the main stack pointer
void __set_MSP(uint32_t topOfMainStack) Set the value of the main stack pointer
uint32_t __get_PSP(void) Read the current value of the process stack pointer
void __set_PSP(uint32_t topOfProcStack) Set the value of the process stack pointer
To implement the context switching sequence as in Figure 10.7, you can use the procedures

described in Figure 10.9 for OS initialization, and Figure 10.10 for context switching.
Stack frame

Time

Thread mode

Reset

MSP
initialized by

reset
sequence

SVC
instruction
executed

OS initialization (Handler mode)

Task
memories
initialized

Initial stack
frame create

at top of
stack A

R0

PSR
PC

Set PSP to
stack frame

starting
address

Set other
registers in

register bank

Starting address of Task A

Exception
Return with

EXC_RETURN
= 0xFFFFFFFD

Thread mode – Task A

Memory

Top of task A’s stack

Stack frame load
into register bank

Figure 10.9:
Initialization of stack for a task in a simple OS.

Time

Thread mode – Task A

SysTick
exception

OS (Handler mode)

Save task
A registers
(R4-R11)

Save PSP
(Task A SP)
to task data

structure

Task
scheduling

Set PSP to
Task B SP

Restore
task B

registers
(R4-R11)

OS (Handler mode)

Exception return with
EXC_RETURN =

0xFFFFFFFD

Thread mode – Task B

Figure 10.10:
Example of context switching from one task to another task in a simple OS.

192 Chapter 10
There are various ways to implement an embedded OS; the illustration in Figure 10.9 and

Figure 10.10 are only an example.
SVC

To build a complete OS, we need a few more features from the processor. The first one is

a software interrupt mechanism to allow tasks to trigger a dedicated OS exception. In ARM

processors this is called supervisor call (SVC). The SVC is an instruction as well as an

exception type. When the SVC instruction is executed, the SVC exception is triggered and the

processor will execute the SVC exception handler immediately, unless an exception with

a higher or same priority is currently being handled.

An SVC can be used as a gateway for applications to access a system service provided by

the OS (Figure 10.11). An application can pass parameters to the SVC handler inside the

OS for different services.

In some development environments, SVCs can make the access to OS functions easier, as

the accesses to OS functions do not require any address information. Therefore, the OS

and the applications can be compiled and delivered separately. The application can

interact with the OS by calling the correct OS service and providing the required

parameters.

Application

SVC API

OS Kernel

Device
Drivers Peripherals

Hardware

Services Services Services

Operating System

Figure 10.11:
SVC as a gateway to system services in the OS.

Operating System Support Features 193
The SVC instruction contains an 8-bit immediate value. The SVC handler can extract this

immediate value to determine which OS service is required. The syntax for SVC instruction in

assembly is
SVC

SVC
0�3 ;Call SVC service 3
Traditional ARM development tools support a slightly different syntax (without the “#” sign):
0�3 ;Call SVC service 3
This syntax can still be used.

In C language, there is no standard way to access SVC functions. In ARM development tools

(including RealView Development Suite and Keil MDK), you can use the __svc keyword. This

topic is covered in more depth in Chapter 18.

If you were a user of ARM7TDMI or similar classic ARM processors, you might notice that the

SVC is similar to the SWI instruction on these processors. In fact, the binary encoding of SVC

is identical to the SWI Thumb instruction. However, this instruction is renamed to SVC in

newer architectures, and the SVC handler code is different from the SWI handler code for the

ARM7TDMI.

Because of the interrupt priority behavior of the Cortex-M0 processor, the SVC can only be

used in Thread mode or exception handlers that have a lower priority than the SVC itself.

Otherwise, a hard fault exception is generated. As a result, you cannot use the SVC instruction

inside another function accessed by an SVC, as it has the same priority level. You also cannot

use an SVC inside an NMI handler or hard fault handler.

194 Chapter 10
PendSV

The PendSV is an exception type that can be activated by setting a pending status bit in the

NVIC. Unlike SVC, PendSV activation can be deferred. Therefore, you can set its pending

status even when you are running an exception handler with a higher priority level than the

PendSV exception. The PendSV exception is useful for the following functions:

• The context switching operation in an embedded OS

• Separating an interrupt processing task into two halves:

• The first half must be executed quickly and is handled by a high-priority interrupt

service routine

• The second half is less timing critical and can be handled by a deferred PendSV

handler with a lower priority; therefore, it allows other high-priority interrupt requests

to be processed quickly

The second use of PendSV is fairly easy to understand, and more details of this usage are

covered in Chapter 18 with a programming example. The use of PendSV for context switching

is more complex. In a typical OS design, context switching can be triggered by the following:

• Task scheduling during a SysTick handler

• A task waiting for data/events calling an SVC service to swap in another task

Usually the SysTick exception is set up as a high-priority exception. As a result, the SysTick

handler (part of the OS) can be invoked even if another interrupt handler is running. However,

the actual context switching should not be carried out while an interrupt service routine is

running. Otherwise, the interrupt service would be broken into multiple parts. Traditionally, if

the OS detects that an interrupt service routine is running, it will not carry out the context

switching and will wait until next OS tick (as shown in Figure 10.12).

By deferring the context switching to the next SysTick exception, the IRQ handler can

complete the execution. However, if the IRQ is generated regularly and the IRQ rate coincides

with the pattern of task switching activities, then some tasks might receive a larger share of

processing time, or in some cases the context switching cannot be carried out for a long period,

for example, if the IRQ occurs too frequently.

To solve this problem, the actual context switching process can be separated from the SysTick

handler and implemented in a low-priority PendSV handler. By setting the priority of the

PendSVexception to the lowest priority level, the PendSV handler can only be executed when

no other interrupt service is running.

Take the activities in Figure 10.13 as an example. The SysTick exception periodically triggers

the OS task scheduler for task scheduling. The OS task scheduler sets the pending state of the

PendSV exception before exiting the exception. If no IRQ handler is running, the PendSV

handler starts immediately after the SysTick exception exits and carries out the context

Task A Task B Task C

Time

Context switching
in PendSV

Thread mode

Handler mode

SysTick
(High priority)

IRQ (Medium
priority)

IRQ

OS OSTask AOS OS OS

PendSV
(Low priority)

Task B Task C

Figure 10.13:
With PendSV. Context switching can be carried out after the IRQ handler has completed its task.

Task A Task B Task C Task A Task B

Time

Context switching

Thread mode

Handler mode

SysTick
(High priority)

IRQ (Medium
priority)

Task C

IRQ

No context switching

OS OSOS OS OS

Figure 10.12:
Without PendSV. Context switching is not carried out if the OS detects that an ISR is running.

Operating System Support Features 195
switching. If an IRQ is running when the SysTick exception occurs, then the PendSVexception

cannot start until the IRQ handler finishes, because the PendSV is programmed to the lowest

priority level. When all the IRQ activities have been completed, the PendSV handler can then

carry out the required context switching.

CHAPTER 11

Low-Power Features

Low-Power Embedded System Overview

There are many types of low-power embedded systems, and different systems can have

different low-power requirements. Typically, we can summarize these requirements into the

categories outlined in Table 11.1.

In practice, most low-power embedded products will have to consider more than one of

these low-power factors. For example, some of the embedded systems operate continuously

and can be switched off completely when not in use. In this case, the low operating power

would be the most important factor, whereas some systems might need to be in standby mode

most of the time and only wake up to execute a program for a short period. In such a case,

the low standby power would be the more critical requirement, especially if the battery life of

the product is important.

As embedded products are getting more and more complex, the computation capability of the

processor is becoming more important. Nowadays a lot of embedded systems are interrupt

driven (Figure 11.1); when there is no interrupt request, no data processing is required and the

processor can enter sleep mode. When a peripheral requires servicing, it generates an interrupt
Table 11.1: Typical Requirements of Low-Power Embedded Systems

Requirements Typical Low-Power Considerations

Low operating power During operation, the power consumption of a microcontroller is dominated
by the transistor switching current. This includes the processor, memory,
peripherals, clocking circuits, and other analog circuits on the chip.

Low standby power The power consumption during standby is mostly caused by leakage circuits,
clocking circuits, active peripherals, the analog systems and RAM retention
power.

High energy efficiency In many applications, the ratio between the processing capability and the
power consumption is equally important. This figure can be measured based
on a benchmark like Dhrystone (DMIPS), for example, in units of DMIPS/mW.

Wakeup latency After entering sleep mode, there might be a short delay before the processor
can resume operation when an interrupt request arrives. In some applications,
the wakeup latency could be critical, and a system developer may need to
decide if a lower power sleep mode is used, which might increase the wakeup
latency, or if a basic sleep mode should be used, which provides a shorter
wakeup latency but generates a higher standby current.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10011-4

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

197

http://dx.doi.org/10.1016/B978-0-12-385477-3.10011-4

time

Power
consumption

Powered
up

InitializationDevice
off

sleep

Enter
sleep
mode

Interrupt
requests

Operating
power

Standby
power

Figure 11.1:
Activities in an interrupt-driven system.

198 Chapter 11
request and wakes up the processor. The processor then handles the required processing

and returns to sleep. The better processing capability the processor has, the more time it can

stay in sleep mode and hence improve battery life.

If you are using a slow processor for an interrupt-driven system, the interrupt service routine

could take a lot longer to run and increase the duty cycles of the system. But if you are

using a very powerful processor, despite being able to reduce the duty cycles, you might end

up with much more operating power and standby power, which will increase power

consumption. Depending on the data processing requirements, different applications require

different processors for the optimum balance between performance and power (Figure 11.2).
Power
consumption

time

Using a slow

microcontroller

results in large duty

cycle

Power
consumption

time

Using a too powerful

microcontroller results in

large operating &

standby current

Power
consumption

time

Using a low power

processor with high

performance allows

the best energy

efficiency

Figure 11.2:
Select the best processor for your low-power application.
For this reason, there are different types of ARM processors for different application

requirements. The ARM processors are designed with low-power embedded systems in mind.

Different ARM processors are optimized for different groups of applications based on

processing requirements. The Cortex-M0 processor is developed to target small embedded

systems with ultra-low-power requirements and mixed-signal applications, where the

processor design complexity is limited by various constraints in mixed-signal semiconductor

technologies.

Low-Power Features 199
Low-Power Advantages of the Cortex-M0 Processor

So how does the Cortex-M0 processor satisfy the ultra-low-power requirements in an

embedded application?

First, the design of the Cortex-M0 processor is very small. For a minimum implementation,

the design is only 12K gates. It is smaller than many 16-bit processors and much smaller than

other 32-bit processors on the market. This reduces both operating power and static power

(caused by the leakage current of transistors).

Second, the design of the Cortex-M0 processor utilizes many low-power design techniques

to reduce the operating power consumption. ARM has more than 20 years of low-power

processor design experience. The design of the Cortex-M0 has been extensively reviewed

to ensure that the low-power design measures are utilized for lowest power consumption. This

allows the operating power of the processor to be reduced.

Even with a tiny footprint, the Cortex-M0 is still able to deliver a performance that is much

higher than 8-bit and 16-bit systems that have the same clock rate. The Cortex-M0 processor

also has the best in class energy efficiency in the 32-bit processor market because of its small

size and low power consumption.

The high code density of the Cortex-M processors also lower power by reducing the size of the

flash memory required. In modern microcontroller designs, the majority of the silicon area is

occupied by flash memory, SRAM, and peripherals. With traditional 8-bit microcontroller

architectures, the lack of flexible addressing modes, the heavy use of accumulator registers,

and limited data paths often result in large program code (Figure 11.3). By switching to Cortex-

M0 or other Cortex-M processors, the program size can be greatly reduced and hence you can

use a microcontroller with a smaller flash to save power and cost.
8-bit
CPU Flash

memory

Peripherals
SRAM

Cortex-M0
CPU

Flash
memory

PeripheralsSRAM

Migrate from 8-bit
microcontroller to

Cortex-M0
microcontroller

Small flash memory size required
for the same application, saving

power and cost

Figure 11.3:
Switch from 8-bit microcontrollers to the Cortex-M microcontroller can reduce flash size.

200 Chapter 11
In addition, when comparing the Cortex-M0 microcontroller products to 8-bit and 16-bit

microcontroller products, the Cortex-M0 offers much higher performance. As a result, an

embedded developer can reduce power consumption by taking the following steps:

• Reducing the operating frequency of the device

• Reducing the duty cycle of the device (putting the core into sleep for a longer time)

Either way, or by combining both approaches, the energy efficiency characteristics of the

Cortex-M0 processor allow longer battery life in portable products compared with 8-bit and

16-bit microcontrollers. Besides extending battery life, the low-power capability of the Cortex-

M0 processor also:

• Reduces noise to allow better accuracy in analog applications like sensors

• Reduces interference in wireless and radio frequency applications

• Allows a simpler and cost-effective power supply design for the system

Overview of the Low-Power Features

A number of low-power features are available in the Cortex-M0 processor. In addition,

microcontroller vendors usually also implement a number of low-power modes in their Cortex-

M0 microcontroller products. This chapter focuses mostly on the low-power features provided

by the Cortex-M0 processor. Details for microcontroller specific low-power features are

usually available in user manuals or application notes available from the microcontroller

vendor web sites or in example software packages.

In general the Cortex-M0 processor includes the following low-power features:

• Two architectural sleep modes: normal sleep and deep sleep. The sleep modes can be

further extended with vendor-specific sleep control features. Within the processor, both

sleep modes behave similarly. However, the rest of the microcontroller can typically

reduce power by applying different methods to these two modes.

• Two instructions for entering sleep modes. WFE (Wait for Event) and WFI (Wait for Inter-

rupt). Both can be used with normal sleep and deep sleep.

• Sleep-on-exit (from exception) feature. This feature allows interrupt-driven applications to

stay in sleep mode as often as possible.

• Optional Wakeup Interrupt Controller (WIC). This optional feature allows the clocks of

the processor to be completely removed during deep sleep. When this feature is used

with state retention technology, found in certain modern silicon implementation processes,

the processor can enter a power-down state with extremely low leakage power, and it is still

able to wake up and resume operations almost immediately.

• Low-power design implementation. Various design techniques were used to reduce the

power consumption as much as possible. Because the gate count is also very low, the

static leakage power of the processor is tiny compared tomost other 32-bit microcontrollers.

Low-Power Features 201
In addition, various characteristics of the Cortex-M0 also help reduce power consumption:

• High performance. The Cortex-M0 processor performance is several times higher than

many popular 16-bit microcontrollers. This allows the same computational tasks to be

carried out in shorter time, and the microcontroller can stay in sleep mode for longer period

of time. Alternately, the microcontroller can run at a lower frequency to perform the same

required processing to reduce power.

• High code density. By having a very efficient instruction set, the required program size can

be reduced; as a result, you can use a Cortex-M0 microcontroller with smaller flash

memory to reduce power consumption and cost.

Because the processor is only a small part of a microcontroller, to get the best energy

efficiency and maximum battery life out of a microcontroller product, it is necessary

to understand not only the processor but also the rest of the microcontroller.

Most microcontroller vendors provide application note and software libraries to make

this easier.
Sleep Modes

Most microcontrollers support at least one type of sleep mode to allow the power consumption

to be reduced when no processing is required. In the Cortex-M0 processor, sleep mode

support is included as part of the processor architecture.

The Cortex-M0 processor has two sleep modes:

• Normal sleep

• Deep sleep

The exact meaning and behaviors of these sleep modes depends on the implementation of the

microcontroller. Microcontroller vendors can use various power-saving measures to reduce the

power of the microcontroller during sleep. They can also further extend the sleep modes by

adding extra power control capability. Typically, the following methods are used to reduce

power during sleep:

• Stopping some or all of the clock signals

• Reducing the clock frequency to some parts of the microcontroller

• Reducing voltage to various parts of the microcontroller

• Turning off the power supply to some parts of the microcontroller

The sleep modes can be entered by three different methods:

• Execution of a Wait-for-Event (WFE) instruction

• Execution of a Wait-for-Interrupt (WFI) instruction

• Using the Sleep-on-Exit feature (this will be covered in detail later)

202 Chapter 11
Whether the normal sleep mode or the deep sleep mode will be used is determined by

a control bit called SLEEPDEEP. This bit is located in the System Control Register (SCR) of

the System Control Block (SCB) region, which contains the control bits for the low-power

features of the Cortex-M0 processor. Users of CMSIS-compliant device drivers can access to

the System Control Register using the register name “SCB->SCR” (Table 11.2).

Different sleep modes and different sleep operation types can result in various combinations,

as shown in Figure 11.4.
Table 11.2: System Control Register (0xE000ED10)

Bits Field Type Reset Value Descriptions

31:5 Reserved d d Reserved.
4 SEVONPEND R/W 0 When set to 1, an event is generated for each

new pending of an interrupt. This can be used
to wake up the processor if Wait-for-Event
(WFE) sleep is used.

3 Reserved d d Reserved.
2 SLEEPDEEP R/W 0 When set to 1, deep sleep mode is selected

when sleep mode is entered. When this bit is
0, normal sleep mode is selected when sleep
mode is entered.

1 SLEEPONEXIT R/W 0 When set to 1, enter sleep mode (Wait-for-
Interrupt) automatically when exiting an
exception handler and returning to thread
level. When set to 0, this feature is disabled.

0 Reserved d d Reserved.

Execution of
WFE

Execution of
WFI

Sleep-on-exit

SLEEPDEEP = 0

(normal sleep)

SLEEPDEEP = 1

(deep sleep)

Normal sleep.
Wait-for-event
(incl. interrupt)

Deep sleep.
Wait-for-event
(incl. interrupt)

Normal sleep.
Wait-for-interrupt

Normal sleep.
Wait-for-interrupt

Deep sleep.
Wait-for-interrupt

Deep sleep.
Wait-for-interrupt

Figure 11.4:
Combinations of sleep modes and sleep entering methods.

Low-Power Features 203
Wait-for-Event (WFE) and Wait-for-Interrupt (WFI)

There are two instructions that can cause the Cortex-M0 processor to enter sleep: WFE and

WFI (Table 11.3). The WFE can be awakened by interrupt requests as well as events, whereas

WFI can be awakened by interrupt requests or debug requests only.
Table 11.3: WFE and WFI Characteristics

Sleep Type Wakeup Descriptions

WFE • Wake up when an interrupt occurs and requires processing, or wake up when an
event occurs (including debug requests), or the processor does not enter sleep
because an event occurred before theWFE instruction executed, or termination of
sleep mode by reset.

WFI • Wake up when an interrupt occurs and requires processing, or wake up when
there is a debug request, or termination of sleep mode by reset.
Wait for Event (WFE)

When WFE is used to enter sleep, it can be awakened by interrupts or a number of events,

including the following:

• New pending interrupts (only when the SEVONPEND bit in System Control Register is

set)

• External event requests

• Debug events

Inside the Cortex-M0 processor, there is a single bit event register. When the processor is

running, this register can be set to 1 when an event occurs, and this information is stored until

the processor executes a WFE instruction. The event register can be set by any of the following

events:

• The arrival of an interrupt request that needs servicing

• An exception entrance and exception exit

• New pending interrupts (only when SEVONPEND bit in System Control Register is set),

even if the interrupts are disabled

• An external event signal from on-chip hardware (device specific)

• Execution of a Send Event (SEV) instruction

• Debug event

When multiple events occur while the processor is awake, they will be treated as just one event.

This event register is cleared when the stored event is used to wake up the processor from

a WFE instruction. If the event register was set when the WFE instruction is executed, the

event register will be cleared and theWFEwill be completed immediately without entering sleep.

204 Chapter 11
If the event register was cleared when executingWFE, the processor will enter sleep, and the next

event will wake up the processor, but the event register will remain cleared (Figure 11.5).
WFE
executed

Event latch is
set?

Yes

Clear event latch and
continue to next

instruction

No

SLEEPDEEP
bit is set?

Yes

No

Deep sleep,
Wait-for-Event

Normal sleep,
Wait-for-Event

Exit sleep mode and
continue to next

instruction

Event or
Interrupt
occurred

Event or
Interrupt
occurred

Figure 11.5:
WFE operation.
The WFE is useful for reducing power in polling loops. For example, a peripheral with event

generation function can work with the WFE so that the processor wakes up upon completion of

peripheral’s task. As shown in Figure 11.6.
A peripheral is
programmed to carry

out a task

Read peripheral
status

Task completed?

Yes
No

Without WFE, a polling loop
consume power and result in lower

energy efficiency

With WFE, power consumption by
the polling loop is greatly reduced

A peripheral is programmed
to carry out a task, with event

output when the task is
completed

Read peripheral
status

Task completed?

Yes
No

WFE

Figure 11.6:
WFE usage.
Because the processor can be awakened by different events, it must still check the

peripheral status after being awakened to see if the task has completed.

If the SEVONPEND bit in the SCR is set, any new pending interrupts generate an event and

wake up the processor. If an interrupt is already in pending state when the WFE is entered,

Low-Power Features 205
a new interrupt request for the same interrupt does not cause the event to be generated and

the processor will not be awakened.

Wait for Interrupt (WFI)

The WFI instruction can be awakened by interrupt requests that are a higher priority than the

current priority level, or by debug requests (Figure 11.7).
WFI
executed

SLEEPDEEP
bit is set?

Yes

No

Deep sleep,
Wait-for-Interrupt

Normal sleep,
Wait-for-Interrupt

Exit sleep mode and
continue to next

instruction, or halt

Interrupt or
halt debug
occurred

Interrupt or
halt debug
occurred

Figure 11.7:
WFI operation.
There is one special case of WFI operation. During WFI sleep, if an interrupt is blocked by

PRIMASK but otherwise has a higher priority than the current interrupt, it can still wake up the

processor, but the interrupt handler will not be executed until the PRIMASK is cleared.

This characteristic allows software to turn off some parts of the microcontroller (e.g., the

peripheral bus clock), and the software can turn it back on after waking up before executing the

interrupt service routine.

Wakeup Conditions

When a WFI instruction is executed or when the processor enters sleep mode using the Sleep-

on-Exit feature, the processor stops instruction execution and wakes up when a (higher

priority) interrupt request arrives and needs to be serviced. If the processor enters sleep in

an exception handler, and if the newly arrived interrupt request has the same or lower priority

as the current exception, the processor will not wake up and will remain in a pending state.

The processor can also be awakened by a halt request from debugger or by a reset.

When the WFE instruction is executed, the action of the processor depends on the current state

of an event latch inside the processor:

• If the event latch was set, it will be cleared and the WFE completes without entering sleep.

• If the event latch was cleared, the processor will enter sleep mode until an event

takes place.

206 Chapter 11
An event could be any of the following:

• An interrupt request arriving that needs servicing

• Entering or leaving an exception handler

• A halt debug request

• An external event signal from on-chip hardware (device specific)

• If the Send-Event-on-Pend (SEVONPEND) feature is enabled and a new pending interrupt

occurs

• Execution of the Send Event (SEV) instruction

The event latch inside the processor can hold an event that happened in the past, so an old event

can cause the processor to wake up from a WFE instruction. Therefore, usually the WFE is

used in an idle loop or polling loop, as it might or might not cause entering of sleep mode.

WFE can also be awakened by interrupt requests if they have a higher priority than the current

interrupt’s priority level or when there is a new pending interrupt request and the SEVON-

PEND bit is set. The SEVONPEND feature can wake up the processor from WFE sleep

even if the priority level of the newly pended interrupt is at the same or lower level than

the current interrupt. However, in this case, the processor will not execute the interrupt

handler and will resume program execution from the instruction following the WFE.

The wakeup conditions of the WFE and WFI instructions are illustrated in Table 11.4.
Table 11.4: WFI and WFE Sleep Wakeup Behavior

WFI Behavior Wakeup ISR Execution

PRIMASK cleared
IRQ priority > current level Y Y
IRQ priority � current level N N
PRIMASK set (interrupt disabled)
IRQ priority > current level Y N
IRQ priority � current level N N

WFE Behavior Wakeup ISR Execution

PRIMASK cleared, SEVONPEND cleared
IRQ priority > current level Y Y
IRQ priority � current level N N
PRIMASK cleared, SEVONPEND set to 1
IRQ priority > current level Y Y
IRQ priority� current level, or IRQ disabled(SETENA¼ 0) Y N
PRIMASK set (interrupt disabled), SEVONPEND cleared
IRQ priority > current level N N
IRQ priority � current level N N
PRIMASK set (interrupt disabled), SEVONPEND set to 1
IRQ priority > current level Y N
IRQ priority � current level Y N

Low-Power Features 207
The wake up behavior of Sleep-on-Exit is same as WFI sleep.

Some of you might wonder why when PRIMASK is set, it allows the processor to wake up but

without executing the interrupt service routine (Figure 11.8). This arrangement allows the

processor to execute system management tasks (for example, restore the clock to peripherals)

before executing the interrupt service routine.
processing

Set PRIMASK

WFICPS

Program system
controller to

switch off certain
clock signals

Enter sleep
routine

Enter sleep

IRQ
Program system

controller to
restore clock

signals

CPS

Clear PRIMASK

ISR execute

Sleep

Figure 11.8:
Use of PRIMASK with sleep.
In summary, the differences between WFI and WFE included those described in Table 11.5.
Table 11.5: WFI and WFE Comparisons

WFI and WFE

Similarities Wake up on interrupt requests that are enabled and with higher priority than current level.
Can be awakened by debug events.
Can be used to produce normal sleep or deep sleep.

Differences Execution of WFE does not enter sleep if the event register was set to 1, whereas execution
of WFI always results in sleep.
New pending of a disabled interrupt can wake up the processor from WFE sleep if
SEVONPEND is set.
WFE can be awakened by an external event signal.
WFI can be awakened by an enabled interrupt request when PRIMASK is set.
Sleep-on-Exit Feature

One of the low-power features of the Cortex-M0 processor is the Sleep-on-Exit. When this

feature is enabled, the processor automatically enters a Wait-for-Interrupt sleep mode when

exiting an exception handler and if no other exception is waiting to be processed.

This feature is useful for applications where the processor activities are interrupt driven. For

example, the software flow could be like the flowchart in Figure 11.9.

The resulting activities of the processor are illustrated in Figure 11.10.

Start

Initialization

Enable
Sleep-On-Exit

feature

Execute WFI

Loop

First time the
processor enter

sleep

The processor
enter sleep

automatically
after each
interrupt

processing

ISR1 (Interrupt
Service Routine)

ISR2 (Interrupt
Service Routine)

ISR3 (Interrupt
Service Routine)

Sleep

Figure 11.9:
Sleep-on-Exit program flow.

Power

Power up

Time

Enter sleep

IRQ

IRQ exit
(Enter sleep

automatically)

Initialization

Sleep Sleep

IRQ handlerThread

IRQ

IRQ exit
(Enter sleep

automatically)

IRQ handler

Sleep

Figure 11.10:
Sleep-on-Exit operation.

208 Chapter 11
The Sleep-on-Exit feature reduces the active cycles of the processor and reduces the energy

consumed by the stacking and unstacking of processes between the interrupts. Each time the

processor finishes an interrupt service routine and enters sleep, it does not have to carry out

the unstacking process because it knows that these registers will have to be stacked again when

another interrupt request arrives next time.

Low-Power Features 209
The Sleep-on-Exit feature is controlled by the SLEEPONEXIT bit in the System Control

Register. Setting this bit in an interrupt-driven application is usually carried out as the last step

of the initialization process. Otherwise, if an interrupt occurs during this stage, the processor

might enter sleep during the initialization of the processor.

Wakeup Interrupt Controller

Designers of the Cortex-M0 microcontroller can optionally include a Wakeup Interrupt

Controller (WIC) in their design. The WIC is a small interrupt detection logic that mirrors the

interrupt masking function in the NVIC. The WIC allows the power consumption of the

processor to be further reduced by stopping all the clock signals to the processor, or even

putting the processor into a retention state. When an interrupt is detected, the WIC sends

a request to a power management unit (PMU) in the microcontroller to restore power and clock

signals to the processor, and then the processor can wake up and process the interrupt request.

The WIC itself does not contain any programmable registers; it has an interface that couples to

the Cortex-M0 NVIC, and the interrupt mask information is transferred from the processor

to the WIC automatically during sleep. The WIC is activated only in deep sleep mode

(SLEEPDEEP bit is set), and you might also need to program additional control registers in

the power management unit in the microcontroller to enable the WIC deep sleep mode.

The WIC enables the Cortex-M0 processor to reduce standby power consumption using

a technology called State Retention Power Gating (SRPG). With SRPG, the leakage power

of a sequential digital system during sleep can be minimized by powering off most parts of

the logic, leaving a small memory element in each flip-flop to retain the current state. This

is shown in Figure 11.11.
D Q

D type
flip-flops

logicInputs logic

Clock

Outputs

Power
gating

Vcc

Ground

Power
control

from PMU

Clock

buffers

Power to most parts of the system
is turned off during sleep

Power to state retention
elements is always on

State
retention
element

Figure 11.11:
SRPG technology allows most parts of a digital system to be powered down.

210 Chapter 11
When working with the WIC, a Cortex-M0 processor implemented with SRPG technology can

be powered down during deep sleep to minimize the leakage current of the microcontroller.

During WIC mode deep sleep, the interrupt detection operation is handed over to the WIC

(Figure 11.12). Because the state of the processor is retained in the flip-flops, the processor can

wake up and resume operations almost immediately. In practice, the use of SRPG power

down can increase the interrupt latency slightly, depending on how long it takes for the voltage

on the processor to be stabilized after the power-up sequence.
WIC Interrupt masks

Cortex-M0

IRQ

NMI

IRQ

NMI

1. Program enable WIC
mode deep sleep

2. Deep sleep mode is
entered (e.g. WFE/WFI)

3. Interrupt mask copied to
WIC by hardware

interface

PMU

4. Power Management Unit
put the processor in state

retention power down state

6. An interrupt
occurred

5. Processor in power
down state

7. WIC alert the PMU and
power restored to the

processor

9. Processor wake up
and process the interrupt

request

status

8. WIC hold the interrupt
request until processor

is ready

controls

Wake up

Figure 11.12:
Illustration of WIC mode deep sleep operations.
Not all Cortex-M0 microcontrollers support the WIC feature. The reduction of power using the

WIC depends on the application and the semiconductor process being used. When the WIC

mode deep sleep is used, the SysTick timer is stopped and you might need to set up a separate

peripheral timer to wake up the processor periodically if your application requires an

embedded OS and needs the OS to operate continuously. Also, when developing simple

applications without any embedded OS and if WIC mode deep sleep is required, use

a peripheral timer for periodic interrupt generation instead of the SysTick timer.

CHAPTER 12

Fault Handling
Fault Exception Overview

In ARM processors, when a program goes wrong and if the processor detects the fault, a fault

exception occurs. On the Cortex-M0 processor, there is only one exception type that handles

faults: the hard fault handler.

The hard fault handler is almost the highest priority exception type, with a priority level of�1.

Only the Nonmaskable interrupt (NMI) can preempt it. When it is executed, we know that the

microcontroller is in trouble and corrective action is needed. The hard fault handler is also useful

for debugging during the software development stage. When a breakpoint has been set in the

hard fault handler, the program execution stopswhen a fault occurs. By examining the content of

the stack, we can back trace the location of the fault and try to identify the reason for the failure.

This behavior is very different from that of most 8-bit and 16-bit microcontrollers. In these

microcontrollers, often the only safety net is a watchdog timer. However, it takes time for

a watchdog timer to be triggered, and often there is no way to tell how the programwent wrong.
What Can Cause a Fault?

There are a number of possible reasons for a fault to occur. For the Cortex-M0 processor, we

can group these potential causes into two areas, as described in Table 12.1.

For memory-related faults, the error response from the bus system can also have a number of

causes:

• The address being accessed is invalid.

• The bus slave cannot accept the transfer because the transfer type is invalid (depending on

bus slave).

• The bus slave cannot access the transfer because it is not enabled or initialized (for

example, a microcontroller might generate an error response if a peripheral is

accessed but the clock for the peripheral bus is turned off).

When the direct cause of the hard fault exception is located, it might still take some effort

to locate the source of the problem. For example, a bus error fault can be caused by an

incorrect pointer manipulation, a stack memory corruption, a memory overflow, an incorrect

memory map setup, or other reasons.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10012-6

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

211

http://dx.doi.org/10.1016/B978-0-12-385477-3.10012-6

Table 12.1: Fault That Triggers Hard Fault Exceptions

Fault Classification Fault Condition

Memory
related

• Bus error (can be program accesses or data accesses, also referred to as bus faults
in Cortex-M3)

Bus error generated by bus infrastructure because of an invalid address
during bus transaction
Bus error generated by bus slave

• Attempt to execute the program from a memory region marked as nonexecutable
(see the discussion of memory attributes in Chapter 7)

Program error
(also referred to as
usage faults in the
Cortex-M3)

• Execution of undefined instruction
• Trying to switch to ARM state (Cortex-M0 only supports Thumb instructions)
• Attempt to generate an unaligned memory access (not allowed in ARMv6-M)
• Attempt to execute an SVC when the SVC exception priority level is the same or

lower than the current exception level
• Invalid EXC_RETURN value during exception return
• Attempt to execute a breakpoint instruction (BKPT) when debug is not enabled

(no debugger attached)

212 Chapter 12
Analyze a Fault

Depending on the type of fault, often it is straightforward to locate the instruction that

caused the hard fault exception. To do that we need to know the register contents when the hard

fault exception is entered and the register contents that were pushed to the stack just before the

hard fault handler started. These values include the return program address, which usually tells

us the instruction address that caused the fault.

If a debugger is available, we can start by creating a hard fault exception handler, with

a breakpoint instruction that halts the processor. Alternatively, we can use the debugger to

set a breakpoint to the beginning of the hard fault handler so that the processor halts auto-

matically when a hard fault is entered. After the processor is halted because of a hard fault, we

can then try to locate the fault by the flow shown in Figure 12.1.

To aid the analysis, we should also generate a disassembly listing of the compiled image and

locate the fault using the stacked PC value found on the stack frame. If the faulting address is

a memory access instruction, you should also check the register value (or stacked register

value) to see if the memory access operated on the right address. In addition to checking the

address range, we should also verify that the memory address is aligned correctly.

Apart from the stacked PC (return address) value, the stack frame also contains other stacked

register values that can be useful for debugging. For example, the stacked IPSR (within the

xPSR) indicates if the processor was running an exception, and the stacked EPSR shows the

processor state (if the T bit of EPSR is 0, the fault is caused by accidentally switching to ARM

state).

Start

IPSR = 3?

Yes

No Processor is not in hard
fault exception, it is halted

by other breakpoint or
watch point.

Bit 2 of LR
(EXC_RETURN) is 0?

Yes

Main Stack Pointer (MSP)
was used for stacking

Process Stack Pointer (PSP)
was used for stacking

MSP pointed to valid
stack memory region?

PSP pointed to valid
stack memory region?

No

NoNo

seYseY
Investigate stack pointer
setup in vector table and

in project.

Investigate possible stack
leak in program code.

Investigate any program
code that modify stack

pointer directly

Stack frame starting at
MSP. Stacked PC is
located at MSP+0x18

Stack frame starting at
PSP. Stacked PC is
located at PSP+0x18

Create disassembled code of
the execution image and see

where the stack PC is.R2

R3

R0

R1

PC

xPSR

R12

LR

Stack
Frame

Stack Pointer

Memory
Address

Stacked PC
at SP+0x18

Figure 12.1:
Locating a fault.

Fault Handling 213
The stacked LR might also provide information like the return address of the faulting

function, or if the fault happened within an exception handler, or whether the value of the

EXC_RETURN was accidentally corrupted.

Also, the current register values can provide various types of information that can help

identify the cause of a fault. Apart from the current stack pointer values, the current Link

Register (R14) value might also be useful. If the LR shows an invalid EXC_RETURN

value, it could mean that the value of LR was modified incorrectly during a previous

exception handler.

The CONTROL register can also be useful. In simple applications without an OS, the

processor stack pointer (PSP) is not used and the CONTROL register should always

be zero in such cases. If the CONTROL register value was set to 0x2 (PSP is used in

Thread state), it could mean LR was modified incorrectly during a previous exception

handler, or a stack corruption has taken place that resulted in an incorrect value for

EXC_RETURN to be used.

214 Chapter 12
Accidental Switching to ARM State

Anumber of common program errors that cause hard faults are related to the accidental switching

to ARM state. Usually this can be detected by checking the values of the stacked xPSR. If the T

(Thumb) bit is cleared, then the fault was caused by an accidental switching to ARM state.

Table 12.2 describes the common errors that cause this problem.
Table 12.2: Various Causes of Accidentally Switching to ARM State

Error Descriptions

Use of incorrect libraries The linking stage might have accidentally pulled in libraries compiled with ARM
instructions (for ARM7TDMI). Check the linker script setting and disassembled
the code of the compiled image to see if the C libraries are correct.

Functions not being
declared correctly

If you are using GNU assembly tools and the project contains multiple files, you
need to make sure functions being called from a different file are declared
correctly. Otherwise any such calls might result in an accidental state change.

LSB of the vector in the
vector table set to 0

The vector in the vector table should have the LSB set to 1 to indicate Thumb state.
If the stacked PC is pointing to the beginning of an exception handler and the
stacked xPSR has the T bit cleared to 0, the error is likely to be in the vector table.

Function pointer with
LSB set to 0

If a function pointer is declared with the LSB set to 0, calling the function will also
cause the processor to enter a hard fault.
Error Handling in Real Applications

In real applications, the embedded systems will be running without a debugger attached and

stopping the processor is not acceptable for many applications. In most cases, the hard fault

exception handler can be used to carry out safety actions and then reset the processor. For

example, the following steps can be carried out:

• Perform application specific safety actions (e.g., performance shut-down sequence in

a motor controller)

• Optionally the system can report the error within a user interface and then reset the system

using the Application Interrupt and Reset Control Register (AIRCR; see Chapter 9,

Table 9.8) or other system control methods specific to the microcontroller.

Because a hard fault could be caused by an error in the stack pointer value, a hard fault handler

programmed in C language might not be able to perform correctly, as C-generated code might

require stack memory to operate. Therefore, for safety-critical systems, ideally the hard fault

handler should be programmed in assembly language, or use an assembly language wrapper to

make sure that the stack pointer is in valid memory range before entering a C routine.

If a hard fault handler is written in C to report debug information like faulting a program

address to a terminal display, we will also need an assembly wrapper (Figure 12.2). The

wrapper code extracts the address of the exception stack frame and passes it on to the C hard

fault handler for displaying. Otherwise, there is no easy way to locate the stack frame inside

Fault Handling 215
the C handlerdalthough you can access the stack pointer value using inline assembly,

embedded assembly, a named register variable, or an intrinsic function, the value of the stack

pointer could have been changed by the C function itself.
Branch to C handler
for reporting

Bit 2 of LR
(EXC_RETURN) is 0?

Yes

Main Stack Pointer (MSP)
was used for stacking

Process Stack Pointer (PSP)
was used for stacking

Stack Frame located in
valid memory region?

No

No

Yes

Put Stack Frame
address in R0

Dead loop / self reset /
Halt (using BKPT

instruction)

Figure 12.2:
Assembly wrapper for a hard fault handler.
The assembly code for such an assembly wrapper can be implemented using embedded

assembly, for example:
Assembly wrapper using Embedded Assembler in Keil MDK
// Hard Fault handler wrapper in assembly
// It extracts the location of stack frame and passes it to handler
// in C as a pointer. We also extract the LR value as second
// parameter.
__asm void HardFault_Handler(void)
{
 MOVS r0, #4
 MOV r1, LR
 TST r0, r1
 BEQ stacking_used_MSP
 MRS R0, PSP ; first parameter - stacking was using PSP
 B get_LR_and_branch
stacking_used_MSP
 MRS R0, MSP ; first parameter - stacking was using MSP
get_LR_and_branch
 MOV R1, LR ; second parameter is LR current value
 LDR R2,=__cpp(hard_fault_handler_c)
 BX R2
}

216 Chapter 12
The handler in C accepts the parameters from the assembly wrapper and extracts the stack

frame contents and LR values:
Hard Fault handler to report stacked register values
// Hard Fault handler in C, with stack frame location and LR value
// extracted from the assembly wrapper as input parameters
void hard_fault_handler_c(unsigned int * hardfault_args, unsigned lr_value)
{
 unsigned int stacked_r0;
 unsigned int stacked_r1;
 unsigned int stacked_r2;
 unsigned int stacked_r3;
 unsigned int stacked_r12;
 unsigned int stacked_lr;
 unsigned int stacked_pc;
 unsigned int stacked_psr;

 stacked_r0 = ((unsigned long) hardfault_args[0]);
 stacked_r1 = ((unsigned long) hardfault_args[1]);
 stacked_r2 = ((unsigned long) hardfault_args[2]);
 stacked_r3 = ((unsigned long) hardfault_args[3]);
 stacked_r12 = ((unsigned long) hardfault_args[4]);
 stacked_lr = ((unsigned long) hardfault_args[5]);
 stacked_pc = ((unsigned long) hardfault_args[6]);
 stacked_psr = ((unsigned long) hardfault_args[7]);

 printf ("[Hard fault handler]\n");
 printf ("R0 = %x\n", stacked_r0);
 printf ("R1 = %x\n", stacked_r1);
 printf ("R2 = %x\n", stacked_r2);
 printf ("R3 = %x\n", stacked_r3);
 printf ("R12 = %x\n", stacked_r12);
 printf ("Stacked LR = %x\n", stacked_lr);
 printf ("Stacked PC = %x\n", stacked_pc);
 printf ("Stacked PSR = %x\n", stacked_psr);
 printf ("Current LR = %x\n", lr_value);

 while(1); // endless loop
}

The C handler can only work if the stack is still in a valid memory region because it tries-

to extract debug information from the stack, and the program codes generated from

C compilers often require stack memory. Alternatively, you can carry out the debug

information reporting entirely in assembly code. Doing this in assembly language is relatively

easy when you have an assembly routine for text output ready. Examples of assembly text

outputting routines can be found in Chapter 16. Details about embedded assembly program-

ming (used in the assembly wrapper) can also be found in that chapter.

Lockup

The Cortex-M0 processor can enter a lockup state if another fault occurs during the execution

of a hard fault exception handler or when a fault occurs during the execution of an NMI

Fault Handling 217
handler. This is because when these two exception handlers are executing, the priority level

does not allow the hard fault handler to preempt.

During the lockup state, the processor stops executing instructions and asserts a LOCKUP

status signal. Depending on the implementation of the microcontroller, the LOCKUP status

signal can be programmed to reset the system automatically, rather than waiting for a watchdog

timer to time out and reset the system.

The lockup state prevents the failed program from corrupting more data in the memory

or data in the peripherals. During software development, this behavior can help us debug

the problem, as the memory contents might contain vital clues about how the software

failed.
Causes of Lockup

A number of conditions can cause lockup in the Cortex-M0 processor (or ARMv6-M

architecture):

• A fault occurred during the execution of the NMI handler

• A fault occurred during the execution of the hard fault handler (double fault)

• There was an SVC execution inside the NMI handler or the hard fault handler (insufficient

priority)

• A bus error response during reset sequence (e.g. when reading initial SP value)

• There was a bus fault during the unstacking of the xPSR during the exception return using

the main stack pointer (MSP) for the unstacking

Besides fault conditions, the use of an SVC in an NMI or hard fault handler can also cause

a lockup because the SVC priority level is always lower than these handlers and therefore

blocked. Because this program error cannot be handled by the hard fault exception (the priority

level is already �1 or �2), the system enters lockup state.

The lockup state can also be caused by a bus system error during the reset sequence.

When the first two words of the memory are fetched and if a bus fault happens in one

of these accesses, it means the processor cannot determine the initial stack pointer value

(the hard fault handler might need the stack as well), or the reset vector is unknown.

In these cases, the processor cannot continue normal operation and must enter a lockup

state.

If a bus error response occurs at exception, entrance (stacking) does not cause a lockup, even it

is entering hard fault or entering NMI exception (Figure 12.3). However, once the hard fault

exception or NMI exception handlers are entered, a bus error response can cause lockup. As

a result, in safety-critical systems, a hard fault handler written in C might not be the best

-1 / -2

0 to 0xC0,
or thread

Priority

Hard fault or NMI handler

gnikcatsnUgnikcatS

Fault occurring here cause
lockup Fault occurring

here might cause
lockup

Fault occurring
here do not cause

lockup

Time

Fault occurring
here does not
cause lockup

Figure 12.3:
Lockup condition during exception sequences.

218 Chapter 12
arrangement because the C compiler might insert stack operations right at the beginning of the

handler code:
Hard
Fault_Handler

PUSH
...
{R4, R5} ; This can cause lock up if the MSP is corrupted
For an exception exit (unstacking), it is possible to cause a lockup if a bus error response is

received during the unstacking process of the xPSR using MSP. In such cases, the xPSR

cannot be determined and therefore the correct priority level of the system is unknown. As

a result, the system is locked up and cannot be recovered apart from resetting it or halting it

for debug.

What Happens during a Lockup?

If the lockup is caused by a double fault, the priority level of the system stays at �1. If an

NMI exception has occurred, it is possible for the NMI to preempt and execute. After

the NMI is completed, the exception handler is terminated and the system returns to lockup

state.

Otherwise, in other lockup scenarios the system cannot be recovered and must be reset or

restored using a debugger attached to it. Microcontroller designers or system-on-chip

designers can use the LOCKUP signal to reset the system via a configurable setting in the

reset controller.

Fault Handling 219
Preventing Lockup

Lockup and hard fault exceptions might look scary to some embedded developers, but

embedded systems can go wrong for various reasons and the lockup and hard fault

mechanisms can be used to keep the problem from getting worse. Various sources of

errors or problems can cause an embedded system to crash in any microcontrollers, for

example:

• Unstable power supply or electromagnetic interferences

• Flash memory corruption

• An error in external interface signals

• Component damage that results from operating conditions or the natural aging process

• An incorrect clock generation arrangement or poor clock signal quality

• Software errors

The hard fault and lockup behaviors allow error conditions to be detected and help debugging.

Although we cannot fully prevent all the potential issues listed, we can take various measures

in software to improve the reliability of an embedded system.

First, we should keep the NMI exception handler and hard fault exception handler as

simple as possible. Some tasks associated with the NMI exception or hard fault exception

can be separated into a different exception like PendSV and executed after the urgent parts

of the exception handling have completed. By making the NMI and hard fault handler

shorter and easier to understand, we can also reduce the risk of accidentally using SVC

instructions in these handlers (this can be caused by calling a function which contains an

SVC instruction).

Second, for safety-critical applications, you might want to use an assembly wrapper to check

the SP value before entering the hard fault handler in C (Figure 12.4).
Start

Hard Fault
handler

SP valid?

Call main
body of

handler in C

YN

Deal with
stack error

first

Return

Figure 12.4:
Adding of SP checking in assembly.

220 Chapter 12
If necessary, we can program the entire hard fault handler in assembly. In such cases, we can

avoid some stack memory accesses to prevent lockup if the stack pointer is corrupted and

pointing to an invalid memory location.

Similarly, if the NMI handler is simple, we can program the NMI handler in assembly language

and use just R0 to R3 and R12 if we want to avoid stack memory accesses because these

registers are already stacked. But in most cases, a stack pointer error would be likely to trigger

the hard fault exception fairly quickly, so there is no need to worry about programming the

NMI in C language.

CHAPTER 13

Debug Features

Software Development and Debug Features

During software development, we often need to examine the operation of program execution in

detail to understand why a program does not work as expected or to ensure correct operation.

In some cases, we can output a small amount of program operation detail using various

interfaces such as a UART. Often this does not provide sufficient data to debug the program.

We often need to add breakpoints, add data watchpoints, view memory and registers, and so on.

These debug architectural features are now part of modern processor design.

In this chapter we will cover a number of debug terms. Note that these terms are not stan-

dardized across all microcontroller architectures, so the terms used by some microcontroller

vendors can be different from those listed here (Table 13.1).
Table 13.1: Common Debug Features on ARM Microcontrollers

Terms Descriptions

Halt Stopping of program execution due to a debug event (e.g., breakpoint or
watchpoint), or due to user debug request.

Breakpoint Program execution reach an address marked as a breakpoint, causing a debug event
to be generated which halts the processor.

Hardware breakpoint A hardware comparator is used to compare the current program address to
a reference address setup by the debugger. When the processor fetches and
executes an instruction from this address, the comparator generates a debug event
signal to stop the processor.

Software breakpoint A breakpoint instruction (BKPT) is inserted to the program memory so that
program execution halts when it get to this address.

Watchpoint A data or peripheral address can be marked as a watched variable, and an access to
this address causes a debug event to be generated, which halts program execution.

Debugger A piece of software running on a debug host (e.g., a personal computer) that
communicates with the debug system in a microcontroller, usually via a USB
adaptor (or an in-circuit debugger), so that debug features of the microcontroller
can be accessed.

In-circuit debugger A piece of hardware that connects between the debug host (e.g., a personal
computer) and the microcontroller. Usually the connection to the debug host is
a USB or an Ethernet, and the connection to the microcontroller is a JTAG or
a serial wire protocol. Various terminologies are used for in-circuit debuggers: USB-
JTAG adaptor, in-circuit emulator (ICE), JTAG/SW emulator, Run Time Control
Unit, and so on.

Profiling A feature in the debugger that collects statistics of program execution. This is useful
for performance analysis and software optimization.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10013-8

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

221

222 Chapter 13
In most microcontrollers, the debug features include the following:

• Halting program execution through user requests via a debugger or by debug events

• Resuming program execution

• Examining and modifying system status

These features are all supported on the Cortex-M0 processor and can be performed on a

target platform via a low-pin-count serial link. This is different from some older-generation

microcontrollers, which require an emulator to emulate the microcontroller, or other micro-

controller products that require the microcontroller to be programmed before insertion in

the targeted platform (in-system programmable).

Another difference between ARM-based microcontrollers and some other microcontrollers

is that there is no need for a debug agent (a small piece of debug support software) running on

the processor to carry out the debug operations. When a debug feature is accessed, the feature

is carried out entirely by the debug support hardware inside the processor. As a result, it

does not require any program size overhead and does not affect any data in memory including

the stack.

Debug Features Overview

The Cortex-M0 processor supports a number of useful debug features:

• Halting, resuming, and single stepping of program execution

• Access to processor core registers and special registers

• Hardware breakpoints (up to four comparators)

• Software breakpoints (BKPT instruction)

• Data watchpoints (up to two comparators)

• On-the-fly memory access (system memory can be accessed without stopping the

processor)

• PC sampling for basic profiling

• Support of JTAG or serial wire debug protocol

These debug features are vital for software development and can be used for other tasks like

flash programming and product testing.

The debug features of the Cortex-M0 processor are based on the ARM CoreSight debug

architecture. They are consistent among all Cortex-M processors, making it easy for a debug

tool to support all Cortex-M processors with little modification. The debug architecture is also

very scalable, making it possible to build complex multiprocessor products using the CoreSight

debug architecture.

The design of the Cortex-M0 processor allows the debug features to be configurable. For

example, system-on-chip designers can remove some or all of the debug features to reduce the

Debug Features 223
circuit size for ultra-low-power applications like wireless sensors. If a debug interface is

implemented, debugger software can also read various registers to detect which debug features

were implemented.
Debug Interface

To access the debug features on the microcontroller, a debug interface is needed (Figure 13.1).

For ARM Cortex-M0 microcontrollers, this interface can either be in Joint Test Action

Group (JTAG) protocol or serial wire debug protocol. Both protocols transfer control infor-

mation and data in serial bit sequences.
USB

Targeted embedded
system

Microcontroller

JTAG or
Serial Wire
connection

ULINK2

USB-JTAG adaptor /
in circuit debugger

(e.g. ULINK2)

Debugger application
running on personal

computer

Figure 13.1:
Using the debug interface on the Cortex-M0 microcontroller.
The debug interface allows the following:

• The flash memory to be reprogrammed easily without the need to remove it from the circuit

board

• Applications to be tested

• Production testing (e.g., self-test application can be downloaded to the microcontroller

memory and executed, or a boundary scan could be carried out via a JTAG connection

if it is implemented in the microcontroller)

Unlike most other processors, in ARM Cortex processors the debug interface and the debug

features are separated. The processor design contains a generic parallel bus interface that

allows all the debug features to be accessed. A separated debug interface block (called the

Debug Access Port in ARM documentation) is used to convert a debug interface protocol to the

parallel bus interface (Figure 13.2). This arrangement is part of the CoreSight debug archi-

tecture, and it makes the ARM Cortex processors’ debug solution flexible.

mailto:Image of Figure 13.1|eps

Processor system

DAP

Cortex-M0

BPU
DWT

Bus

Processor
core

Break Point Unit

Data Watchpoint

Core debug support
(halt, single step, etc)Debugger access to

memory, peripherals
and optional test

logic

Debug Access Port

Optional test logic for
chip production

testing
ROM /
Flash SRAM Peripherals Additional

test logic

Microcontroller

DBG

NVIC

JTAG or
Serial Wire

Figure 13.2:
Debug interface (DAP) in Cortex-M0.

224 Chapter 13
JTAG is a four-pin or five-pin serial protocol that is commonly used for digital component

testing. The interface contains the signals described in Table 13.2.
Table 13.2: Signals connection for the JTAG debug.

JTAG Signal Descriptions

TCK Clock signal
TMS Test Mode Select signaldcontrols the protocol state transition
TDI Test Data Indserial data input
TDO Test Data Outdserial data output
nTRST Test resetdactive low asynchronous reset for a JTAG state control unit called the TAP

controller (The nTRST signal is optional. Without nTRST, the TAP controller can be reset
with five cycles of TMS pulled high.)
Although the JTAG interface is commonly used and well supported, using four or five pins

for debug operations is too many for some microcontrollers with low pin counts. As

a result, ARM developed the serial wire debug protocol, which uses only two pins

(Table 13.3).

Although only two signals are required, the serial wire debug protocol can offer better

performance than JTAG and can provide the same processor debug functionality. Most

mailto:Image of Figure 13.2|eps

Table 13.3: Signal Connection for the Serial Wire Debug

Serial Wire Signal Descriptions

SWCLK Clock signal
SWDIO Data input/outputebidirectional data and control communication

Debug Features 225
in-circuit debuggers and debugger software tools that support the ARM Cortex-M processor

family already support the serial wire debug protocol.

The use of the CoreSight debug architecture brings a number of advantages to the Cortex-M0

processor and other processors in the Cortex-M processor family:

• By separating the debug interface from the main processor logic, the choice of debug inter-

face protocol becomes much more flexible, without affecting the underlying debug

features on the main processor logic.

• Multiple processors can share the same debug interface block, allowing a more scalable

debug system. Other test logic can also be added to the system easily, as the internal

connection is a simple parallel bus interface.

• The design is consistent among all Cortex-M processors, making it easy for tool vendors to

support the whole Cortex-M processor family with one tool chain.

Many microcontroller products have the JTAG or serial wire interface pin shared with the

peripheral interface or other I/O pins. When the debug interface pins are used for I/O, usually

by programming certain peripheral control registers to switch the usage to I/O, the debugger

cannot connect to the processor. Therefore, when designing an embedded system, you should

avoid using the debug interface pins as I/O if you want to allow the system to be debugged

easily.

In some cases, if the pins are switched from debug mode to I/O quickly after the program starts;

this could end up locking out the debugger completely because the debugger will not have

enough time to connect and halt the processor before the pin usage is switched. As a result,

you cannot debug the application and cannot reprogram the flash memory. From another point

of view, you might be able to use it as a feature to block other people from accessing the

program code in the chip. However, this arrangement is not guaranteed to be secure and can be

worked around if the microcontroller’s design has a special boot mode that can disable the

application. For secure firmware protection, please refer to the documentation from your

microcontroller vendor.

Details of the CoreSight debug architecture can be found on the ARM web site. A document

called “CoreSight Technology System Design Guide” (ARM DGI 0012B, reference 6)

provides a good overview of the CoreSight debug architecture. In addition, the ARM Debug

Interface v5 (ARM IHI 0031A, reference 7) provides detailed information on the serial wire

debug protocol.

226 Chapter 13
Halt Mode and Debug Events

The Cortex-M0 processor has a halt mode, which stops program execution and allows the

debugger to access processor registers and memory space. During halt mode, the following

activities occur:

• Instruction execution stops.

• The SysTick timer stops counting.

• If the processor was in sleep mode, it wakes up from the sleep mode before halt.

• Registers in the processor’s register bank, as well as special registers, can be accessed (both

read and write).

• Memory and peripheral contents can be accessed (this can be done without halting the

processor).

• Interrupts can still enter pending state.

• You can resume program execution, carry out single-step operation, or reset the

microcontroller.

When a debugger is connected to the Cortex-M0, it first programs a debug control register in

the processor to enable the debug system. This cannot be done by the application running on

the microcontroller. After the debug system is enabled, the debugger can then stop the

processor, download the application to the microcontroller flash memory if required, and reset

the microcontroller; we can then test the application.

The Cortex-M0 processor enters halt mode when:

• Debug is enabled by a debugger

• A debug event occurs

There are various sources of debug events. They can be generated by either hardware or

software (Figure 13.3).

A debugger can stop program execution by writing to debug control registers. On an embedded

system with multiple processors, it is also possible to stop multiple processors at the same

time from using a hardware debug request signal and an on-chip debug event communication

system.

The program execution can be stopped by hardware breakpoints, software breakpoints,

watchpoints, or vector catch event. The vector catch is a mechanism that allows the core to be

halted when certain exceptions take place. On the Cortex-M0 processor, two vector catch

conditions are provided:

• Reset

• Hard fault

Debugger assert halt
request

WatchPoint

Hardware BreakPoint

Vector Catch events

Hardware debug
request (on-chip /

external)

Execution of
BreakPoint
instruction

Debug
Events

HALT

Ignore

Debug
Enabled

Hard fault

Completion of a
single step operation

Debug
Disabled

Debug
Disabled

Debug
Enabled

Figure 13.3:
Debug events on the Cortex-M0 processor.

Debug Features 227
The vector catch feature is controlled by debug registers in the Cortex-M0 processor, allowing

the processor to be stopped automatically upon a reset or when a hard fault execution takes

place (e.g., because of a software error). When the vector catch operation takes place, the

processor stops before execution of the first instruction in the reset or hard fault exception

handler.

Once the debugger application detects that the processor is halted, it then checks a Debug Fault

Status Register inside the System Control Block (SCB) of the Cortex-M0 processor to

determine the reason for halting. Then it can inform the user that the processor is halted. After

the processor has been halted, you can then access to the registers inside the processor’s

register bank and special registers, access the data in memories or peripherals, or carry out

a single-step operation.

A halted Cortex-M0 processor can resume program execution by writing to the debug register

through the debugger connection, by a hardware debug restart interface (e.g., use in

mailto:Image of Figure 13.3|eps

228 Chapter 13
multiprocessor systems so that multiple processors can resume program execution at the

same time), or by reset.

Debug System

The debug features on the Cortex-M0 are controlled by a number of debug components. These

debug components are connected via an internal bus system. However, application code

running on the Cortex-M0 processor cannot access these components (this is different from the

Cortex-M3/M4 processor, where software can access the debug components). The debug

components can only be accessed by the debugger connected to the microcontroller

(Figure 13.4).
Debug
Interface

Serial wire
or JTAG

Debug
control

registers

Processor core

BP unit

DWT unit

ROM table

Bus
interface

Cortex-M0

Flash
memory

SRAM

Peripherals

NVIC,
SCB

Microcontroller

Figure 13.4:
Debug components in the Cortex-M0.
There are a number of debug components in the Cortex-M0, as describe in Table 13.4.

The debug system also allows access to the system’s memory map including flash, SRAM, and

peripherals. The accesses to the system memory can be carried out even if the processor is

running. By accessing the Application Interrupt and Reset Control Register (AIRCR) in the

System Control Block (SCB), the debugger can also request a system reset to reset the

microcontroller.

Additional information about the debug components is covered in Appendix E.

mailto:Image of Figure 13.4|eps

Table 13.4: Debug Components in the Cortex-M0

Debug Components Descriptions

Processor core
debug registers

Debug features inside the processor core are accessible by a few debug control
registers. They provide the following:
dHalting, single step, resume execution
dAccess to the core’s registers when the processor is halted
dControl of vector catch

BP unit The breakpoint unit provides up to four breakpoint address comparators.
DWT unit The data watchpoint unit provides up to two data address comparators. It also

allows the debugger to sample the program counter regularly for profiling.
ROM table This small lookup table allows the debugger to locate available debug components

in the system. It lists the addresses of debug components, and the debugger can
then identify the available debug features by checking the identification registers of
these components.

Debug Features 229

CHAPTER 14

Getting Started with Keil MDK

Introduction to Keil MDK

The ARM Keil Microcontroller Development Kit (MDK) is one of the most popular devel-

opment suites for ARM microcontrollers. The Keil MDK is a Windows-based development

suite and provides the following components:

• The mVision integrated development environment (IDE)

• C compiler, assembler, linker, and utilities

• Debugger

• Simulator

• RTX Real-Time Kernel, an embedded OS for microcontrollers

• Startup code for various microcontrollers

• Flash programming algorithms for various microcontrollers

• Program examples and development board support files

The debugger in mVision IDE works with Keil USB-JTAG adaptors like ULINK2 and ULINK

Pro, and a number of third-party adaptors like the Signum JtagJet/JtagJet-Trace, SEGGER

J-Link, ST-Link, LuminaryMicro’s Evaluation Board, and Altera Blaster Cortex Debugger. In

addition, you can also use other in-circuit debuggers if a third-party plug-in for Keil MDK

is available. Even if you don’t have an in-circuit debugger, you can generate the program

image and program the microcontroller using third-party programming tools. But, of course,

having a supported in-circuit debugger allows you to debug the system though the mVision

IDE, which is much easier and more effective.

The C compiler used in the Keil MDK is based on the same compiler engine in the ARM

RealView Development Suit, which provides excellent performance and code density. Another

advantage of using the Keil MDK is that it supports a huge number of ARM microcontrollers

on the market. In addition to standard compiler and debug support, it also provides

configuration files such as startup code and RTX OS configuration files, making software

development easier and quicker.

The Keil MDK includes a simulator that can emulate the operations of the processor and some

of the peripherals. This enables users to build and run ARM applications without requiring the

actual hardware.

An evaluation version of the Keil MDK can be downloaded from the Keil web site (www.keil.

com). The evaluation version is limited to 32 KB of program memory. This memory size is
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10014-X

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

231

http://www.keil.com
http://www.keil.com
http://dx.doi.org/10.1016/B978-0-12-385477-3.10014-X

232 Chapter 14
sufficient for most simple applications. You might also receive the evaluation version of Keil

MDK from various development kits from the microcontroller vendors. If you decide to use

Keil MDK for commercial projects, you can purchase a license on the Keil web site and obtain

a software license number. This license number can then be used to convert the evaluation

version to a full version.

First Step of Using Keil MDK

Create the Blinky Project

Here is what you need to follow the examples presented in this chapter:

1. Keil MDK (either the full version or an evaluation version can be used, but it needs to be

version 4.10 or later) installed on your personal computer.

2. Access to a Cortex-M0 development board would be ideal. If it is not available, most the

examples can still be tested using simulation support in MDK.

3. An in-circuit debug adaptor supported by Keil MDK.

The setups used in the following the examples in this chapter are based on the NXP LPC1114

microcontroller, ULINK-2 USB-JTAG adaptor (Figure 4.12, presented in chapter 4), and Keil

MDK version 4.10.

When the mVision IDE starts, you will see a screen similar to the one shown in Figure 14.1.

We start by creating a new project. This can be done by using the pull-down menu: select

Project / New mVision Project, as shown in Figure 14.2.
Figure 14.1:
mVision IDE starting screen.

Figure 14.2:
Creating a new project

Getting Started with Keil MDK 233
For the first project, we are going to create a simple program that toggles an LED. We will call

this project “blinky.” The location of the project depends on your preference; in this demon-

stration we’ll put the project in “C:\CortexM0\blinky,” as shown in Figure 14.3.
Figure 14.3:
Create the blinky project.
The next step of the project creation wizard defines the microcontroller to be used for the

project. In this example we’ll select the NXP LPC1114-301, as shown in Figure 14.4.

The last step of the project creation wizard will ask if you want to copy the default startup code

for NXP LPC11xx to your project, as shown in Figure 14.5. Select yes, as this will save us a lot

of time in preparing the startup code.

Once this is done, we will have a blinky project set up with just the startup code, as shown in

Figure 14.6.

Figure 14.4:
Device selection.

Figure 14.5:
Option to copy startup code.

Figure 14.6:
Blinky project created.

234 Chapter 14

Getting Started with Keil MDK 235
Create the Project Code

The next stage of the project is to create the program code. This can be done by using

the pull-down menu: File / New. Then put the following program code in the new file, and

save it as blinky.c. The operation of the program is illustrated in the flowchart in

Figure 14.7.
Start

Set48MHzClock()

LedOutputCfg()

Program SysTick timer

Wait for SysTick
counter flag set

Loop 500 times

Delay 0.5 sec

Set output signal to 0

Wait for SysTick
counter flag set

Loop 500 times

Delay 0.5 sec

Set output signal to 1

Clear P2.0 (KEIL MCB1000) or
P0.7 (LPCXpresso) to 0

Set P2.0 (KEIL MCB1000) or
P0.7 (LPCXpresso) to 1

Change clock frequency from 12MHz (using internal RC oscillator), to
48MHz (use PLL to multiply from external crystal).

internal clock source rather than the crystal oscillator. You might also need
to setup the system’s clock controller before other steps of initialization.

Set LED connected pin as output port.

Normally I/O pins are set as input after a reset. To use the I/O pins as
output, you will need to setup the I/O pin as output. In many cases, the I/O
pins could be shared between several peripherals and you will need to
setup the usage configuration of the I/O pins.

Set up SysTick timer to 1kHz

The peripherals like timers, communication interface and user interface may
be setup in this stage. For this example, the SysTick timer is setup for LED
toggle timing control.

Blinky process

The main procedure of the application. In
this example the SysTick timer status flag is
polled and the LED is toggled if the SysTick
timer has overflowed 500 times.

Microcontroller product often start up with PLL turned off and might use an

Figure 14.7:
Flowchart of the blinky application.

blinky.c

#include "LPC11XX.h"
#define KEIL_MCB1000_BOARD

// Function declarations
void Set48MHzClock(void); // Program PLL to generate 48MHz clock
void LedOutputCfg(void); // Set I/O pin connected to LED as output

int main(void)
{
 int i;
 // Switch Clock to 48MHz
 Set48MHzClock();
#ifdef KEIL_MCB1000_BOARD
 // Initialize LED (GPIO #2, bit[0]) output
#else
 // Initialize LED (GPIO #0, bit[7]) output
#endif
 LedOutputCfg();

 // Program SysTick timer at 1KHz.
 // At 48MHz, SysTick trigger every 48000 CPU cycles
 SysTick->LOAD = (48000-1); // Count from 47999 to 0
 SysTick->VAL = 0; // Clear SysTick value
 SysTick->CTRL = 0x5; // Enable, using core clock

}

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
#else

#endif
 for (i=0;i<500;i++) { // Wait for 0.5 seconds

while ((SysTick->CTRL & 0x10000)==0); // Wait for counter underflow
}

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = 1;
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = (1<<7); // Set bit 7

// Alternatively, we can use "LPC_GPIO0->DATA = 0x80;"
// as the other bits are not used

 while(1){ // Blink at 1Hz
 for (i=0;i<500;i++) { // Wait for 0.5 seconds
 while ((SysTick->CTRL & 0x10000)==0); // Wait for counter underflow

// For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = (0<<7); // Clear bit 7
 // Alternatively, we can use "LPC_GPIO0->DATA = 0x00;"
 // as the other bits are not used

236 Chapter 14

// Switch LED signal to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

// Switch the CPU clock frequency to 48MHz
void Set48MHzClock(void)
{
 // Power up the PLL and System oscillator
 // (clear the powerdown bits for PLL and System oscillator)
 LPC_SYSCON->PDRUNCFG = LPC_SYSCON->PDRUNCFG & 0xFFFFFF5F;

 // Select PLL source as crystal oscillator
 // 0 - IRC oscillator
 // 1 - System oscillator
 // 2 - WDT oscillator
 LPC_SYSCON->SYSPLLCLKSEL = 1;

#endif
 } // end while
} // end main

(Continued)

Getting Started with Keil MDK 237

 LPC_SYSCON->SYSPLLCLKUEN = 1;
 // Set PLL to 48MHz generate from 12MHz
 // M = 48/12 = 4 (MSEL = 3)
 // FCCO (must be between 156 to 320MHz, and is 2x, 4x, 8x or 16x of Clock)
 // Clock freq out selected as 192MHz
 // P = 192MHz/48MHz/2 = 2 (PSEL = 1)
 // bit[8] - BYPASS
 // bit[7] - DIRECT
 // bit[6:5] - PSEL (1,2,4,8)
 // bit[4:0] - MSEL (1-32)

 LPC_SYSCON->SYSPLLCTRL = (3 + (1<<5)); // M = 4, P = 2
 // wait until PLL is locked
 while(LPC_SYSCON->SYSPLLSTAT == 0);
 // Switch main clock to PLL clock
 // 0 - IRC
 // 1 - Input clock to system PLL
 // 2 - WDT clock
 // 3 - System PLL output
 LPC_SYSCON->MAINCLKSEL = 3;
 // Update Main Clock Select setting (0->1 sequence)
 LPC_SYSCON->MAINCLKUEN = 0;
 LPC_SYSCON->MAINCLKUEN = 1;

 return;
} // end Set48MHzClock

 // Update SYSPLL setting (0->1 sequence)
 LPC_SYSCON->SYSPLLCLKUEN = 0;

blinky.c—Cont’d

238 Chapter 14
The program code performs a number of tasks before starting the LED toggling process.

Although the exact details are dependent on the microcontroller used, the blinky example can

be reproduced on other Cortex-M0 microcontrollers using the flowchart shown in

Figure 14.7.

In this example program, either the bit 7 of port 0 or bit 0 of port 2 is used to drive the LED

output. The program code contains a preprocessing option called KEIL_MCB1000_BOARD.
By setting this option, one of the LEDs (bit 0 of port 2) on the Keil MCB1000 board will be

used. Otherwise the bit 7 of port 2 would be used for LED output, which is the arrangement for

the NXP LPCXpresso board. The system tick timer is used for timing control, and a polling

loop is used to detect every 500th SysTick overflow and toggle the LED output.

The file LPC11xx.h is provided as part of the Keil MDK installation. This header file is used for

the CMSIS device driver and contains the peripheral register definitions used in the application.

After the blinky project is created, we can then add the file to the project. This can be done by

right-clicking on the “Source Group 1” of the project window and selecting “Add files to Group

‘Source Group 1’.” as shown in Figure 14.8.

Figure 14.8:
Add the program file to the project.

Getting Started with Keil MDK 239
Project Settings

After the program file is created, it might be necessary to adjust a few project settings

before the application can be downloaded to the microcontroller’s flash memory and be tested.

In most cases (including LPC1114), the Keil mVision IDE will set up all the required project

settings automatically once the device is selected. However, it is useful to understand what

settings are available and what settings are needed to get a project to work.

Many project settings are available. First we will introduce the settings that are essential for

getting the program code downloaded to the flash and executing it. The project settings menu

can be accessed by doing the following:

• Select the Target option button on the toolbar .

• On the pull-down menu, select Project / Option for Target.

• Right-click on the project target name (e.g., “Target 1”) in the project window, and select

options for target.

• Select hot key Alt-F7.

The project option menu contains a number of tabs. Figure 14.9 shows the list of option tabs.

Device

Target Memory map, C library
option, RTX OS option

Output Output executable / library,
output folder

Listing C compiler and assembler
listing, output folder

User
Optional program to run

before and after compile and
build processes

C/C++
C Compiler optimization, defines,

include path and misc options

Assembler Assembler defines, include
path and misc options

Linker Memory layout, Scatter
loading file option

Debug Debug target, Debugger

Utilities Flash programming setup

Debugger
Settings

Flash
programming

settings

Debugger specific
configuration settings

Flash programming
mechanism, flash

programming algorithm

Targeted microcontroller
device for the project

Figure 14.9:
Project options tabs in a Keil MDK project.

240 Chapter 14
By default, the Keil mVision IDE automatically sets up the memory map for us when we select

the microcontroller device. In most cases we do not need to change the memory settings.

However, if the program operation fails or if flash programming is not functioning correctly,

we need to go through the settings to make sure that they were not accidentally changed to

incorrect values.

Some settings have to be set up manually. An example would be the debugger configuration,

because mVision IDE does not know which in-circuit debugger you will be using. First we

look at the debug options shown in Figure 14.10. Here we selected “ULINK Cortex Debugger.”

You can change the settings to use another supported debugger.

Next, click on the Settings button next to the debugger selected. This will bring us to

a configuration menu, which is dependent on the debugger selected. For the ULINK 2

debugger, you will see a screen like the one shown in Figure 14.11.

Because the NXP LPC1114 device does not support JTAG, the debug setting must be set to use

the serial wire debug protocol. The serial wire clock frequency being used depends on the

microcontroller device, the circuit board (PCB) design, and the debug cable length.

In the ULINK Cortex-M configuration window, there is a tab for flash download (program-

ming). Here we can define the flash programming algorithm as shown in Figure 14.12. This

should have been set up automatically by the Keil mVision IDE.

Figure 14.11:
ULINK debug options.

Figure 14.10:
Debug options.

Getting Started with Keil MDK 241

Figure 14.13:
Utilities option tab in project options.

Figure 14.12:
Flash programming algorithm option.

242 Chapter 14
Finally, it might also be necessary to set up the Utilities options in the project to select

ULINK 2 (or another in-circuit debugger of your choice) as the programming method. This

is shown in Figure 14.13. The “Update Target before Debugging” option automatically

updates the program to the flash memory and then starts the debug session. This saves the

Getting Started with Keil MDK 243
users from having to remember to reprogram the flash each time the program image is

rebuilt.

In the utilities tab, we can also access the flash algorithm settings from the setting button.

If you are using NXP LPC11xx (Cortex-M0), LPC13xx (Cortex-M3), or LPC17xx (Cortex-

M3) and if you are not using Keil’s ULINK in-circuit debugger for flash memory program-

ming, an extra step might be needed. In these NXP products, address 0x1C-0x1F (32-bit)

is used as a checksum and is generated automatically during flash memory programming.

Because the program image generated by the linker does not have this checksum, the flash

programmer would report an error as it tries to verify the programmed image and compares the

read-back values to the original image.

To solve this problem, Keil MDK has included a utility call ElfDwt, a signature creator that

inserts the required checksum to the program image generated by the linker. This feature is

introduced in MDK 4.10. To use this feature, you can run ELFDWT directly in the folder that

contains the program image:
C:\K
EIL\ARM\BIN\ELFDWT elf_file.AXF
Alternatively, this can be set up as an automatic process by adding the command line

“$K\ARM\BIN\ELFDWT #L” in the User option in the project setting, in the “Run User

Program After Build/Rebuild” field (Figure 14.14).
Figure 14.14:
Using ELFDWT for NXP LPC11xx/LPC13xx/LPC17xx product.

244 Chapter 14
When this option is used, there is an additional output message during the build process:

Build target 'Demonstration'
assembling startup_LPC11xx.s...
compiling blinky.c...
linking...
Program Size: Code¼540 RO-data¼228 RW-data¼0 ZI-data¼608
User command #1: C:\Keil\\ARM\BIN\ELFDWT.EXE C:\CortexM0\2_blinky\blinky.axf
ELFDWT - Signature Creator V1.00
COPYRIGHT Keil - An ARM Company, Copyright (C) 2010
*** Updated Signature over Range[32] (0x00000000 - 0x00000018): @0x0000001C ¼ 0xEFFFF9AF
*** Processing completed, no Errors.
"blinky.axf" - 0 Error(s), 0 Warning(s).
Please note that this setting is not necessary if a ULINK product is used for flash programming

or if the project does not use a NXP LPC11xx/LPC13xx/LPC17xx product.

Once completed, the application you have created is ready to be compiled and tested.

Compile and Build the Program

The compile process can be carried out by a number of buttons on the toolbar as shown in

Figure 14.15. Simply click on the “Build Target” button to start the compile process, use the

pull-down menu (in the Project menu/ Build Target), or use hot key F7. After the program is

compiled and linked, we will see the compile status message as shown in Figure 14.16.
Program the compiled application
to the microcontroller

Rebuild all files

Build target

Target options

Figure 14.15:
Frequently used buttons on the toolbar.

Figure 14.16:
Compile result for the blinky project on the Build Output window.

Figure 14.17:
Flash programming status output.

Getting Started with Keil MDK 245
It is now possible to program the application to the microcontroller’s flash memory using the

“Load” button on the toolbar (Figure 14.17).

The program can then be tested by starting a debug session by using the pull-down menu

(Debug / Start/Stop Debug session), by clicking on the debug session button on the

toolbar, or using the hot key Ctrl-F5 (Figure 14.18). When the debug session starts, by default it

will start at the boot loader inside the NXP LPC111x. This behavior is specific to the LPC111x

design and can be completely different in other Cortex-M0 products.

Now click the run button; the LED (connected to port 2 bit 0 or port 0 bit 7) starts to blink.

Congratulations! You have successfully created and tested your first Cortex-M0 project.

Using the Debugger

The debugger in mVision IDE provides a lot of useful features. For example, in the C source

code window, a breakpoint can be inserted by simply right-clicking on a line of C code and then

selecting insert breakpoint (Figure 14.19).

The following descriptions cover some of the commonly used debug features:

• Processor registers access. When the processor core is halted, the current register

values are displayed in the register window. You can modify the value by double-

clicking on the value you want to change.

• Examine memory contents. The memory contents can be examined by entering the address

value in the memory window. The display can be configured to display the values as

bytes, half words (16-bit), or 32 bit words. You can also modify the values in the memory.

The memory window can be used even when the processor is running.

• Single stepping. You can carry out single stepping in the C source code window, as

well as in the assembly window. When single stepping in the C source code window,

each line of C source code will perform the single stepping. When single stepping in the

disassembly window, you can single step the assembly instructions one by one.

Reset CPU

Run

Stop

Step one line

Step over current line

Processor’s
registers

Step out of current function

Run to current cursor line

Show statement at current program counter

Output status

Command
input

Access to memory
window

Instruction
disassembly window

C source code
window

S rt/Stop debug session

Figure 14.18:
Screen shot of debug sessions.

2
4
6

C
hapter

1
4

ta

Figure 14.19:
Breakpoint can be set by right-click on a line of code and select insert breakpoint.

Getting Started with Keil MDK 247
• Run to main. This feature allows the processor to start program execution after reset and

halt at “main(),” instead of halting at the beginning of the internal boot loader or startup

code. This is done by checking the “Run to main” option in the project’s debug option as

shown in Figure 14.20. However, if the program does not start properly, for example,

because of an incorrect memory map configuration or incorrect stack size setup, you

should disable this option so that you can debug the reset handler.

• Peripheral pull-down menu. This pull-down menu provides access to the status of NVIC,

System Control Block register, and the registers in the SysTick timer.

Other Project Configurations

In the mVision IDE, there are a number of other useful project options.

Target, Source Groups

In the project window, by default the project created consists of only one target, “Target 1,”

which contains a source group called “Source Group 1.” You can rename the target and source

groups to make it more clear how the files in the project are organized. These items can be

renamed by clicking on the “Target 1” or “Source Group 1” to highlight the text and clicking on

it again to edit the text directly. You can also add other groups to the project.

Figure 14.20:
Run to the main option.

248 Chapter 14
For example, you can divide the source code files into groups like “startup” and “application,”

and you can even add documentation into the project by adding text files. This is useful when

a project contains a large number of files. By organizing files into various groups, it is easier to

locate the files you want to edit. An example of project file arrangement is shown in

Figure 14.21.

A mVision project can contain multiple targets. Different targets can have different compiler

and debug settings. By creating multiple targets, switching between multiple project config-

urations is easy. An additional target can be added by right-clicking on the target name and

selecting manage components.

A typical usage of having multiple targets is to allow the same applications to be compiled with

debug symbols and without debug symbols (for release). If there are multiple targets in

a project, you can switch between targets using the target selection box on the toolbar (at the

right-hand side of the flash download button).

Compiler and Code-Generation Options

A number of compiler and code-generation options are available to allow different optimi-

zations. The first group of the options is composed of the C compiler options, as shown in

Figure 14.22.

Figure 14.22:
C compiler options.

Figure 14.21:
Target name and group renamed.

Getting Started with Keil MDK 249

Table 14.1: Optimization Levels

Optimization
Level

Descriptions

-O0 Applies minimum optimization. Most optimizations are switched off, and the code generated
has the best debug view.

-O1 Applies restricted optimization. Unused inline functions, unused static functions, and
redundant codes are removed. Instructions can be reordered to avoid interlock situations.
The code generated is reasonably optimized with a good debug view.

-O2 Applies high optimization. Optimizes the program code according to the processor specific
behavior. The code generated is highly optimized, with limited debug view.

-O3 Applies the most aggressive optimization. Optimizes in accordance with the time/space option.
By default, multifile compilation is enabled at this level. This gives the highest level of
optimization but takes longer compilation time and has lower software debug visibility.

250 Chapter 14
The C compiler options allow you to select optimization levels (0 to 3) through a drop-down

menu (Table 14.1). When using level 3, optimization is set for code size by default unless the

tick box “Optimize for Time” is set. There are various other compiler configurations, which can

be set by the tick boxes. All of these settings will appear in the “Compiler control string” text

box. You can also add more compiler switches directly in the “Misc Controls” text box. For

example, if you are using a Cortex-M0 product with a 32-cycle multiplier (e.g., Cortex-M0

in minimum size configuration), you can add the --multiply_latency¼32 option so that the

C compiler can optimize the generated code accordingly.

A second group of useful options can be found in the target options window as shown in

Figure 14.23.

The MicroLIB C library is optimized for microcontrollers and other embedded applications.

If the MicroLIB option is not selected, the standard ISO C libraries are used. TheMicroLIB has

a smaller program memory footprint, but it has a slower performance and a few limitations.

In most applications that are migrating from 8-bit/16-bit microcontrollers to the ARM Cortex-

M0 processor, the slightly lower performance of MicroLIB is unlikely to be an issue because
Figure 14.23:
Code-generation options.

Getting Started with Keil MDK 251
the Cortex-M0 processor provides a much higher performance than most 8-bit or 16-bit

processors.

In some cases, the cross module optimization and link-time code-generation options can also

improve the program size and performance:

• Cross module optimization. This technique takes information from a prior build and uses

it to place UNUSED functions into their own ELF section in the compiled object file.

In this way, the linker can remove unused functions to reduce code size.

• Link-time code generation. The objects in the compiled output will be in an intermediate

format so that the linker can perform further code optimizations during the linkage stage.

This can reduce code size and allow the applications to run faster.

More details of optimization techniques can be found in Keil Application Note

202eMDK-ARM Compiler Optimizations (reference 8).

Simulator

The mVision IDE includes a simulator. The simulator provides instruction set level simu-

lation, and for some microcontroller devices, a device-level simulation feature (including

peripheral simulation) is also available. To enable this feature, change the debug option to use

simulation as shown in Figure 14.24.
Figure 14.24:
Simulation option in debug.

Figure 14.25:
Debug simulation window.

252 Chapter 14
After this is set, you can start your debug session using the pull-down menu (Debug / Start/

Stop Debug session), or by clicking on the debug session button on the toolbar, or by

using the hot key Ctrl-F5. A debug window will then be displayed as shown in Figure 14.25,

from here it is possible to execute the program, single step through the program, and also

examine the system status.

In some cases, depending on the microcontroller product you are using, the debug simulator

might not be able to fully simulate all the peripherals available on the microcontroller. Also, it

may be necessary to adjust the memory map of the simulated device. This can be done by

accessing the memory configuration via the pull-down menu: Debug / Memory. This is not

required if you are using NXP LPC111x microcontrollers because the Keil MDK provides full

device simulation for LPC111x from version 4.10.

A very useful feature in the simulator is the execution profiling. By enabling the profiling

function from the pull-down menu (Debug / Execution Profiling) as shown in Figure 14.26,

you can measure the execution time of a function as shown in Figure 14.27.

Execution in RAM

In addition to downloading the program to flash memory, you can also download a program

to RAM and test it without changing the content inside the flash memory. To do this, we need to

change a number of options in the project. First, we need to specify the new memory map

Figure 14.26:
Enabling the profiling feature.

Figure 14.27:
Timing information of program execution.

Getting Started with Keil MDK 253
for the compiled image, as shown in the example in Figure 14.28. The memory layout depends

on the microcontroller used for the project. For this example, the 8 KB of RAM on LPC1114 is

divided into two halves, one for the program code and the other for data and stack.

Then, the flash programming option is modified to remove flash programming, as shown in

Figure 14.29.

Figure 14.28:
Example memory configuration for program execution from RAM.

Figure 14.29:
Flash programming algorithm is not required if the program is to be tested in RAM.

254 Chapter 14

Getting Started with Keil MDK 255
The next step is to create a simple debug startup script to load the initial stack pointer and

program counter to the right location. For this example, a file called ram_debug.ini is created

with the following text:
ram_debug.ini

reset
// System memory remap register in LPC1114
// User RAM mode : Remap interrupt vectors to SRAM
_WDWORD(0x40008000, 0x00000001);

LOAD blinky.axf INCREMENTAL // Download image to board

SP = _RDWORD(0x10000000); // Setup Stack Pointer
PC = _RDWORD(0x10000004); // Setup Program Counter

g, main // Goto Main
We then need to set up the debug option so that this debug startup script is used when the debug

session starts. The debug option changes for this example are shown in Figure 14.30.

Now we can start the debug session by using the start debug button on the toolbar, using the

pull-down menu (Debug / Start/Stop Debug session), or using hot key Ctrl-F5. Note that
Figure 14.30:
Adding a debug startup script file in debug options.

256 Chapter 14
we do not use the flash programming button for this example because the program is running

from SRAM.

When the debug session starts, it will download the program to SRAM and set the program

counter to the correct starting point in our program image automatically. The application can

then be started.

Testing a program image fromRAMcan have a number of limitations. First, it is necessary to use

a debugger script to change the program counter and initial stack pointer to the right locations.

Otherwise, the reset vector and initial stack pointer value in the flash memory will be used after

the processor is reset. The second issue is that additional hardware is required to use the

exception vector table in RAM. The vector table normally resides in the flash memory from

address 0x0. Because of the inclusion of some additionalmemory remapping hardware (as in the

case of NXP LPC1114), the vector table in the program image in SRAM is remapped to this

address. Therefore, in the debug script, ram_debug.ini, we programmed the system memory

remap register to enable this remap function. If such remapping hardware is not available, the

vector table in the flash memory would be used, making testing of interrupts more difficult.

Customizing the Startup Code in Keil

The startup code in the Keil mVision IDE provides the vector table as well as a great deal of

configuration information. For example, the stack size and heap size are defined here. For

applications that require more stack space or heap space, you can edit the startup code to get the

required stack or heap memory size (Table 14.2).
Table 14.2: Stack Size and Heap Size Settings in Startup Code

Defines in Startup
Code

Descriptions

Stack_Size Memory space allocated for stack memory. The stack can be used for saving register
contents when calling a function, as space for local variable in a function, for
parameter passing between functions, and for saving register contents during
exceptions/interrupts. The usual default size is 512 bytes (0x200).

Heap_Size Memory space used by a number of C library functions that need dynamic memory
allocation (e.g., malloc). The usual default size is 0 bytes (0x000).
After the startup code is copied to your project directory, editing it does not affect the default

startup code for new projects. It is also possible to add assembly instructions to this file if needed.

Using the Scatter Loading Feature in Keil

Besides using the memory layout dialog (see Figure 14.28) to define a project’s memory

layout, you can also use a scatter file to define the memory layout in the microcontroller. This

allows a more complex memory layout to be created.

Figure 14.31:
Scatter file option in Keil MDK.

Getting Started with Keil MDK 257
In the linker settings of project options, after disabling the “Use Memory Layout from Target

Dialog” option, you can then define a scatter file to use the scatter loading feature

(Figure 14.31).

A simple scatter file is as follows:
LOAD
{; fl
;;
VE
{

}

CO
{

}

DA
{

}
}

_REGION 0x00000000 0x00200000
ash memory start at 0x00000000

Maxi
CTOR

; Pr
* (R

DE 0x
; Th
* (þ

TA 0x
; In
* (þ
mum of 48 exceptions (48*4 bytes ¼¼ 0xC0)
S 0x0 0xC0

ovided by the user in startup_LPC11xx.s
ESET,þFIRST)

C0 FIXED
e rest of the program code start from 0xC0
RO)

10000000 0x2000
LPC1114, the SRAM start at 0x10000000
RW, þZI)

258 Chapter 14
In addition to defining the memory layout available in the microcontroller, the scatter file

can also be used to define pointer addresses and to reserve memory spaces in RAM for special

use. Details of scatter file syntax can be found in the RealView Compilation Tools

Developer Guide (reference 9).

CHAPTER 15

Simple Application Programming

Using CMSIS

In the blinky example presented in the previous chapter, we used a CMSIS header file

(LPC11xx.h) so that we did not have to re-create the register definitions ourselves. The benefit

of CMSIS does not stop there. In the next example, we will see how CMSIS can greatly

simplify our blinky example program.

In the CMSIS software package from NXP website, or from Keil installation (C:\Keil\

ARM\Startup\NXP\LPC11xx), we can find a file called system_LPC11xx.c, which

is specific to the NXP LPC11xx microcontrollers. Create a new blinky project in a new

directory and copy the file system_LPC11xx.c to the new directory. Use the mVision IDE to add

this file to the new blinky project (Figure 15.1).
Figure 15.1:
Project window for blinky example with CMSIS.
The system_LPC11xx.c contains a system initialization function for LPC11xx. Instead of using

a custom clock initialization function (“Set48MHzClock()”), the CMSIS system initialization

function in this file (called “SystemInit()”) is used instead. The system_LPC11xx.c has a number

of parameters that can be easily customized for different clock frequency requirements. The

settings in Table 15.1 are used to generate a 48MHz clock from a 12MHz crystal.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10015-1

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved

259

http://dx.doi.org/10.1016/B978-0-12-385477-3.10015-1

Table 15.1: Parameter Examples in System_LPC11xx.c

Parameter Value Descriptions

__XTAL 12000000 Crystal clock frequency
__IRC_OSC_CLK 12000000 Internal RC oscillator frequency
CLOCK_SETUP 1 Enable clock setup processing in SystemInit()
SYSCLK_SETUP 1 Enable system clock setup in SystemInit()
SYSOSC_SETUP 1 Enable external crystal oscillator setup in SystemInit()
SYSPLL_SETUP 1 Enable system PLL setup process in SystemInit()
SYSPLLCTRL_Val 0x23 System PLL MSEL (M ¼ 4, P ¼ 2)
MAINCLKSEL_Val 3 PLL use crystal oscillator as source
SYSAHBCLKDIV_Val 1 AHB clock frequency ratio is 1

260 Chapter 15
In the example that follows, we modified the blinky example from the previous chapter

to demonstrate the usage of CMSIS functions. Three CMSIS functions are used

here: SystemInit() for clock initialization, SysTick_Handler() to toggle the LED,

and SysTick_Config() to set up the SysTick timer for regular SysTick interrupts.
blinky.c (with CMSIS)

#include "LPC11XX.h"
#define KEIL_MCB1000_BOARD

// Function declarations
void LedOutputCfg(void); // Set I/O pin connected to LED as output

int main(void)
{
 // Switch Clock to 48MHz
 SystemInit();
 // Initialize LED output
 LedOutputCfg();
 // Program SysTick timer interrupt at 1KHz.
 // At 48MHz, SysTick trigger every 48000 CPU cycles
 SysTick_Config(48000);

 while(1);
} // end main

// SysTick handler to toggle LED every 500 ticks
void SysTick_Handler(void)
{
static short int TickCount = 0;
if ((TickCount++) == 500) { // for every 500 counts, toggle LED
 TickCount = 0; // reset counter to 0
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0

#else
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];
 // Toggle bit 7

#endif
 }
return;
}
// Switch LED signal (P0_7) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

Simple Application Programming 261
Instead of polling the SysTick status for timing control, this example uses the SysTick

exception. The startup code “startup_LPC11xx.s” already has the SysTick_Handler (the

CMSIS standardized name for SysTick handler) defined in the vector table, so we only need to

create the handler code for SysTick exception in C. The SysTick exception handler increments

the “TickCount” variable each time it is executed, and it toggles the LED for every 500 times of

execution. Unlike most peripheral timers, the SysTick exception does not need to be cleared by

software within the handler.

262 Chapter 15
You might wonder why we do not need to define the other interrupt handlers listed in the vector

table in the startup code. The startup code provided in the Keil mVision IDE already contains

dummy versions of the other handlers. Because these default handlers are given the “[WEAK]”

property, they can be overridden if another implementation of the handler is presented.

The initialization of the SysTick timer has been replaced by a function called

SysTick_Config(). The “SysTick_Config” is a CMSIS function, and it configures the

SysTick timer to generate SysTick exceptions regularly. Because the system clock frequency is

48MHz and we would like a SysTick exception for every 1 ms, program the SysTick to be

triggered every 48 millions/1000 ¼ 48,000 clock cycles.

After the modifications are made, compile and download the CMSIS blinky example to the

microcontroller and test it.

Using the SysTick Timer as a Single Shot Timer

In the previous example, we used SysTick to generate the SysTick exception regularly. In

this example, we use SysTick for a single-shot operation. In this way, once the SysTick

exception is triggered and the handler is entered, the SysTick timer is then disabled so that the

SysTick handler is only executed once.

For this example, we also edit the system_LPC11xx.c so that the SystemInit() function

does not switch the clock to 48 MHz so that we can observe the delay of LED activity caused

by the SysTick exception. This is done by setting CLOCK_SETUP to 0. As a result, the

processor clock in the LPC1114 is running at 12 MHz using the internal RC oscillator.
blinky.c (with CMSIS)

#include "LPC11XX.h"
#define KEIL_MCB1000_BOARD

// Function declarations
void LedOutputCfg(void); // Set I/O pin connected to LED as output

int main(void)
{
 // Clock remain at 12MHz
 SystemInit();
 // Initialize LED output
 LedOutputCfg();
 // Program SysTick timer to generate an interrupt after 0xFFFFFF cycles.
 // At 12MHz, SysTick trigger after 1.4 second
 SysTick->LOAD = 0xFFFFFF;
 SysTick->VAL = 0x0;
 SysTick->CTRL = 0x7; // Enable SysTick with exception generation

 // and use core clock as source
 while(1);

// SysTick handler to toggle LED and disable SysTick
void SysTick_Handler(void)
{
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
#else
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];
// Toggle bit 7

#endif

 // Disable SysTick
 SysTick->CTRL = 0;
 // Clear SysTick pending status in case it has already been triggered
 SCB->ICSR = SCB->ICSR | (1<<25); // Set PENDSTCLR
 return;
}
// Switch LED signal (P0_7) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control

register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

} // end main

Simple Application Programming 263

264 Chapter 15
When the program is executed, approximately 1.4 seconds after the program starts, the LED is

turned on. During this delay period, the SysTick timer decreases from 0xFFFFFF and

reaches 0. To generate short timing delays, you might want to factor in the interrupt latency

during the SysTick timer exception entry. For example, to have the delay of 100 cycles,

program the SysTick reload value to 99 � 16 (interrupt latency) ¼ 83.

UART Examples

A single blinking LED provides very little information to the outside world. In most appli-

cations, microcontrollers need to communicate with their environment using a more efficient

method. This example demonstrates how to use a Universal Asynchronous Receiver/Trans-

mitter (UART) interface on a Cortex-M0 microcontroller to communicate with a terminal

application running on a personal computer.

A UART is a simple serial communication protocol that can be used to transfer text as well

as binary data. It is widely supported by microcontrollers and is often available in older

generations of personal computers (usually referred as COM ports or serial ports). Although

UARTs have been around for long time, they are still commonly used in embedded systems.

To test the program, connect the UART interface of the microcontroller to the serial port of

your PC through an RS232 level shifter (Figure 15.2). If the PC does not have a serial port,

a USB-to-serial adaptor can be purchased from most electronic stores.

On the personal computer, open a terminal program, such as the Window’s Hyper Terminal

utility, to send and receive data between the computer and the microcontroller. Data received

from the microcontroller are displayed, and user’s keystrokes are sent back to the micro-

controller. It is also possible to use other terminal software to carry out these tests. The example

code here contains additional features to allow better handling of new line and carriage return

characters for the Hyper Terminal.
Cortex-M0
microcontroller

TxD

RxD

9-pin COM
port

TxD
RxD

1

5

RS232C
level shifter

GND

Figure 15.2:
Connecting the UART of the Cortex-M0 microcontroller to a personal computer.

Simple Application Programming 265
Simple Input/Output

Similar to the examples in the previous chapter, we created a new project targeted at NXP

LPC1114 and added the CMSIS function to the project. The main program is called

simple_uart.c. This program carries out the following steps:

• Sets up the system clock (SystemInit)
• Initializes the UART interface to a baud rate of 38400, 8-bit data, no parity, and no flow

control (UartConfig)
• Prints a “Hello” message (UartPuts)
• Echos any key that you send to the UART

The program code is written as follows:
simple_uart.c

#include "LPC11XX.h"
// Function declarations
void UartConfig(void); // UART configuration
unsigned char UartPutc(unsigned char my_ch); // UART character output
void UartPuts(unsigned char * mytext); // UART string output
int UartGetRxDataAvail(void); // Detect if new data is received
unsigned char UartGetRxData(void); // Get received data from UART

int main(void)
{
 SystemInit();
 UartConfig();

 UartPuts("Hello\n");
 while(1){
 if (UartGetRxDataAvail()) {
 UartPutc(UartGetRxData()); // echo received data
 } // end if
 } // end while
}

// Uart string output
void UartPuts(unsigned char * mytext)
{
 unsigned char CurrChar;
 CurrChar = *mytext;
 while (CurrChar != (char) 0x0){
 UartPutc(CurrChar); // Normal data
 mytext++;
 CurrChar = *mytext;
 }
 return;
}

(Continued)

void UartConfig(void)
{
 // UART interface are : PIO1_7 (TXD) and PIC1_6 (RXD)
 // Other UART signals (DTR, DSR, CTS, RTS, RI) are not used

 // Enable clock to IO configuration block
 // (bit[16] of AHBCLOCK Control register)
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16);

 // PIO1_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=TXD, 2=CT32B0_MAT1)
 LPC_IOCON->PIO1_7 = (0x1) + (0<<3) + (0<<5);
 // PIO1_6 IO input config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=RXD, 2=CT32B0_MAT0)
 LPC_IOCON->PIO1_6 = (0x1) + (2<<3) + (1<<5);

 // Enable clock to UART (bit[12] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<12);
 // UART_PCLK divide ratio = 1
 LPC_SYSCON->UARTCLKDIV = 1;

 // UART_PCLK = 48MHz, Baudrate = 38400, divide ratio = 1250
 // Line Control Register
 LPC_UART->LCR = (1<<7) | // Enable access to Divisor Latches
 (0<<6) | // Disable Break Control
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data

 LPC_UART->DLL = 78; // Divisor Latch Least Significant Byte
 // 48MHz/38400/16 = 78.125
 LPC_UART->DLM = 0; // Divisor Latch Most Significant Byte : 0
 LPC_UART->LCR = (0<<7) | // Disable access to Divisor Latches
 (0<<6) | // Disable Break Control
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data

 LPC_UART->FCR = 1; // Enable FIFO
 return;
}
// Get received data
__inline unsigned char UartGetRxData(void)
{
 return ((char)LPC_UART->RBR);
}

simple_uart.c—Cont’d

266 Chapter 15

// Output a character, with additional formatting for HyperTerminal
unsigned char UartPutc(unsigned char my_ch)
{
 if (my_ch == '\n') {
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 13;
 // Output carriage return (for Windows Hyperterminal)
 }
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = my_ch; // write to transmit holding register

 if (my_ch == 13) {
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 10;
 // Output new line (for Windows Hyperterminal)
 }
 return (my_ch);
}

 return (LPC_UART->LSR & 0x1);
}

// Detect if new received data is available

__inline int UartGetRxDataAvail(void){

Simple Application Programming 267
After creating the program file, set up the rest of the files in the project, as shown in Figure 15.3.

Do not forget that it may also be necessary to set the debug, flash programming, and utilities

options in the project to enable debugging and flash programming.
Figure 15.3:
Project for simple UART interface test.

268 Chapter 15
When the program is executed, a “Hello” message will be displayed on the terminal application

on the personal computer. The microcontroller then echoes the keystrokes that are typed in

to the terminal program.

Retargeting

In user interface designs, it is common to use library functions, such as the “printf” function,
to handle the formatting of the output string in message displays. This practice is commonly

known as “retargeting” in embedded software programming. To enable “retargeting” of the

input and output to the UART interface, a few more functions need to be implemented. For Keil

MDK or ARM RealView C compiler, the C library uses the function “fputc” for output
redirection and “fgetc” for input redirection. For convenience, these functions are grouped
together in a file called retarget.c. Example implementations of retarget.c can be found invarious

examples in the Keil MDK installation. The following example has been modified to call the

UART functions implemented in the UART application program file.
retarget.c
/**/
/* RETARGET.C: 'Retarget' layer for target-dependent low level functions */
/**/
/* This file is part of the uVision/ARM development tools. */
/* Copyright (c) 2005-2009 Keil Software. All rights reserved. */
/* This software may only be used under the terms of a valid, current, */
/* end user licence from KEIL for a compatible version of KEIL software */
/* development tools. Nothing else gives you the right to use this software. */
/**/
#include <stdio.h>
#include <time.h>
#include <rt_misc.h>
#pragma import(__use_no_semihosting_swi)

extern unsigned char UartGetc(void);
extern unsigned char UartPutc(unsigned char my_ch);
struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;
FILE __stdin;

int fputc(int ch, FILE *f) {
 return (UartPutc(ch));
}

int fgetc(FILE *f) {
 return (UartPutc(UartGetc()));
}

int ferror(FILE *f) {
 /* Your implementation of ferror */

 return EOF;
}

void _ttywrch(int ch) {
 UartPutc (ch);
}

void _sys_exit(int return_code) {

Simple Application Programming 269
The main application code is similar to that in the previous example, but this time C

library functions are used for user inputs and message display. The flow chart of this

example project is shown in Figure 15.4. Compared to the last example, the project for this

example has the addition of “retarget. c” (Figure 15.5).

label: goto label; /* endless loop */
}

SystemInit()

UartConfig()

System initialization
(PLL & clock setup)

UART setup and I/O pin
configuration

printf, scanf

printf, scanf Ask for user input : age

printf Display message

Ask for user input : name

Figure 15.4:
Flowchart of a simple retarget example program.

Figure 15.5:
Project for the UART retargeting demonstration.

270 Chapter 15
The program code for the uart_retargeting.c is as follows:
uart_retargeting.c

#include "LPC11XX.h"
#include <stdio.h>

// Function declarations
void UartConfig(void); // UART configuration
unsigned char UartPutc(unsigned char my_ch); // UART character output
void UartPuts(unsigned char * mytext); // UART string output
int UartGetRxDataAvail(void); // Detect if new data is received
unsigned char UartGetRxData(void); // Get received data from UART
unsigned char UartGetc(void); // UART character input

int main(void)
{
 char UserName[40];
 int UserAge;

 SystemInit(); // System Initialization
 UartConfig(); // Initialize UART

 while(1){
 printf ("Please enter your name: ");
 scanf ("%s", &UserName[0]);
 printf ("Please enter your age: ");
 scanf ("%d", &UserAge);
 printf ("\n Hi %s, you are %d years old\n\n", UserName, UserAge);
 } // end while
}

void UartConfig(void)
{
 // UART interface are : PIO1_7 (TXD) and PIC1_6 (RXD)
 // Other UART signals (DTR, DSR, CTS, RTS, RI) are not used

 // Enable clock to IO configuration block
 // (bit[16] of AHBCLOCK Control register)
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16);

 // PIO1_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=TXD, 2=CT32B0_MAT1)
 LPC_IOCON->PIO1_7 = (0x1) + (0<<3) + (0<<5);
 // PIO1_6 IO input config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=RXD, 2=CT32B0_MAT0)
 LPC_IOCON->PIO1_6 = (0x1) + (2<<3) + (1<<5);

 // Enable clock to UART (bit[12] of AHBCLOCK Control register

 (0<<6) | // Disable Break Control
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data

 LPC_UART->DLL = 78; // Divisor Latch Least Significant Byte
 // 48MHz/38400/16 = 78.125
 LPC_UART->DLM = 0; // Divisor Latch Most Significant Byte : 0
 LPC_UART->LCR = (0<<7) | // Disable access to Divisor Latches
 (0<<6) | // Disable Break Control
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data

 LPC_UART->FCR = 1; // Enable FIFO

 return;
}
// Get received data
__inline unsigned char UartGetRxData(void)
{
 return ((char)LPC_UART->RBR);
}
// Detect if new received data is available
__inline int UartGetRxDataAvail(void)
{
 return (LPC_UART->LSR & 0x1);
}
// Output a character, with additional formatting for HyperTerminal
unsigned char UartPutc(unsigned char my_ch)
{
 if (my_ch == '\n') {
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 13;
 // Output carriage return (for Windows Hyperterminal)
 }
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = my_ch; // write to transmit holding register

 if (my_ch == 13) {
 while ((LPC_UART->LSR & (1<<5))==0);

 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<12);
 // UART_PCLK divide ratio = 1
 LPC_SYSCON->UARTCLKDIV = 1;

 // UART_PCLK = 48MHz, Baudrate = 38400, divide ratio = 1250
 // Line Control Register
 LPC_UART->LCR = (1<<7) | // Enable access to Divisor Latches

(Continued)

Simple Application Programming 271

 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 10;
 // Output new line (for Windows Hyperterminal)
 }
 return (my_ch);
}
// Get a character from UART, if no data available then wait
unsigned char UartGetc(void)
{
 while (UartGetRxDataAvail()==0); // wait if receive buffer empty
 return ((char)LPC_UART->RBR);
}

uart_retargeting.c—Cont’d

272 Chapter 15
When the program is executed, it asks for your name and your age, and then it displays the

results (Figure 15.6).
Figure 15.6:
Retargeting example.
(Alright, I admit that I lied in the example!:)

The retarget functions “fputc” and “fgetc” can be customized to use other interfaces rather

than the UART. For example, you can output text to a character LCD display and use a keypad for

data input. Note that the “fputc” and “fgetc” retarget functions are specific to ARM/Keil

development tools. Other development tools can have difference retarget function definitions.

Developing Your Own Input and Output Functions

The C libraries provided a number of functions for text output formatting and text input;

however, in some cases it is necessary to use custom input and output functions, for a couple of

reasons:

• It might help to reduce program size.

• It gives complete control on the program’s behavior.

One might wonder why it is important to have total control over program behavior. For

one reason, if a “scanf” function is used in your program and a hacker deliberately

Simple Application Programming 273
entered a string that is much bigger than the size of the text buffer, the memory would be

corrupted and the application could crash, and this might give the hacker the chance to take

control of the system. Another reason is that the input device could require additional

processing for detecting a user’s input (e.g., a simple keypad that needs key matrix scan-

ning). In addition, you might want to add features to allow extra capabilities in the input and

output functions.

In the first UART example, a simple function called “UartPuts” was used to output a text

string:
UartPuts function – display of text string by UART

// Uart string output
void UartPuts(unsigned char * mytext)
{
 unsigned char CurrChar;
 do {
 CurrChar = *mytext;
 if (CurrChar != (char) 0x0) {
 UartPutc(CurrChar); // Normal data
 }
 *mytext++;
 } while (CurrChar != 0);
 return;
}

A simple function for outputting numeric values in hexadecimal can also be created:
UartPutHex function – display of unsigned hexadecimal value by UART

void UartPutHex(unsigned int din)
{
unsigned int nmask = 0xF0000000U;
unsigned int nshift = 28;
unsigned short int data4bit;
 do {
 data4bit = (din & nmask) >> nshift;
 data4bit = data4bit+48; // convert data to ASCII
 if (data4bit>57) data4bit = data4bit+7;
 UartPutc((char) data4bit);
 nshift = nshift - 4;
 nmask = nmask >> 4;
 } while (nmask!=0);
 return;
}

274 Chapter 15
And a simple function for outputting numeric values in decimal number format can be written

as follows:
UartPutDec function – display of unsigned decimal value by UART, up to 10 digits
void UartPutDec(unsigned int din)
{
const unsigned int DecTable[10] = {
 1000000000,100000000,10000000,1000000,
 100000, 10000, 1000, 100, 10, 1};

int count=0;// digital count
int n; // calculation for each digital
// Remove preceding zeros
 while ((din < DecTable[count]) && (din>10)) {count++;}

 while (count<10) {
 n=0;
 while (din >= DecTable[count]) {
 din = din - DecTable[count];
 n++;
 }
 n = n + 48; // convert to ascii 0 to 9
 UartPutc((char) n);
 count++;
 };
 return;
}

Similarly, it is also possible to create input functions for strings and numbers. Unlike the

“scanf” function in the C library, we pass two input parameters to the function: the first

parameter is a pointer of the text buffer, and the second parameter is the maximum length of

text that can be input.
UartGets function – Get a user input string from UART
int UartGets(char dest[], int length)
{
unsigned int textlen=0; // Current text length
char ch; // current character
do {
 ch = UartGetc(); // Get a character from UART
 switch (ch) {
 case 8: // Back space
 if (textlen>0) {
 textlen--;
 UartPutc(ch); // Back space
 UartPutc(' '); // Replace last character with space on console

 UartPutc(ch); // Back space again to adjust cursor position
 }
 break;
 case 13: // Enter is pressed
 dest[textlen] = 0; // null terminate
 UartPutc(ch); // echo typed character
 break;
 case 27: // ESC is pressed
 dest[textlen] = 0; // null terminate
 UartPutc('\n');
 break;
 default: // if input length is within limit and input is valid
 if ((textlen<length) &
 ((ch >= 0x20) & (ch < 0x7F))) // valid characters
 {
 dest[textlen] = ch; // append character to buffer
 textlen++;
 UartPutc(ch); // echo typed character
 }
 break;
 } // end switch
 } while ((ch!=13) && (ch!=27));
 if (ch==27) {
 return 1; // ESC key pressed
 } else {
 return 0; // Return key pressed
 }
}

Simple Application Programming 275
Unlike “scanf”, the “UartGets” function we created allows us to determine if the user

completed the input process by pressing the ENTER or ESC key. To use this function, declare

a text buffer as an array of characters, and pass its address to this function.
Example of using the UartGets function
int main(void)
{
 char textbuf[20];
 int return_state;

 // System Initialization
 SystemInit();
 // Initialize UART
 UartConfig();

 while (1) {
 UartPutc('\n');
 UartPuts ("String input test : ");
 return_state = UartGets(&textbuf[0], 19);

(Continued)

 if (return_state!=0) {
 UartPuts ("\nESC pressed :");
 } else {
 UartPuts ("\nInput was :");
 }
 UartPuts (textbuf);
 UartPutc('\n');
 };
};

Example of using the UartGets function—Cont’d

276 Chapter 15
By modifying the case statement in the “UartGets” function, you can create input functions
that only accept numeric value inputs, or other types of text input functions required for your

application. You can even change the implementation so that it gets input from different

interfaces than the UART.

Simple Interrupt Programming

General Overview of Interrupt Programming

Interrupts are essential for majority of embedded systems. For example, user inputs can be

handled by an interrupt service routine so that the processor does not have to spend time checking

the input interface status. Whereas in the previous UART, example polling loops were used to

check if a character was received. In addition to handling user inputs, interrupts can also be used

for other hardware interface blocks, peripherals, or by software.

In the Cortex-M0, the interrupt feature is very easy to use. In general, we can summarize the

configuration of an interrupt service as follows:

• Set up the vector table (this is done by the startup code from a CMSIS-compliant device

driver library).

• Set up the priority level of the interrupt. This step is optional; by default the priority levels

of interrupts are set to level 0 (the highest programmable level).

• Define an interrupt service routine (ISR) in your application. This can be a C function.

• Enable the interrupt (e.g., using the NVIC_EnableIRQ() function).

By default the global interrupt mask PRIMASK is cleared after reset, so there is no need to

enable interrupts globally.

The CMSIS has made these steps much easier, as the priority level and enabling of the interrupt

can be carried out by functions provided in the CMSIS. The interrupt service routine is

application dependent and will have to be created by a software developer. In most cases, you

can find example code from the microcontroller vendors that will make software

development easier. Depending on the peripheral design on the microcontroller, you might

Simple Application Programming 277
have to clear the interrupt requests inside the interrupt service routines. Please note that

global variables used by the interrupt service routines need to be defined as volatile.

Dial Control Interface Example

In addition to switches, UARTs, and keypads, there are many other types of input

devices. In recent years, dial controls have been used inmany electronic gadgets. In this example

we use a simple dial control to demonstrate simple interrupt programming in the Cortex-M0.

There are a number of ways to detect movement on a dial control interface. One simple

implementation is to use two optical sensors with a rotary disc connected to a dial, as shown in

Figure 15.7.
Rotary disc

Optical sensors

Dial control

Clockwise

Anti-clockwise

A

B

A

B

A

B

Figure 15.7:
Simple dial control implementation.
By detecting the edge transitioning of the two sensors, we can detect the rotation of the dial. This

detection can be implemented on a Cortex-M0 microcontroller like the NXP LPC1114 quite

easily. In this application example, we connect the two optical sensors to port 3 (P3_2 connected

to sensor A, P3_3 connected to sensor B). We can then use the interrupt feature to detect when

the dial is rotated. The NXP LPC1114 allows interrupt generation from port 3 on both rising and

falling edges of signal transition. The interrupt handler needs to detect the direction of the dial

movement from the previous state and the new state of the sensor’s outputs, and then it will

update software variables to inform the main application that the dial has been activated.

The program flow for the dial control example is shown in the flowchart in Figure 15.8. In this

example, we use the UART interface to output the position of the dial range from 0 to 255. In

real applications, the position value of the dial control can be used in other ways and the UART

setup code might not be required and could be removed if that is the case.

SystemInit()

Initialize variables

System initialization
(PLL & clock setup)

Initialize software
variables (DialUpdated,

DialValue) for dial control

UartConfig() UART setup and I/O pin
configuration

DialIOConfig()
Setup I/O port for the dial

control and enable
interrupt

Display message
Simple message on

UART to indicate program
started

DialUpdated=1?

Clear DialUpdated
and Display
DialValue

Yes

No

Check if movement
is clockwise or
anticlockwise

IRQ handler for Port3

Update DialValue

Set DialUpdated
variable

Return

Clear Interrupt
Request

Figure 15.8:
Flowchart for simple dial control application.

278 Chapter 15
The application contains the following files:

• startup_LPC11xx.s (the assembly startup code, as in previous example)

• system_LPC11xx.c (the system initialization function, as in previous examples)

• dial_ctrl.c (the dial control application)

• retarget.c (for text display functions, reuse the previous retarget example code)

Most of the files are identical to previous project examples. The only new file is the dial

control code. To get the interrupt to work, the “DialIOCfg()” function uses a number of

CMSIS functions. The rest of the code in “DialIOcfg” is used for configuring the pins

for the input function and to generate interrupt on both rising and falling edges

(Figure 15.9).

The interrupt handler is also simple. It takes the previous state of the input pins and merges

with the new state of the pins to produce a 4-bit index value. This index value is then used to

obtain an increment (1)/decrement (�1)/unchanged (0) value from a lookup table to adjust the

“DialValue” variable. It then sets the software flag, “DialUpdated”, to indicate to the

main program that movement has been detected (Figure 15.10).

void DialIOcfg(void)
{ // The inputs are P3.2 and P3.3
// Enable clock to GPIO block (bit[6] of AHBCLOCK Control register
LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<6);
// PIO1_7 IO output config
// bit[5] - Hysteresis (0=disable, 1 =enable)
// bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = IO, 1=nDCD)
LPC_IOCON->PIO3_2 = (0x0) + (0<<3) + (1<<5);
// PIO1_6 IO output config
// bit[5] - Hysteresis (0=disable, 1 =enable)
// bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = IO, 1=RI)
LPC_IOCON->PIO3_3 = (0x0) + (0<<3) + (1<<5);
// Set direction of P3.2 and P3.3 as input
LPC_GPIO3->DIR = LPC_GPIO3->DIR & ~(0x0C); // Clear bit [3:2] to 0
// Set interrupt of P3.2 and P3.3 as edge sensitive
LPC_GPIO3->IS = LPC_GPIO3->IS & ~(0x0C); // Clear bit [3:2] to 0
// Set interrupt of P3.2 and P3.3 for both rising and falling edge
LPC_GPIO3->IBE = LPC_GPIO3->IBE | (0x0C); // Set bit [3:2] to 1
// Set interrupt mask of P3.2 and P3.3
LPC_GPIO3->IE = LPC_GPIO3->IE | (0x0C); // Set bit [3:2] to 1
// Clear any previous interrupt of P3.2 and P3.3
LPC_GPIO3->IC = LPC_GPIO3->IC | (0x0C); // write bit [3:2] to 1
// Clear any previous occurred interrupt for port 3
NVIC_ClearPendingIRQ(EINT3_IRQn);

// Set priority of port 3 interrupt
NVIC_SetPriority(EINT3_IRQn, 0);

// Enable interrupt at NVIC
NVIC_EnableIRQ(EINT3_IRQn);

return;
} CMSIS Function to

enable interruptDevice specific interrupt
number assignment.

(Defined in LPC11XX.h)

CMSIS Function to set
interrupt priority

CMSIS Function to clear
pended interrupt

0

1

2

3

0x00

0x40

0x80

0xC0

Input Level

Highest priority

Lowest priority

Figure 15.9:
Use of CMSIS for simple interrupt configuration.

Simple Application Programming 279
When the program is executed, the software variable “DialValue” is displayed when the dial
is moved. For example, if the dial rotates clockwise, the “DialValue” increases as shown in
Figure 15.11.

The complete listing of the dial_ctrl.c is as follows:
dial_ctrl.c

#include "LPC11XX.h"
#include <stdio.h>

// Function declarations
void DialIOcfg(void); // Configure Port 3 for dial interface
void UartConfig(void); // Uart configuration
unsigned char UartPutc(unsigned char my_ch); // Uart character output
void UartPuts(unsigned char * mytext); // Uart string output

(Continued)

 // Set interrupt of P3.2 and P3.3 as edge sensitive
 LPC_GPIO3->IS = LPC_GPIO3->IS & ~(0x0C); // Clear bit [3:2] to 0
 // Set interrupt of P3.2 and P3.3 for both rising and falling edge
 LPC_GPIO3->IBE = LPC_GPIO3->IBE | (0x0C); // Set bit [3:2] to 1
 // Set interrupt mask of P3.2 and P3.3
 LPC_GPIO3->IE = LPC_GPIO3->IE | (0x0C); // Set bit [3:2] to 1
 // Clear any previous interrupt of P3.2 and P3.3
 LPC_GPIO3->IC = LPC_GPIO3->IC | (0x0C); // write bit [3:2] to 1
 // Clear any previous occurred interrupt for port 3

 LPC_IOCON->PIO3_3 = (0x0) + (0<<3) + (1<<5);
 // Set direction of P3.2 and P3.3 as input
 LPC_GPIO3->DIR = LPC_GPIO3->DIR & ~(0x0C); // Clear bit [3:2] to 0

// Global variable for communicating between main program and ISR
volatile char DialUpdated; // Set to 1 if the dial value is updated
volatile int DialValue; // Dial value (0 to 0xFF)
short int last_state; // Last state of I/O port signals

// Start of main program
int main(void)
{
 SystemInit(); // System Initialization

 DialUpdated=1; // Software variable initialization
 DialValue=0;
 last_state=(LPC_GPIO3->DATA & 0xC)>>2;
 // capture and save signal levels for next compare

 UartConfig(); // Initialize UART
 DialIOcfg(); // IO port and interrupt setup
 printf ("\nDial test\n"); // Test message

 while(1){
 if (DialUpdated) {
 DialUpdated = 0;
 printf("%d\n",DialValue);
 } // end if
 } // end while
} // end main

void DialIOcfg(void)
{ // The inputs are P3.2 and P3.3
 // Enable clock to GPIO block (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<6);
 // PIO1_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=nDCD)
 LPC_IOCON->PIO3_2 = (0x0) + (0<<3) + (1<<5);
 // PIO1_6 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=RI)

dial_ctrl.c—Cont’d

280 Chapter 15

 NVIC_ClearPendingIRQ(EINT3_IRQn);
 // Set priority of port 3 interrupt
 NVIC_SetPriority(EINT3_IRQn, 0);
 // Enable interrupt at NVIC
 NVIC_EnableIRQ(EINT3_IRQn);
 return;
}
// Interrupt handler for port 3
void PIOINT3_IRQHandler(void)
{
 short int new_state;
 // Pattern for determine the direction of changes
 // Clock wise pattern is 00 -> 01 -> 11 -> 10 -> 00 -> ...
 // Anti Clock wise pattern is 00 -> 10 -> 11 -> 01 -> 00 -> ...
 // After merging the new_state and last_state, clock wise can be
 // pattern b0100(4), b1101(13), b1011(11) and b0010(2)
 // anti-clockwise can be pattern b1000(8), b1110(14),b0111(7) and b0001(1)
 const signed char Pattern[] = { 0,-1,1,0, 1,0,0,-1, -1,0,0,1, 0,1,-1,0};
 // Clear asserted interrupt P3.2 or P3.3
 LPC_GPIO3->IC = LPC_GPIO3->MIS & (0x0C); // write bit [3:2] to 1
 // Extract bit 3 and 2 and combine with last state
 new_state = (LPC_GPIO3->DATA & 0xC) | last_state;
 // Obtain increment/decrement info from new_state and calculate new DialValue
 DialValue = (DialValue + Pattern[new_state]) & 0xFF;
 // Save the current state for next time
 last_state = (new_state & 0xC) >> 2;
 DialUpdated = 1;// Set software flag for display
 return;
}
void UartConfig(void)
{
 // UART interface are : PIO1_7 (TXD) and PIC1_6 (RXD)
 // Other UART signals (DTR, DSR, CTS, RTS, RI) are not used

 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control
// register

 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16);

 // bit[2:0] - Function (0 = IO, 1=RXD, 2=CT32B0_MAT0)
 LPC_IOCON->PIO1_6 = (0x1) + (2<<3) + (1<<5);

 // Enable clock to UART (bit[12] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<12);
 // UART_PCLK divide ratio = 1

 // PIO1_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=TXD, 2=CT32B0_MAT1)
 LPC_IOCON->PIO1_7 = (0x1) + (0<<3) + (0<<5);
 // PIO1_6 IO input config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)

(Continued)

Simple Application Programming 281

 LPC_SYSCON->UARTCLKDIV = 1;

 // UART_PCLK = 48MHz, Baudrate = 38400, divide ratio = 1250
 // Line Control Register
 LPC_UART->LCR = (1<<7) | // Enable access to Divisor Latches
 (0<<6) | // Disable Break COntrol
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data
 LPC_UART->DLL = 78;// Divisor Latch Least Significant Byte :
 // 48MHz/38400/16=78.125
 LPC_UART->DLM = 0; // Divisor Latch Most Significant Byte : 0
 LPC_UART->LCR = (0<<7) | // Disable access to Divisor Latches
 (0<<6) | // Disable Break Control
 (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 (0<<3) | // parity disabled
 (0<<2) | // 1 stop bit
 (3<<0); // 8-bit data

 LPC_UART->FCR = 1; // Enable FIFO

 return;
}
// Output a character
unsigned char UartPutc(unsigned char my_ch)
{
 if (my_ch == '\n') {

 if (my_ch == 13) {
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 10;
 // Output new line (for Windows Hyperterminal)
 }

 return (my_ch);
}
// Detect if new received data is available
// (only required if retarget.c is used because UartGetc is reference in that file)
__inline int UartGetRxDataAvail(void)
{
 return (LPC_UART->LSR & 0x1);
}

 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = 13;
 // Output carriage return (for Windows Hyperterminal)
 }
 while ((LPC_UART->LSR & (1<<5))==0);
 // Wait if Transmit Holding register is not empty
 LPC_UART->THR = my_ch;
 // write to transmit holding register

dial_ctrl.c—Cont’d

282 Chapter 15

// Get a character from UART, if no data available then wait
// (only required if retarget.c is used because it is referenced in that file)
unsigned char UartGetc(void)
{
 while (UartGetRxDataAvail()==0); // wait if receive buffer empty
 return ((char)LPC_UART->RBR);
}

// Interrupt handler for port 3
void PIOINT3_IRQHandler(void)

{
short int new_state;
// Pattern for determine the direction of changes
// Clock wise pattern is 00 -> 01 -> 11 -> 10 -> 00 -> ...
// Anti Clock wise pattern is 00 -> 10 -> 11 -> 01 -> 00 -> ...
// After merging the new_state and last_state, clock wise can be
// pattern b0100(4), b1101(13), b1011(11) and b0010(2)
// anti-clockwise can be pattern b1000(8), b1110(14),b0111(7) and b0001(1)
const signed char Pattern[] = { 0,-1,1,0, 1,0,0,-1, -1,0,0,1, 0,1,-1,0};
// Clear asserted interrupt P3.2 or P3.3
LPC_GPIO3->IC = LPC_GPIO3->MIS & (0x0C); // write bit [3:2] to 1
// Extract bit 3 and 2 and combine with last state
new_state = (LPC_GPIO3->DATA & 0xC) | last_state;
// Obtain increment/decrement info from new_state and calculate new DialValue
DialValue = (DialValue + Pattern[new_state]) & 0xFF;
// Save the current state for next time
last_state = (new_state & 0xC) >> 2;
DialUpdated = 1;// Set software flag for display
return;

}

Name of interrupt handler need to
match the name specified in the
vector table

The Interrupt handler is implement
as a normal C subroutine.

Figure 15.10:
The interrupt handler for the dial control example.

Figure 15.11:
Result screen of the dial control example.

Simple Application Programming 283
Interrupt Control Functions

There are a number of interrupt control functions in CMSIS. Most of them have been described

in Chapter 9. Table 15.2 summarizes the CMSIS functions for general interrupt controls.

Table 15.2: CMSIS Interrupt Control Functions

Function Descriptions

void NVIC_EnableIRQ
(IRQn_Type IRQn);

Enable an interrupt. This function does not apply to system exceptions.

void NVIC_DisableIRQ
(IRQn_Type IRQn);

Disable an interrupt. This function does not apply to system exceptions.

void NVIC_SetPendingIRQ
(IRQn_Type IRQn);

Set the pending status of an interrupt. This function does not apply to
system exceptions.

void NVIC_ClearPendingIRQ
(IRQn_Type IRQn);

Clear the pending status of an interrupt. This function does not apply to
system exceptions.

uint32_t NVIC_GetPendingIRQ
(IRQn_Type IRQn);

Obtain the interrupt pending status of an interrupt. This function does not
apply to system exceptions.

void NVIC_SetPriority
(IRQn_Type IRQn,
uint32_t priority);

Set up the priority level of an interrupt or system exception. The priority level
value is automatically shifted to the implemented bits in the priority level
register.

uint32_t NVIC_GetPriority
(IRQn_Type IRQn);

Obtain the priority level of an interrupt or system exception. The priority
level is automatically shifted to remove unimplemented bits in the priority
level values.

void __enable_irq(void); Clear PRIMASK. Enable interrupts and system exceptions.
void __disable_irq(void); Set PRIMASK. Disable all interrupts including system exceptions (apart

from hard fault and NMI).

284 Chapter 15
The input parameter “IRQn_Type IRQn” is defined in the header file for the device. For

example, for the NXP LPC1114, the IRQn types are defined in an enumeration list in

“LPC11XX.h”:
IRQn_Type defined in LPC11xx.h

typedef enum IRQn
{
/****** Cortex-M0 Processor Exceptions Numbers
***/
 NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
 HardFault_IRQn = -13, /*!< 3 Cortex-M0 Hard Fault Interrupt */
 SVCall_IRQn = -5, /*!< 11 Cortex-M0 SV Call Interrupt */
 PendSV_IRQn = -2, /*!< 14 Cortex-M0 Pend SV Interrupt */
 SysTick_IRQn = -1, /*!< 15 Cortex-M0 System Tick Interrupt */

/****** LPC11xx Specific Interrupt Numbers *******************************/
 WAKEUP0_IRQn = 0, /*!< All I/O pins can be used as wakeup source. */
 WAKEUP1_IRQn = 1, /*!< There are 13 pins in total for LPC11xx */
 WAKEUP2_IRQn = 2,
 WAKEUP3_IRQn = 3,
 WAKEUP4_IRQn = 4,
 WAKEUP5_IRQn = 5,
 WAKEUP6_IRQn = 6,
 WAKEUP7_IRQn = 7,

 SSP0_IRQn = 20, /*!< SSP0 Interrupt */
 UART_IRQn = 21, /*!< UART Interrupt */
 ADC_IRQn = 24, /*!< A/D Converter Interrupt */
 WDT_IRQn = 25, /*!< Watchdog timer Interrupt */
 BOD_IRQn = 26, /*!< Brown Out Detect(BOD) Interrupt */
 EINT3_IRQn = 28, /*!< External Interrupt 3 Interrupt */
 EINT2_IRQn = 29, /*!< External Interrupt 2 Interrupt */
 EINT1_IRQn = 30, /*!< External Interrupt 1 Interrupt */
 EINT0_IRQn = 31, /*!< External Interrupt 0 Interrupt */
} IRQn_Type;

 WAKEUP8_IRQn = 8,
 WAKEUP9_IRQn = 9,
 WAKEUP10_IRQn = 10,
 WAKEUP11_IRQn = 11,
 WAKEUP12_IRQn = 12,
 SSP1_IRQn = 14, /*!< SSP1 Interrupt */
 I2C_IRQn = 15, /*!< I2C Interrupt */
 TIMER_16_0_IRQn = 16, /*!< 16-bit Timer0 Interrupt */
 TIMER_16_1_IRQn = 17, /*!< 16-bit Timer1 Interrupt */
 TIMER_32_0_IRQn = 18, /*!< 32-bit Timer0 Interrupt */
 TIMER_32_1_IRQn = 19, /*!< 32-bit Timer1 Interrupt */

Simple Application Programming 285
Note that the comments in this file and in various CMSIS files contain Doxygen tags (e.g.,

/*!< comments */). Doxygen is a tool for automatic documentation generation.

The first group of the IRQn is made up of system exceptions; they are available in all versions

of the Cortex-M0 CMSIS device driver library. The exception numbers 0 to 31 are device-

specific interrupt types. They are defined according to the interrupt request connection from the

peripherals to the NVIC in the Cortex-M0. In our previous dial control examples, we used the

following code to enable interrupts from port 3:
NVIC_EnableIRQ(EINT3_IRQn); // Enable External Interrupt 3 Interrupt
The constant EINT3_IRQn is defined as 28 in the enumeration. We use EINT3_IRQn rather

than 28 to make the program code more readable and improve software reusability.

If necessary, we can disable all peripheral interrupts and system exceptions using the

PRIMASK feature in the Cortex-M0 processor. Typically this is carried out when we need to

perform a time-critical task and we do not want the control timing to be affected by any

interrupt. The CMSIS provides two functions to access the PRIMASK feature. For example,
__disable_irq(); // Set PRIMASK e disable interrupts
... ; // time critical tasks
__enable_irq(); // clear PRIMASK e enable interrupts
Please note that the PRIMASK does not block the nonmaskable interrupt (NMI) and the

HardFault exception. Also, if PRIMASK is set inside an interrupt handler, you should clear it in

286 Chapter 15
the handler. Otherwise the interrupts will be remains disabled. This is different from

ARM7TDMI where an interrupt return can reenable the interrupt.

Different Versions of CMSIS

The CMSIS project is in continuous development. A Cortex-M0 device driver library from

a microcontroller vendor could be in version 1.2, 1.3, 2.0 or later. At the moment, many CMSIS

device drivers are already based on version 1.3. The examples used in this book should work

with versions 1.2, 1.3, and later versions.

There are several differences between CMSIS version 1.2 and version 1.3 that apply to the uses

of CMSIS on the Cortex-M0:

• The SystemInit() function is different. In CMSIS version 1.2, the SystemInit()
function is called at the start of the main code. In CMSIS version 1.3, the System-
Init() function could be called from the reset handler.

• The “SystemCoreClock” variable has been added. The “SystemCoreClock”
variable is used instead of “SystemFrequency”. The “SystemCoreClock” defini-

tion is clearereprocessor clock speedewhereas “SystemFrequency” could be unclear

because many microcontrollers have multiple clocks for different parts of the system.

• A core register bit definition has been added.

In December 2010, CMSIS version 2 was released. CMSIS version 2 includes support for the

Cortex-M4 processor and some changes in the file organizations. For example, the contents in

“core_cm0.h” are divided into multiple files in CMSIS version 2 for easier management

(shown in Figure 4.18).

In most cases, software device driver packages from microcontroller vendors should already

contain the files needed. If necessary, you can download a preferred version of CMSIS from the

OnARM web site (www.onarm.com).

http://www.onarm.com

CHAPTER 16

Assembly Projects and Mixed-Assembly
and C Projects

Project Development in Assembly

In addition to C language projects, you can also program the Cortex-M0 microcontrollers in

assembly language. The same development tools for C programming are used; for example, the

Keil MDK, the ARM RealView Development Suite (RVDS), or the GNU tool chain can all be

used to develop assembly projects.

There are a number of reasons for using assembly language for programming, or using

assembly in a part of a project:

• To allow the direct manipulation of stack memory (e.g., embedded OS development) for

program operation that requires it

• To optimize the maximum speed/performance for specific hardware

• To reuse the assembly code from other projects

• To learn about processor architecture

However, the use of assembly language for an entire project is less common for embedded product

developments. This is due to the following shortcomings of assembly language programming:

• It is more difficult to program in assembly language, especially when the application

involves a lot of complicated data processing.

• It takes time to learn assembly, and mistakes are not easy to spot. As a result, it can take

longer to complete a project.

• Assembly program files are less portable. For instance, different development tools can

have different assembly directives and syntax.

• Modern C compilers can generate very efficient codedin many cases, better than assembly

code written by inexperience engineers.

• Most microcontroller vendors provide libraries and header files for C development. If

assembly is used for accessing peripherals, you will need to create your own device

driver code and header files.

Nevertheless, some developers do build embedded applications in assembly. In this chapter, we

will see how this can be done, as well as how to develop mixed-language projects. The examples

in this chapter are targeted at the Keil MDK or ARM RVDS development environments. For

other development suites, the assembler directives and the syntax can be different.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10016-3

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

287

http://dx.doi.org/10.1016/B978-0-12-385477-3.10016-3

288 Chapter 16
Recommended Practice in Assembly Programming

Before we actually start doing assembly language programming, we need to cover a few

recommended practices. ARM has a document called the ARM Architecture Procedure Call

Standard (AAPCS, reference 4), which describes how programming code should work on an

ARM processor. By following the programming convention set out in this document, various

software components can work together, allowing better software reusability and avoiding

problems with integrating your assembly code with program code generated by compilers or

program codes from third parties.

The AAPCS covers the following main areas:

• Register usage in function calls. A function or a subroutine should retain the values in

R4 through R11. If these registers are changed during the function or the subroutine,

the values should be saved onto the stack and be restored before return to the calling

code.

• Parameters and return result passing. For simple cases, input parameters can be passed on

to a function using R0 (first parameter), R1 (second parameter), R2 (third parameter),

and R3 (fourth parameter). Usually the return value of a function is stored in R0, R1 might

also be used if the result is 64-bit. If more than four parameters have to be passed on to

a function, the stack would be used (details can be found in the AAPCS).

• Stack alignment. If an assembly function needs to call a C function, it should ensure

that the current selected stack pointer points to a double-word-aligned address loca-

tion (e.g., 0x20002000, 0x20002008, 0x20002010, etc). This is a requirement for the

EABI standard. Program code generated from an EABI-compliant C compiler can

assume that the stack pointer is pointing to a double-word-aligned location. If the

assembly code does not call any C function (either directly or indirectly), this is not

strictly required.

For example, when developing assembly functions to be used by C, or calling C functions from

assembly code, we also need to ensure that data contents in a register bank will not be acci-

dentally erased (Table 16.1).

If the function call requires input parameters, or if the function returns a parameter, this can be

handled with registers R0 to R3 (Table 16.2).

In ARM/Keil development tools, the assembler provides the REQUIRE8 directive to indicate if

the function requires double-word-stack alignment and the PRESERVE8 directive to indicate

that a function preserves the double-word alignment. This directive can help the assembler

to analyze your code and generate warnings if a function that requires a double-word-aligned

stack frame is called by another function that does not guarantee double-word-stack alignment.

Depending on your application, these directives might not be required, especially for projects

built entirely with assembly code.

Table 16.2: Simple Parameter Passing and Returning Value in a Function Call

Register Input Parameter Return Value

R0 First input parameter Function return value
R1 Second input parameter d, or return value (64-bit result)
R2 Third input parameter d
R3 Fourth input parameter d

Table 16.1: Register Usages and Requirements in Function Calls

Register Function Call Behavior

R0eR3, R12 Caller saved register. Contents in these registers can be changed by a function.
Assembly code calling a function might need to save the values in these registers if
they are required for operations in later stages.

R4eR11 Caller saved register. Contents in these registers must be retained by a function. If
a function needs to use these registers for processing, they need to be saved on to
the stack memory and restored before the function returns.

R14 (LR) Content in the Link Register needs to be saved to stack if the function contains
a “BL”/”BLX” instruction (calling another function) because the value in LR will be
overwritten when “BL”/”BLX” is executed.

R13 (SP), R15 (PC) Should not be used for normal processing.

Assembly Projects and Mixed-Assembly and C Projects 289
In this chapter we will only cover simple cases. For more details, please refer to the AAPCS

document on the ARM web site.

Structure of an Assembly Function

An assembly function can be very simple. For example, a function to add two input parameters

can be as simple as
My_A

My_A
dd ADDS R0, R0, R1 ; Add R0 and R1, result store in R0

BX LR ; Return
To help improve clarity, we can add further directives to indicate the start and end of a function.

The FUNCTION directive indicates the start of a function, and the ENDFUNC directive indi-

catesthe end of the function:
dd FUNCTION

ADDS R0, R0, R1 ; Add R0 and R1, result store in R0
BX LR ; Return
ENDFUNC
A similar pair of directives is PROC and ENDP, which are synonyms for FUNCTION and

ENDFUNC. Each FUNCTION directive must have a matching ENDFUNC directive, and they

must not be nested.

290 Chapter 16
In a simple assembly file, in addition to the assembly code, you need additional directives to

indicate the start of the program code and type of the memory where it is storeddfor example,

a short assembly file with the My_Add function:
 PRESERVE8 ; Indicate the code here preserve
 ; 8 byte stack alignment
 THUMB ; Indicate THUMB code is used
 AREA |.text|, CODE, READONLY ; Start of CODE area
My_Add FUNCTION
 ADDS R0, R0, R1 ; Add R0 and R1, result store in R0
 BX LR ; Return
 ENDFUNC

 END ; End of file
In more complex assembly functions, more steps might be required. In general, the structure of

an assembly function can be divided into the following stages:

• prolog (saving register contents to the stack memory if necessary)

• allocate stack space memory for local variables (decrement SP)

• copy some of R0 to R3 (input parameters) to high registers (R8-R12) for later use

(optional)

• carry out processing/calculation

• store result in R0 if a result is to be returned, R1 might also be used if return value is 64-bit

• stack adjustment to free space for local variables (increment SP)

• epilog (restore register values from stack)

• return

Most of these steps are optionaldfor example, prolog and epilog are not required if the

function does not corrupt the contents in R4 to R11. The stack adjustments are also not required

if there are sufficient registers for the processing. The following assembly function template

illustrates some of these steps:
My_Func FUNCTION
 PUSH {R4-R6, LR} ; 4 registers are pushed to stack
 ; double word stack alignment is
 ; preserved
 SUB SP, SP, #8 ; Reserve 8 bytes for local variables
 ; Now local variables can be accessed with SP related
 ; addressing mode
 ... ; Carry out processing
 MOVS R0, R5 ; Store result in R0 for return value
 ADD SP, SP, #8 ; Restore SP to free stack space
 POP (R4-R6, PC} ; epilog and return
 ENDFUNC

Assembly Projects and Mixed-Assembly and C Projects 291
In some cases, it can be useful to copy some of the contents in R0 to R3 (input param-

eters) to high registers at the beginning of the function because most 16-bit THUMB

instructions can only use low registers. Moving the input parameters to high registers for

later use allow more registers to be available for data processing, and making it easier to

develop function code.

If the function is calling another assembly or C function, the values in registers R0 to R3, and

R12 could be changed after the function call. So unless you are certain that the function being

called will not change these registers, you need to save the contents of these registers if they

will be used later. Alternatively, you might need to avoid using these registers for the data

processing in your function.
Simple Assembly Project Example

In this example, we will reproduce the blinky project (the LED toggling example in Chapter

14) with assembly code. Just as we do when creating a C project, we create a new project using

the project wizard and click YES when the Keil project wizard asks us if we want to copy the

default startup code.

We then need to modify the startup code slightly to remove the stack and heap initialization

functions, which are used by the C startup code and at the end, and modify the call to

“__main” to our “Blinky” program code.
startup_LPC11xx.s for simple assembly project

; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>

Stack_Size EQU 0x00000200

 AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp

 PRESERVE8
 THUMB

; Vector Table Mapped to Address 0 at Reset

 AREA RESET, DATA, READONLY
 EXPORT __Vectors

(Continued)

__Vectors DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD SVC_Handler ; SVCall Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD PendSV_Handler ; PendSV Handler
 DCD SysTick_Handler ; SysTick Handler

 ; External Interrupts
 DCD WAKEUP_IRQHandler ; 16+ 0: Wakeup PIO0.0
 DCD WAKEUP_IRQHandler ; 16+ 1: Wakeup PIO0.1
 DCD WAKEUP_IRQHandler ; 16+ 2: Wakeup PIO0.2
 DCD WAKEUP_IRQHandler ; 16+ 3: Wakeup PIO0.3
 DCD WAKEUP_IRQHandler ; 16+ 4: Wakeup PIO0.4
 DCD WAKEUP_IRQHandler ; 16+ 5: Wakeup PIO0.5
 DCD WAKEUP_IRQHandler ; 16+ 6: Wakeup PIO0.6
 DCD WAKEUP_IRQHandler ; 16+ 7: Wakeup PIO0.7
 DCD WAKEUP_IRQHandler ; 16+ 8: Wakeup PIO0.8
 DCD WAKEUP_IRQHandler ; 16+ 9: Wakeup PIO0.9
 DCD WAKEUP_IRQHandler ; 16+10: Wakeup PIO0.10
 DCD WAKEUP_IRQHandler ; 16+11: Wakeup PIO0.11

 DCD SSP0_IRQHandler ; 16+20: SSP0
 DCD UART_IRQHandler ; 16+21: UART
 DCD 0 ; 16+22: Reserved
 DCD 0 ; 16+24: Reserved
 DCD ADC_IRQHandler ; 16+24: A/D Converter
 DCD WDT_IRQHandler ; 16+25: Watchdog Timer
 DCD BOD_IRQHandler ; 16+26: Brown Out Detect
 DCD 0 ; 16+27: Reserved
 DCD PIOINT3_IRQHandler ; 16+28: PIO INT3
 DCD PIOINT2_IRQHandler ; 16+29: PIO INT2
 DCD PIOINT1_IRQHandler ; 16+30: PIO INT1
 DCD PIOINT0_IRQHandler ; 16+31: PIO INT0

 DCD WAKEUP_IRQHandler ; 16+12: Wakeup PIO1.0
 DCD 0 ; 16+13: Reserved
 DCD SSP1_IRQHandler ; 16+14: SSP1
 DCD I2C_IRQHandler ; 16+15: I2C
 DCD TIMER16_0_IRQHandler ; 16+16: 16-bit Counter-Timer 0
 DCD TIMER16_1_IRQHandler ; 16+17: 16-bit Counter-Timer 1
 DCD TIMER32_0_IRQHandler ; 16+18: 32-bit Counter-Timer 0
 DCD TIMER32_1_IRQHandler ; 16+19: 32-bit Counter-Timer 1

startup_LPC11xx.s for simple assembly project—Cont’d

292 Chapter 16

 ENDIF

 AREA |.text|, CODE, READONLY
; Reset Handler
Reset_Handler PROC
 EXPORT Reset_Handler [WEAK]
 IMPORT Blinky
 ENTRY
 LDR R0, =Blinky
 BX R0
 ENDP

; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
 EXPORT NMI_Handler [WEAK]
 B .
 ENDP
HardFault_Handler\
 PROC
 EXPORT HardFault_Handler [WEAK]
 B .
 ENDP
SVC_Handler PROC
 EXPORT SVC_Handler [WEAK]
 B .
 ENDP

CRP_Key DCD 0xFFFFFFFF

IF :LNOT::DEF:NO_CRP
AREA |.ARM.__at_0x02FC|, CODE, READONLY tt

 EXPORT SSP0_IRQHandler [WEAK]
 EXPORT UART_IRQHandler [WEAK]
 EXPORT ADC_IRQHandler [WEAK]

PendSV_Handler PROC
 EXPORT PendSV_Handler [WEAK]
 B .
 ENDP
SysTick_Handler PROC
 EXPORT SysTick_Handler [WEAK]
 B .
 ENDP

Default_Handler PROC
 EXPORT WAKEUP_IRQHandler [WEAK]
 EXPORT SSP1_IRQHandler [WEAK]
 EXPORT I2C_IRQHandler [WEAK]
 EXPORT TIMER16_0_IRQHandler [WEAK]
 EXPORT TIMER16_1_IRQHandler [WEAK]
 EXPORT TIMER32_0_IRQHandler [WEAK]
 EXPORT TIMER32_1_IRQHandler [WEAK]

(Continued)

Assembly Projects and Mixed-Assembly and C Projects 293

SSP1_IRQHandler
I2C_IRQHandler
TIMER16_0_IRQHandler
TIMER16_1_IRQHandler
TIMER32_0_IRQHandler
TIMER32_1_IRQHandler
SSP0_IRQHandler
UART_IRQHandler
ADC_IRQHandler
WDT_IRQHandler
BOD_IRQHandler
PIOINT3_IRQHandler
PIOINT2_IRQHandler
PIOINT1_IRQHandler
PIOINT0_IRQHandler
 B .
 ENDP
 ALIGN
 END

 EXPORT PIOINT2_IRQHandler [WEAK]
 EXPORT PIOINT1_IRQHandler [WEAK]
 EXPORT PIOINT0_IRQHandler [WEAK]

WAKEUP_IRQHandler

 EXPORT WDT_IRQHandler [WEAK]

startup_LPC11xx.s for simple assembly project—Cont’d

Project

startup_LPC11xx.s

blinky.s

(Start up code including
vector table)

LPC11xx.hs
(Register definitions,

code listed in
appendix H.3)

(Application code)

Figure 16.1:
Blinky project in assembly.

294 Chapter 16
We then create our application code “blinky.s” (Figure 16.1) and an assembly header file

“LPC11xx.hs.” The file “LPC11xx.hs” contains register addresses definitions and is shown in

Appendix H.

The file “blinky.s” is shown here:

blinky.s
 PRESERVE8 ; Indicate the code here preserve
 ; 8 byte stack alignment
 THUMB ; Indicate THUMB code is used
 AREA |.text|, CODE, READONLY ; Start of CODE area

 INCLUDE LPC11xx.hs
 EXPORT Blinky
Blinky FUNCTION
 ; Switch Clock to 48MHz
 BL Set48MHzClock

 ; Initialize LED (GPIO #0, bit[7]) output
 BL LedOutputCfg

 ; Program SysTick timer at 1KHz.
 ; At 48MHz, SysTick trigger every 48000 CPU cycles
 ; SysTick->LOAD = (48000-1); // Count from 47999 to 0
 ; SysTick->VAL = 0; // Clear SysTick value
 ; SysTick->CTRL = 0x5; // Enable, using core clock
 LDR R0,=SysTick_BASE
 LDR R1,=47999
 STR R1,[R0,#SysTick_LOAD]
 MOVS R1, #0
 STR R1,[R0,#SysTick_VAL]
 MOVS R1, #5
 STR R1,[R0,#SysTick_CTRL]

 ; while(1){ // Blink at 1Hz
Blinky_loop
 ; for (i=0;i<500;i++) { // Wait for 0.5 seconds
 ; while ((SysTick->CTRL & 0x10000)==0); // Wait for counter underflow
 ; }
 LDR R1, =500
Blinky_inner_loop1
Blinky_inner_loop2
 LDR R2, =0x10000
 LDR R3, [R0,#SysTick_CTRL]
 TST R3, R2
 BEQ Blinky_inner_loop2
 SUBS R1, R1, #1
 BNE Blinky_inner_loop1

 ; Toggle bit 7
 ; LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];

 LDR R1,=LPC_GPIO0_BASE
 LDR R2,=0x200 ; (0x80 * 4)
 LDR R3, [R1, R2]
 MVNS R3, R3

 STR R3, [R1, R2]

 ; } // end while

Assembly Projects and Mixed-Assembly and C Projects 295
(Continued)

 B Blinky_loop
 ENDFUNC
; --
Set48MHzClock FUNCTION

 LDR R3, =PDRUNCFG
 LDR R1,[R0, R3]
 MOVS R2, #0xA0
 BICS R1, R1, R2
 STR R1,[R0, R3]

 ; Select PLL source as crystal oscillator
 ; 0 - IRC oscillator
 ; 1 - System oscillator
 ; 2 - WDT oscillator
 ; LPC_SYSCON->SYSPLLCLKSEL = 1;
 MOVS R1, #0x1
 STR R1,[R0, #SYSPLLCLKSEL]

 ; Update SYSPLL setting (0->1 sequence)
 ; LPC_SYSCON->SYSPLLCLKUEN = 0;
 MOVS R1, #0x0
 STR R1,[R0, #SYSPLLCLKUEN]

 ; LPC_SYSCON->SYSPLLCLKUEN = 1;
 MOVS R1, #0x1
 STR R1,[R0, #SYSPLLCLKUEN]

 ; Set PLL to 48MHz generate from 12MHz
 ; M = 48/12 = 4 (MSEL = 3)
 ; FCCO (must be between 156 to 320MHz, and is 2x, 4x, 8x or 16x of Clock)
 ; Clock freq out selected as 192MHz
 ; P = 192MHz/48MHz/2 = 2 (PSEL = 1)
 ; bit[8] - BYPASS
 ; bit[7] - DIRECT
 ; bit[6:5] - PSEL (1,2,4,8)
 ; bit[4:0] - MSEL (1-32)
 ; LPC_SYSCON->SYSPLLCTRL = (3 + (1<<5)); // M = 4, P = 2
 MOVS R1, #0x23
 STR R1,[R0, #SYSPLLCTRL]

 ; wait until PLL is locked
 ; while(LPC_SYSCON->SYSPLLSTAT == 0);

 ; Power up the PLL and System oscillator
 ; (clear the powerdown bits for PLL and System oscillator)
 ; LPC_SYSCON->PDRUNCFG = LPC_SYSCON->PDRUNCFG & 0xFFFFFF5F;

 LDR R0,=LPC_SYSCON_BASE

Set48MHzClock_waitloop1
 LDR R1,[R0,#SYSPLLSTAT]

blinky.s—Cont’d

296 Chapter 16

 STR R1,[R0, #MAINCLKUEN]

 ; LPC_SYSCON->MAINCLKUEN = 1;
 MOVS R1, #0x1
 STR R1,[R0, #MAINCLKUEN]
 BX LR
 ENDFUNC
; --
LedOutputCfg FUNCTION
 ; Enable clock to IO configuration block (bit[16] of AHBCLOCK Control
register)
 ; and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 ; LPC_SYSCON->SYSAHBCLKCTRL=LPC_SYSCON->SYSAHBCLKCTRL|(1<<16)|(1<<6);
 LDR R0,=(LPC_SYSCON_BASE+SYSAHBCLKCTRL)
 LDR R2,=0x10040 ; (1<<16) | (1<<6)
 LDR R1,[R0]
 ORRS R1, R1, R2
 STR R1,[R0]

 ; PIO0_7 IO output config
 ; bit[5] - Hysteresis (0=disable, 1 =enable)
 ; bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 ; bit[2:0] - Function (0 = IO, 1=CTS)
 ; LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 LDR R0,=LPC_IOCON_BASE
 MOVS R1, #0x0
 STR R1, [R0,#PIO0_7]

 ; Initial bit[7] output is 0
 ; LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 LDR R0,=LPC_GPIO0_BASE
 MOVS R1, #0
 MOVS R2, #0x80 ; (1<<7)
 LSLS R2, R2, #2 ; (R2 = (1<<7) x 4 (bytes)

 ; Switch main clock to PLL clock
 ; 0 - IRC
 ; 1 - Input clock to system PLL
 ; 2 - WDT clock
 ; 3 - System PLL output
 ; LPC_SYSCON->MAINCLKSEL = 3;
 MOVS R1, #0x3
 STR R1,[R0, #MAINCLKSEL]

 ; Update Main Clock Select setting (0->1 sequence)
 ; LPC_SYSCON->MAINCLKUEN = 0;
 MOVS R1, #0x0

 STR R1, [R0, R2]

 CMP R1, #0
 BEQ Set48MHzClock_waitloop1

(Continued)

Assembly Projects and Mixed-Assembly and C Projects 297

 MOVS R1, #0x80
 STR R1, [R0,#GPIO_DIR]

 BX LR ; Return
 ENDFUNC

; --
 END

; --

 ; LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
 LDR R0,=LPC_GPIO0_REGBASE

blinky.s—Cont’d

 ; Set pin 7 as output

298 Chapter 16
After the files are created, we can then add the blinky.s to the project and compile the

program. After the program compilation is done, we can then update the debug option to

select the required debug interface hardware, and then we download the program to the flash

memory and test the application. The program should be able to toggle the LED at 1Hz when

the program is running.

As you can see in the listing of LPC11xx.hs in Appendix H, creating an assembly project

involves a bit more work to define hardware registers. But once that is done, creating assembly

applications for Cortex-M0 is fairly straightforward.
Allocating Data Space for Variables

In the blinky example, the data processing can be handled with just a few registers,

so it does not use any stack memory at all. By default, the stack memory

allocation is done for us in the default startup code. We could reduce the stack size

allocated by modifying the Stack_Size definition from 0x200 to the other stack size

required:
Stac

Stac
__in
k_Size EQU 0x00000200
itia
AREA STACK, NOINIT, READWRITE, ALIGN¼3

k_Mem SPACE Stack_Size
l_sp
For most applications, there would be fair number of data variables. For simple appli-

cations, we can also allocate memory space in the RAM. For example, we can add

a section in our application code to define three data variables: “MyData1” (a word size

data variable), “MyData2” (a half word size data variable), and “MyData3” (a byte size

data variable):

 PRESERVE8 ; Indicate the code here preserve
 ; 8 byte stack alignment
 THUMB ; Indicate THUMB code is used
; --
; Allocate data variable space
 AREA | Header Data|, DATA ; Start of Data definitions
 ALIGN 4

MyData1 DCD 0 ; Word size data
MyData2 DCW 0 ; half Word size data
MyData3 DCB 0 ; byte size data
; --
 AREA |.text|, CODE, READONLY ; Start of CODE area
 INCLUDE LPC11xx.hs
 EXPORT DataTest
DataTest FUNCTION
 ; Switch Clock to 48MHz
 BL Set48MHzClock

 LDR R0,=MyData1
 LDR R1,=0x00001234
 STR R1,[R0] ; MyData1 = 0x00001234

 LDR R0,=MyData2
 LDR R1,=0x55CC
 STRH R1,[R0] ; MyData2 = 0x55CC

 LDR R0,=MyData3
 LDR R1,=0xAA
 STRB R1,[R0] ; MyData3 = 0xAA

 B . ; Endless loop
 ENDFUNC
; --
Set48MHzClock FUNCTION
 LDR R0,=LPC_SYSCON_BASE
 ... (details same as previous example)
 ENDFUNC
; --
 END
; --

Assembly Projects and Mixed-Assembly and C Projects 299
Once the program is compiled, we can examine the data memory layout by right-clicking on

the target name (e.g., “Target 1”) in the project window and selecting “open .\data_access.

Map” (“data_access” is the name of the project in this case). From the map report file, we can

see the address location and size of the variables we allocated:
Ima
ge Symbol Table

Lo
Sym
...
cal Symbols
bol Name Value Ov Type Size Object(Section)

Hea
My
My
My
STA
__

MyFun

300 Chapter 16
der Data 0x10000000 Section 7 data_access.o(Header Data)
Data1 0x10000000 Data 4 data_access.o(Header Data)
Data2 0x10000004 Data 2 data_access.o(Header Data)
Data3 0x10000006 Data 1 data_access.o(Header Data)
CK 0x10000008 Section 512 startup_lpc11xx.o(STACK)

initial_sp 0x10000208 Data 0 startup_lpc11xx.o(STACK)
Because the RAM in the LPC1114 starts at address 0x10000000 onward, the variables are

located starting from this address.

Another way to allocate memory space is to use the stack memory. To allocate memory space

for local variables inside a function, we can modify the value of SP at the beginning of

a function:
ction

 PUSH {R4, R5}
 SUB SP, SP , #8 ; Allocate two words for space for local variables
 MOV R4, SP ; Make a copy of SP to R4
 LDR R5,=0x00001234
 STR R5,[R4,#0] ; MyData1 = 0x00001234
 LDR R5,=0x55CC
 STRH R5,[R4,#4] ; MyData2 = 0x55CC
 MOVS R5,#0xAA
 STRB R5,[R4,#6] ; MyData3 = 0xAA
 ...
 ADD SP, SP, #8 ; Restore SP back to starting value to free space
 POP {R4, R5}
 BX LR
The main advantage of using the stack for local variables is that local variables in functions that

are not active do not take up any space in RAM. In contrast, many 8-bit microcontroller

architectures allocate all data variables in static memory locations, resulting in larger SRAM

requirements.

UART Example in Assembly

Once we have prepared the assembly code for system initialization, writing a UART example

in assembly is actually not that difficult. To do this, we create an assembly version of UART

functions based on the first UART example, as in Chapter 15. We also need to modify the

startup code so that the reset handler executes the “UartTest” function in the new assembly

program file (Figure 16.2).

Figure 16.3 shows the flowchart of the test code, and the source code listing (uart-test.s)

can be found in Appendix H. To simplify the program, we developed a few UART

functions for character output (UartPutc), string output (UartPuts), character input

Project

startup_LPC11xx.s

uart_test.s

(Start up code including
vector table, reuse from
previous example. Reset

handler need update)

LPC11xx.hs
(Register definitions,

code listed in
appendix H.3)

(Application code,
code listed in
appendix H.4)

Figure 16.2:
UART test project.

Start

Reset Handler
(branch to UartTest)

Set48MHzClock
Program PLL and switch

processor clock
frequency to 48MHz

UartConfig
Program IO configuration

registers and initialize
UART for 38400 bps

print “Hello\n”
message

Key detected?

Poll UART receive
status

Yes

No

Collect received data
and output to UART

Figure 16.3:
Flowchart for the UART test.

Assembly Projects and Mixed-Assembly and C Projects 301

302 Chapter 16
(UartGetRxData), receive buffer checking (UartGetRxDataAvail), and UART

initialization (UartConfig).

The program behaves exactly the same as in the C version.
Additional Text Output Functions

In the previous example, we created text output functions for string (UartPuts) and character
(UartPutc). We can also create additional UART output functions for other data output.

A function called UartPutHex was developed to send hexadecimal numbers. This function

calls the UartPutc function a number of times, which outputs a single ASCII character each

time it is executed:
UartPutHex FUNCTION
 ; Output register value in hexadecimal format
 ; Input R0 = value to be displayed
 PUSH {R0, R4-R7, LR} ; Save registers to stack
 MOV R4, R0 ; Save register value to R3 because R0 is used
 ; for passing input parameter
 MOVS R0,#'0' ; Starting the display with "0x"
 BL UartPutc
 MOVS R0,#'x'
 BL UartPutc
 MOVS R5, #8 ; Set loop counter
 MOVS R6, #28 ; Rotate offset
 MOVS R7, #0xF ; AND mask
UartPutHex_loop
 RORS R4, R6 ; Rotate data value left by 4 bits(right 28)
 MOV R0, R4 ; Copy to R0
 ANDS R0, R7 ; Extract the lowest 4 bit
 CMP R0, #0xA ; Convert to ASCII
 BLT UartPutHex_Char0to9
 ADDS R0, #7 ; If larger or equal 10, then convert to A-F
 ; (R0=R0+7+48)
UartPutHex_Char0to9
 ADDS R0, #48 ; otherwise convert to 0-9
 BL UartPutc ; Output 1 hex character
 SUBS R5, #1 ; decrement loop counter
 BNE UartPutHex_loop ; if all 8 hexadecimal characters been displayed
 POP {R0, R4-R7, PC} ; then return, otherwise process next 4-bit
 ENDFUNC
A function called UartPutDec for outputting decimal numbers is also created. Similar to the

previous function, it uses the UartPutc function. An array of constant values (referred as

masks in the program code) is used in the function to speed up the conversion of the value to

a decimal string:

UartPutDec FUNCTION
 ; Output register value in decimal format
 ; Input R0 = value to be displayed
 ; For 32-bit value, the maximum number of digits is 10
 PUSH {R4-R6, LR} ; Save register values
 MOV R4, R0 ; Copy input value to R4 because R0 is
 ; used for character output
 ADR R6, UartPutDecConst ; Starting address of mask array
UartPutDecCompareLoop1 ; compare until input value is same or
 ; larger than the current mask (.../100/10/1)
 LDR R5, [R6] ; Get Mask value
 CMP R4, R5 ; Compare input value to mask value
 BHS UartPutDecStage2 ; Value is same or larger than current mask
 ADDS R6, #4 ; Next smaller mask address
 CMP R4, #10 ; Check for zero to 9
 BLO UartPutDecSmallNumber0to9
 B UartPutDecCompareLoop1
UartPutDecStage2
 MOVS R0, #0 ; Initial value for current digit

UartPutDecLoop2
 CMP R4, R5 ; Compare to mask value
 BLO UartPutDecLoop2_exit
 SUBS R4, R5 ; Subtract mask value
 ADDS R0, #1 ; increment current digit
 B UartPutDecLoop2
UartPutDecLoop2_exit
 ADDS R0, #48 ; convert to ascii 0-9
 BL UartPutc ; Output 1 character
 ADDS R6, #4 ; Next smaller mask address
 LDR R5,[R6] ; Get Mask value
 CMP R5, #1 ; Last Mask
 BEQ UartPutDecSmallNumber0to9
 B UartPutDecStage2
UartPutDecSmallNumber0to9 ; Remaining value in R4 is from 0 to 9
 ADDS R4, #48 ; convert to ascii 0-9
 MOV R0, R4 ; Copy to R0 for display
 BL UartPutc ; Output 1 character
 POP {R4-R6, PC} ; Restore registers and return
 ALIGN 4
UartPutDecConst ; array of mask values for conversion
 DCD 1000000000
 DCD 100000000
 DCD 10000000
 DCD 1000000
 DCD 100000
 DCD 10000
 DCD 1000
 DCD 100
 DCD 10

Assembly Projects and Mixed-Assembly and C Projects 303
 DCD 1
 ALIGN

 ENDFUNC

304 Chapter 16
Using these functions, it is fairly easy to transfer information between your targeted systems

to a personal computer running a terminal program, or to output information to a display

interface to help software development.

Complex Branch Handling

When a conditional branch operation is based on a combination of input variables, it can take

a complex decision sequence to decide if a branch should be taken. In some cases, it is possible

to simplify the decision steps using assembly code.

If the branch condition is based on the variable of 5 bits or less, we can encode the branch condition

as a 32-bit constant and extract the decision bit using shift or rotate instruction. For example:

ifððx ¼ ¼ 0Þjjðx ¼ ¼ 3Þjjððx> 12Þ&&ðx< 19ÞÞjjðx ¼ 23ÞÞ goto label; == x is a 5-bit data
The decision can be written as follows:
 LDR R0,=x ; Get address of x
 LDR R0,[R0] ; Read x from memory
 LDR R1,=0x0087E009 ; Encoded branch condition bit 23, 18-13, 3, 0 are set to 1
 ADDS R0, R0, #1 ; Shift as least one bit
 LSRS R1, R1, R0 ; Extract branch condition to carry flag
 BCS label ; Branch if condition met
Alternatively, the branch condition can be encoded into an array of data bytes if the branch

condition is more than 5 bits wide:
 LDR R0,=x ; Get address of x
 LDR R0,[R0] ; Read x from memory
 LSRS R1,R1,R0 ; Get byte offset in look up table
 LDR R2,=BranchConditionTable
 LDRB R2,[R2,R1] ; Get encoded condition
 MOVS R1, #7
 ANDS R1, R1, R0 ; Get lowest 3 bit of x
 ADDS R0, R0, #1 ; Shift as least one bit
 LSRS R2, R2, R0 ; Extract branch condition to carry flag
 BCS label ; Branch if condition met
 ...
BranchConditionTable
 DCB 0x09, 0xE0, 0x87, 0x00, ... ; Byte array of encoded branch condition
Mixed-Language Projects

In addition to assembly language projects and C language projects, there are also large number

of embedded projects that contain both C language and assembly language. In fact, the

Assembly Projects and Mixed-Assembly and C Projects 305
Keil MDK examples in Chapter 14 are already mixed-language projects because the default

startup code provided in Keil MDK is written in assembly language.

In mixed-language projects with both C and assembly program files, the AAPCS-compliant

requirement is even more important than pure assembly projects. Otherwise the result could be

unpredictable: the programmight work with one version of the compiler and when switching to

a different version, or if the compiler changes, the project might stop working because of

conflicts in register usage.
Calling a C Function from Assembly

When calling a C function from an assembly file, we need to be aware of the following

areas:

• Register R0 to R3, R12, and LR could be changed. If these registers hold data that are

needed for later use, you need to save them to the stack.

• The value of SP should be aligned to a double-word address boundary.

• You need to ensure input parameters are stored in the correct registers (in simple cases of

one to four parameters, register R0 to R3 are used).

• The return value (assuming it is 32 bits or smaller) is normally stored in R0.

For example, if you have a C function that adds four values:
int
{

}

my_add_c(int x1, int x2, int x3, int x4)
rn (x1 þ x2 þ x3 þ x4);
retu
In Keil MDK, you can call the C function from assembly by using the following code:
MOVS R0, #0x1 ; First parameter (x1)
MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
IMPORT my_add_c
BL my_add_c ; Call “my_add_c” function. Result store in R0
If the assembly code is written as an embedded assembler inside C files, instead of using the

IMPORT keyword to import the address symbol, the __CPP keyword should be used:
MOVS R0, #0x1 ; First parameter (x1)

MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
BL __cpp(my_add_c) ; Call “my_add_c” function. Result store in R0
The __cpp keyword is required for Keil MDK in accessing C or Cþþ compile time constant

expressions. For other tool chains, the directive required can be different.

306 Chapter 16
Calling an Assembly Function from C Code

When calling an assembly function from C code, we need to be aware of the following areas

when writing the assembly function:

• If we change any values in registers R4 to R11, we need to save the original values on the

stack and restore the original values before returning to the C code.

• If we need to call another function inside the assembly function, we need to save the LR on

the stack and use it for return.

• The function return value is normally stored in R0.

For example, if we have an assembly function that add four values:
my_a

exte
int

CALC
EXPORT my_add_asm
dd_asm FUNCTION
.

y ¼
ADDS R0, R0, R1
ADDS R0, R0, R2
ADDS R0, R0, R3
BX LR ; Return result in R0
ENDFUNC
In the C code, we need to declare the function as
rn int my_add_asm(int x1, int x2, int x3, int x4);
y;
my_add_asm(1, 2, 3, 4); // call the my_add_asm function
If your assembly code needs to access some data variables in your C code, you can also use the

IMPORT keyword. For example, the following code locates the variable “y” in the project;

calculate the value of y2 (square) and put the result back:
EXPORT CALC_SQUARE_Y
_SQUARE_Y FUNCTION
IMPORT y
LDR R0,¼y ; Obtain the address value of variable “y”
LDR R1, [R0]
MULS R1, R1, R1
STR R1, [R0]
BX LR
ENDFUNC
The preceding example assumes the variable “y” is 32 bits (LDR instruction transfers data in

32-bit formats).

Embedded Assembly

In most cases, we might only need one or two simple assembly functions, so we might want

to embed the assembly code in the same program file as the C code. In most tool chains,

Assembly Projects and Mixed-Assembly and C Projects 307
a feature called inline assembler could be used. For ARM tool chains (Keil MDK and

ARM RealView Development Suite), an alternative feature called “embedded assembler” is

available.

The embedded assembler allows you to develop assembly functions inside C files. For

example, the “my_add_e” function that adds four parameters could be written as
__as
{

}

y = m

__as
{

}

__as
{

}

m int my_add_e(int x1, int x2, int x3, int x4)
ADDS R0, R0, R1
ADDS R0, R0, R2
ADDS R0, R0, R3
BX LR ; Return result in R0
You can then call this function in C code just like a normal C function:
y_add_e(1, 2, 3, 4);
Inside embedded assembly functions, you can also import address value or data

symbols using the __cpp keyword. For example, a function to increment variable “y”

could be
m void increment_y(void)
LDR R0,¼__cpp(&y)
LDR R1, [R0]
ADDS R1, R1, #1 ; increment
STR R1, [R0]
BX LR ; Return result in R0
You can also use __cpp to import a function address location. For example,
m void embedded_asm_call_c(void)
PUSH {R4, LR }
; method 1
MOVS R0, #0x1 ; First parameter (x1)
MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
BL __cpp(my_add_c) ; Call the C function
; method 2
MOVS R0, #0x1 ; First parameter (x1)
MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
LDR R4,¼__cpp(my_add_c) ; Import the address of my_add_c
BLX R4 ; Call the C function
POP {R4, PC} ; Return

308 Chapter 16
One advantage of an embedded assembler is that it allows you to locate the exception stack

frame in exception handlers. Examples of this function can be found in Chapter 12 (the

assembly wrapper for the hard fault handler) and Chapter 17 (the assembly wrapper for the

SVC handler).

Accessing Special Instructions

In some cases, we might want to access some special instructions that cannot be generated by

normal C code. If you are using CMSIS-compliant device drivers, a number of CMSIS

functions are available; you can just use these functions to generate the required assembly

instructions (Table 16.3).
Table 16.3: CMSIS Functions Support for the Cortex-M0

Instruction CMSIS Function

ISB void __ISB(void); // Instruction Synchronization Barrier
DSB void __DSB(void); // Data Synchronization Barrier
DMB void __DMB(void); // Data Memory Barrier
NOP void __NOP(void); // No Operation
WFI void __WFI(void); // Wait for Interrupt (enter sleep)
WFE void __WFE(void); // Wait for Event (enter sleep /

// clear event latch)
SEV void __SEV(void); // Send Event
REV uint32_t __REV(uint32_t value); // Reverse byte order

// within a word
REV16 uint32_t __REV16(uint16_t value); // Reverse byte order within

// each half word independently
REVSH int32_t __REVSH(int16_t value); // Reverse byte order in the

// lower halfword, and then sign extend

// the result in a 32-bit word
CPSIE I void __enable_irq(void); // Clear PRIMASK
CPSID I void __disable_irq(void); // Set PRIMASK
The C compiler itself might also provide similar features, which are normally called intrinsic

functions. For example, the Keil MDK and the ARM RealView Development Suite provide the

intrinsic functions shown in Table 16.4. Beware that some of these functions differ from the

CMSIS versions by lowercase characters in the function’s names.

To allow your application code to be more portable, you should use CMSIS intrinsic functions

if possible.

Idiom Recognitions

Some C compilers also provide a feature called idiom recognition. When the C code is

constructed in a particular way, then the C compiler automatically converts the operation into

a special instruction. Table 16.5 shows the idiom recognition features available in Keil MDKor

ARM RVDS for Cortex-M0.

Table 16.4: Keil MDK or ARM RVDS Intrinsic Functions Support for the Cortex-M0

Instruction Intrinsic Functions Provided in Keil MDK or ARM RVDS

ISB void __isb(void); // Instruction Synchronization Barrier
DSB void __dsb(void); // Data Synchronization Barrier
DMB void __dmb(void); // Data Memory Barrier
NOP void __nop(void); // No Operation
WFI void __wfi(void) ; // Wait for Interrupt (enter sleep)
WFE void __wfe(void); // Wait for Event (enter sleep /

// clear event latch)
SEV void __sev(void); // Send Event
REV unsigned int __rev(unsigned int val); // Reverse byte order

// within a word
CPSIE I void __enable_irq(void); // Clear PRIMASK
CPSID I void __disable_irq(void); // Set PRIMASK
ROR unsigned int __ror(unsigned int val, unsigned int shift);

// rotate a value right by a specific number of bit

// “Shift” can be 1 to 31

Table 16.5: Idiom Recognition in Keil MDK or ARM RVDS for the Cortex-M0

Instruction C Language Code That Can Be Recognized by Keil MDK or ARM RVDS

REV16 /* recognized REV16 r0,r0 */
int rev16(int x)
{

return
(((x&0xff)<<8)j((x&0xff00)>>8)j((x&0xff000000)>>8)j((x&0x00ff0000)<<8));
}

REVSH /* recognized REVSH r0,r0 */
int revsh(int i)
{

return ((i<<24)>>16)j((i>>8)&0xFF);
}

Assembly Projects and Mixed-Assembly and C Projects 309
If the software is ported to a different C compiler without the same idiom recognition feature,

the code will still compile because it is using standard C syntax, although the generated

instruction sequence might be less efficient than using idiom recognitions.

CHAPTER 17

Using Low-Power Features in Programming

Overview

In Chapter 11, we covered how the Cortex-M0 processor provides low-power advantages

over other processors and looked at an overview of the low-power features in the Cortex-M0. In

this chapter, we discuss how these low-power features are used in programming. In the last

part of this chapter, we briefly cover the low-power features in a Cortex-M0 microcontroller

(NXP LPC111x) and demonstrate how to use sleep modes in this device.

Review of Sleep Modes in the Cortex-M0 Processor

The Cortex-M0 processor supports normal sleep and deep sleep modes. The sleep modes can

be entered using WFE or WFI instructions, or using Sleep-on-Exit feature (Figure 17.1).

The actual differences between normal sleep mode and deep sleep mode on a micro-

controller depend on the system level design of the chip. For example, normal sleep might

result in some of the clock signals being switched off, whereas deep sleep might also

reduce voltage supplies to the memory blocks and might switch off additional components

in the system.

After entering sleep mode, the processor can be awakened using interrupt requests, debug

requests, events, and reset. Figure 17.2 summarizes the wakeup conditions for interrupt

requests.
WFE instruction

executed

WFI instruction

executed

Enter sleep by

Sleep-On-Exit

Normal sleep
(SLEEPDEEP bit in System

Control Register = 0)

Deep sleep
(SLEEPDEEP bit in System

Control Register = 1)

Normal sleep, wake up

on events (including

interrupts)

Deep sleep, wake up on

events (including

interrupts)

Normal sleep, wake up on interrupts

Deep sleep, wake up on interrupts

Figure 17.1:
Normal sleep and deep sleep can both be entered using various methods.

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10017-5

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

311

http://dx.doi.org/10.1016/B978-0-12-385477-3.10017-5

WFE

WFI

Conditions

Wake up Execute ISR

IRQ priority >
current level Yes Yes

IRQ priority
current level No No

Priority level
(exclude PRIMASK) SEVONPEND PRIMASK

Result

-- 0

0 --

IRQ priority >
current level No No0 1

IRQ priority
current level Yes No1 --

IRQ priority >
current level Yes Yes-- 0

IRQ priority >
current level Yes No-- 1

IRQ priority
current level No No-- --

Type

Figure 17.2:
Summaries of wakeup conditions for interrupt requests.

312 Chapter 17
In the System Control Block of the Cortex-M0 processor, there is a programmable register

called the System Control Register (SCR; Table 17.1). This register contains several control

bits related to sleep features.
Table 17.1: System Control Register (0xE000ED10)

Bits Field Type Reset Value Descriptions

31:5 Reserved d d Reserved
4 SEVONPEND R/W 0 Send Event on Pend biteenable generation of event

by a new interrupt pending status, which can wake
up the processor from WFE

3 Reserved d d Reserved
2 SLEEPDEEP R/W 0 Sleep mode type control bit:0: Normal sleep1: Deep

sleep
1 SLEEPONEXIT R/W 0 Sleep-on-Exit bitewhen set to 1, enable the Sleep-on-

Exit feature
0 Reserved d d Reserved
For the users of CMSIS-compliant device driver library, the System Control Register can

be accessed by the register symbol “SCB->SCR.” For example, to enable deep sleep mode,

you can use
SCB-
>SCR j ¼ 1<<2; /* Enable deep sleep feature */
The System Control Register must be accessed using a word-size transfer.

Using Low-Power Features in Programming 313
Using WFE and WFI in Programming

In most cases, the device driver libraries from microcontroller vendors contain functions to

enter low-power modes that are customized for their microcontrollers. Using these functions

will help you to achieve the best level of power optimization for your microcontrollers.

However, if you are developing C code that needs to be portable between multiple Cortex-M

microcontrollers, you can use the CMSIS functions shown in Table 17.2 to access the WFE and

WFI instructions directly.
Table 17.2: CMSIS Intrinsic Functions for WFE and WFI Instructions

Instruction CMSIS Functions

WFE __WFE();
WFI __WFI();
For users who are not using CMSIS-compliant device drivers, you can use intrinsic functions

provided by the C compiler or inline assembly to generate WFE and WFI instructions. In these

cases, the software code will be tool chain dependent and less portable. For example, the ARM

RealView Development Suite or Keil MDK provides the following C intrinsic functions

(unlike the CMSIS version, they are in lowercase letters) (Table 17.3).
Table 17.3: ARM RealView Compiler or Keil MDK Intrinsic Functions for WFI and WFE

Instruction Built-in Intrinsic Functions Provided in ARM RealView C Compiler or Keil MDK

WFE __wfe();
WFI __wfi();
Because the WFE can be awakened by various sources of events, including past events, it is

usually used in an idle loop. For example,
while (processing_required()¼¼0) {

__wfe();
}

Users of assembly programming environments can use WFE and WFI directly in their

assembly codes.

Using the Send-Event-on-Pend Feature

The Send-Event-on-Pend feature allows any interrupts (including disabled ones) to wake up

the processor if the processor entered sleep by executing the WFE instruction. When the

314 Chapter 17
SEVONPEND bit in the System Control Register is set, an interrupt switching from inactive

state to pending state generates an event, which wakes up the processor from WFE sleep.

If the pending status of an interrupt was already set before the processor entered the sleep state,

a new request from this interrupt during WFE sleep will not wake up the processor.

For users of CMSIS-compliant device driver libraries, the Send-Event-on-Pend feature can be

enabled by setting bit 4 in the System Control Register. For example, you can use
Thr
mo

Han
mo
SCB->SCR j¼ 1<<4; /* Enable Send�Event�on�Pend feature */
If you are not using a CMSIS-compliant device driver library, you can use the following C code

to carry out the same operation:
#define SCB_SCR (*((volatile unsigned long *)(0xE000ED10)))

/* S
SCB_

LDR
MOVS
ORR
STR

ead
de

dler
de

Re
et SEVONPEND bit in System Control Register */
SCR j¼ 1<<4;
Users of assembly language can enable this feature by using the following assembly code:
LDR r0, ¼0xE000ED10; System Control Register address

r1, [r0]
r2, #0x10; Set SEVONPEND bit
r1, r2
r1, [r0]
Using the Sleep-on-Exit Feature

The Sleep-on-Exit feature is ideal for interrupt-driven applications. When it is enabled, the

processor can enter sleep as soon as it completes an exception handler and returns to Thread

mode. It does not cause the processor to enter sleep if the exception handler is returning to

another exception handler (nested interrupt). By using Sleep-on-Exit, the microcontroller can

stay in sleep mode as much as possible (Figure 17.3).

When the Cortex-M0 enters sleep using the Sleep-on-Exit feature, it is just like executing WFI

immediately after the exception exit. However, the unstacking process is not carried out
set
WFI

Sleep
Initialization

IRQ 1

ISR 1

stacking

IRQ 2

Sleep-On-Exit
enabled

Sleep

ISR 2

ISR 3

ISR 2

Sleep

IRQ 3

Sleep-On-Exit

(Nested
interrupt)(Interrupt

handling)

Time

Figure 17.3:
Sleep-on-Exit feature.

Using Low-Power Features in Programming 315
because the registers will have to be pushed onto the stack at the next exception entry. The

Sleep-on-Exit feature reduces the power consumption of the system (1) by avoiding unnec-

essary program execution in thread in interrupt-driven applications and (2) by reducing

unnecessary stack push and pop operations. When the processor is awakened by a halt debug

request, then the unstacking process will be carried out automatically.

When the Sleep-on-Exit feature is used, the WFE or WFI instruction is normally placed in an

idle loop:
SCB->SCR ¼ SCB->SCR j 0x2; // Enable Sleep-On-Exit feature

whil

_
}

/* S
SCB_

LDR
MOVS
ORR
STR
e (1) {
_WFI(); // Execute WFI and enter sleep
;

The loop is required because if the processor is awakened by a halt debug request, the

instruction after the WFI (branch back to WFI loop) would be executed when the processor is

unhalted after debugging.

If you are not using a CMSIS-compliant device driver, you can use the following C code to

enable the Sleep-on-Exit feature:
#define SCB_SCR (*((volatile unsigned long *)(0xE000ED10)))

et SLEEPONEXIT bit in System Control Register */
SCR ¼ SCB_SCR j 0x2;
Users of assembly language can enable this feature using the following assembly code:
LDR r0, ¼0xE000ED10; System Control Register address

r1, [r0]
r2, #0x2
r1, r2; Set SLEEPONEXIT bit
r1, [r0]
In interrupt-driven applications, do not enable the Sleep-on-Exit feature too early during

the initialization. Otherwise if the processor receives an interrupt request during the

initialization process, it will enter sleep automatically after the interrupt handler is

executed, before the rest of the initialization process completes.
Wakeup Interrupt Controller (WIC) Feature

TheWakeup Interrupt Controller (WIC) is an optional component that microcontroller vendors

can use to mirror the wakeup decision functionality of the NVIC when all the processor clocks

have stopped during deep sleep. This feature also allows the processor to be put into an ultra-

low-power state and still be able to be awakened by an interrupt almost instantly. The WIC was

first introduced in the Cortex-M3 revision two (r2p0). The same feature was also made

available in the Cortex-M0 and Cortex-M4 processors. Some details about the WIC features

were introduced in Chapter 11. In this chapter, we will discuss how this feature can be used in

embedded applications.

316 Chapter 17
The presence of WIC does not require extra programmable registers. However, the use of the

WIC usually requires a system-level power management unit (PMU), which would have

device-specific programmable registers. In general, the presence of the WIC feature is usually

transparent to the software.

The WIC is used only when the processor enters deep sleep. To use the WIC feature, the

following steps are required:

• Enable PMU (device specific)

• Enable deep sleep feature in the System Control Register

• Enter sleep

When WIC is enabled and the processor enters deep sleep, the sequence shown in Figure 17.4

will occur.

Because the task of detecting and masking interrupts for wakeup is offloaded to the WIC, the

Cortex-M0 processor can remain in a low-power state and does not require any clocks. To reduce
processing WFI

Wake up mask
transfer to WIC

WFI executed
when deep

sleep enabled

IRQ

WIC detect
interrupt request

and generate
wake up request

ISR execute

Sleep

Cortex-M0
NVIC

WIC

Mask

Merge
IRQ &
NMI

IRQ &
NMI

PMU put
processor into

low power state

Power
Management
Unit (PMU) Sleep status

Power
saving
control

1

1

2

2

3

3

4

4

5

5 Wake
up

PMU put
processor back
to normal power

7

Interrupt request
hold by WIC

while processor
waking up

6
Processor resume
operation, take IRQ

request from WIC and
clear WIC status

8

6

7

8

Figure 17.4:
WIC operation sequence.

Using Low-Power Features in Programming 317
the power consumption further,microcontrollers can use a special silicon technology called state

retention power gating (SRPG) to power down most part of the processor logic, leaving only

a small portion of circuit within each register to hold the current status (see Figure 11.11 in

Chapter 11). This allows the leakage current of the design to be further lowered. Currently the

SRPG is only supported in a limited numbers of silicon technology processes (cell libraries).

The use of WIC does not require a special programming step apart from configuring the

device-specific PMU and enabling deep sleep. However, it can result in the SysTick timer

being disabled during deep sleep. If your application uses an embedded OS and requires

the OS task scheduler to continue to operate during sleep, you might need to do one of

the following:

• Enabled a separate timer that is not affected by deep sleep to wake up the processor at

a scheduled time.

• Disable the WIC feature.

• Avoid using deep sleep and use normal sleep instead.

Event Communication Interface

One of the wakeup sources for the WFE sleep operation is the external event signal (here the

word “external” refers to the processor boundary; the source generating the event can be on

chip or off chip). The event signal could be generated by on-chip peripherals or by another

processor on the same chip. The event communication andWFE can be used together to reduce

power in polling loops.

The Cortex-M0 processor uses two signals for event communication:

• Transmit Event (TXEV). A pulse is generated when the SEV instruction is executed.

• Receive Event (RXEV). When a pulse is received on this signal, the event latch inside the

processor will be set and can cause the processor to wake up from WFE sleep operation.

First, we look at a simple use of the event connection in a single processor system: the event

can be generated by a number of peripherals. A DMA controller is used in the example shown

in Figure 17.5.

In a microcontroller system, a memory block copying process can be accelerated using a DMA

controller. If a polling loop is used to determine the DMA status, this will waste energy,

consume memory bandwidth, and might end up slowing down the DMA operation. To save

energy, we put the processor into the WFE sleep state. When the DMA operation completes,

we can then use a “Done” status signal to wake up the processor and continue program

execution.

In the application code, instead of using a simple polling loop that continuously monitors the

status of the DMA controller, the polling loop can include a WFE instruction as follows:

318 Chapter 17
Enable_DMA_event_mask(); // Write to programmable enable mask register
Star
do {

} wh
Disa
// to enable DMA event
t_DMA(); // Start DMA operation

__WFE(); // WFE Sleep operation, wake up when an event is received
ile (check_DMA_completed()¼¼0);
ble_DMA_event_mask(); // Write to programmable enable mask register

// to disable DMA event
Cortex-M0

TXEV

(not used)

RXEV

Programmable
enable mask

register

Peripheral #1

Peripheral #2

DMA controller
Done

Figure 17.5:
Use of the event interface: example 1eDMA controller.
Because the processor could be awakened by other events, the polling loop must still check the

DMA controller status.

For applications using an embedded OS, an OS-specific delay function should be used instead

of the WFE to allow the processor to switch to another task. The embedded OS is covered in

Chapter 18.

In multiprocessor systems, interprocessor communication such as spin lock often involves

polling software flags in shared memory. Similar to the DMA controller example, the WFE

sleep operation can be used to reduce power consumption during these activities. In a dual

processor system, the event communication interface can be connected in a crossover

configuration as shown in Figure 17.6.

In this arrangement, the polling loop for a shared software flag could be written as
do {
__WFE(); // WFE Sleep operation, wake up when an event is received
ile (sw_flag_x¼¼0); // poll software flag
} wh

task_X(); // execute task X when software flag for task X is received

Cortex-M0

TXEV

RXEV

Peripheral events

Cortex-M0

TXEV

RXEV

Figure 17.6:
Use of the event interface: example 2edual processor event crossover.

Using Low-Power Features in Programming 319
For the other process that changes “sw_flag_x,” it needs to generate an event after the shared

variable is updated. This can be done by executing the SEV (Send event) instruction:
sw_flag_x ¼ 1; // Set software flag in shared memory

__DS

__SE
B(); // Data synchronization barrier to ensure the write is completed
// not essential for Cortex-M0 but is added for software porting

V(); // execute SEV instruction
Using this arrangement, the processor running the polling loop can stay in sleep mode until it

receives an event. Because the SEV execution sets the internal event latch, this method works

even if the polling process and the process that sets the software variable are running at

different times on the same processor, as in a single processor multitasking system.

For applications that use an embedded OS, an OS-specific event passing mechanism should be

used instead of directly using WFE and SEV.

Developing Low-Power Applications

Most Cortex-M microcontrollers come with various low-power modes to help you reduce the

power consumption as low as possible. Although these features are often linked to the low-

power features of the processor, each microcontroller product provides different low-power

control methods and low-power characteristics. Therefore, it is not possible to cover every

method for all the different product types. Here we will only cover some general information

about how to reduce power on typical embedded systems and examples on a Cortex-M0

microcontroller: the NXP LPC111x.

In general, various measures can be taken to reduce power consumption:

• Reduction of active power

1. Choose the right microcontroller device. Once the basic system and memory size

requirements of the project are clear, you can select a microcontroller with enough

memory and peripherals but not too much more.

320 Chapter 17
2. Run the processor at suitable clock frequency.Many applications do not require a high

clock frequency. When a processor is running at high clock speed, it might require wait

states because of flash memory access time and hence reduce the energy efficiency.

3. Choose the right clock source. Many low-power microcontrollers provide multiple

clock sources including internal ones. Depending on the requirements of your appli-

cations, some clock sources might work better than others. There is no general rule of

“best choice” for which clock source to use. It entirely depends on the application and

the microcontroller you are using.

4. Do not enable a peripheral unless it is needed. Some low-power microcontrollers

allow you to turn off clock signals to each peripheral. In some cases, you can even

turn off the power supply to a certain peripheral to reduce power.

5. Check out other clock system features. Some microcontrollers provide various clock

dividers for different parts of the system. You can use these dividers to reduce the

powerdfor example, reduce the processor speed when the processing requirement

is low.

6. Select a good power supply design. A good choice of power supply design can provide

optimum voltage for the application.

• Reduction of active cycles

1. When the processor is idle, the sleep mode can be used to reduce power consumption,

even it is going to enter sleep for a short period of time.

2. Application code can be optimized for speed to reduce active cycles. In some cases

(e.g., the C compiler option has been set to speed optimization), it might increase

code size, but when there is spare space in the flash memory, then the optimization is

worth trying.

3. Features like Sleep-on-Exit can be used to reduce active cycles in interrupt-driven

applications.

• Reduction of power during sleep

1. Select the right low-power features. A low-power microcontroller might support

various low-power sleep modes. Using the right sleep modes might help you to

reduce the power consumption significantly.

2. Turn off unneeded peripherals and clock signals during sleep. This can reduce the

power consumption, but it might also increase the time required to restore the

system to an operational state after exiting sleep mode.

3. Consider turning off some of the power. Some microcontrollers can even turn off the

power supply to some parts inside the microcontroller like flash memory and oscil-

lators. But doing this usually means it will take longer to wake up the system.

Most microcontroller vendors would provide code library and example code to demonstrate the

low-power features of their microcontrollers. Those examples can make the application

development much easier.

Using Low-Power Features in Programming 321
The first step to take when developing a low-power application is to become familiar with the

microcontroller device you are using. There are a few areas to investigate when developing

sleep mode support code:

• Determine which sleep mode should be used.

• Determine which clock signals need to remain on.

• Determine if some clock support circuits like crystal oscillators can be switched off.

• Determine if clock source switching is needed.

To demonstrate the process, we will develop a couple of examples to use the low-power

features in the LPC111x.

Example of Using Low-Power Features on the LPC111x

The LPC111x supports four power modes (Table 17.4).
Table 17.4: Power Modes in LPC111x

Power Modes Descriptions

Run mode The microcontroller system in normal operation:
d Clocks to various parts of the microcontroller can be turned on/off using the

System AHB clock control register (LPC_SYSCON -> SYSAHBCLKCTRL).
d Clocks to several components including the processor can be divided to lower

frequency.
d Several parts of the system (ADC, oscillator, PLL, etc.) can be powered down using

Power-down Configuration Register (LPC_SYSCON -> PDRUNCFG).
Sleep mode The processor entered sleep mode with the SLEEPDEEP bit in the System Control

Register (SCB -> SCR) cleared:
d The clock to the processor stopped.
d The peripheral clock continued to run (based on LPC_SYSCON ->

SYSAHBCLKCTRL).
Deep sleep mode The processor entered sleep mode with the DEEPSLEEP bit in the System Control

Register (SCB -> SCR) set to 1:
d The clock to the processor stopped.
d Several parts of the system (flash, oscillator, PLL, etc.) can be powered down using

the Deep Sleep Configuration Register (LPC_SYSCON -> PDSLEEPCFG).
d The microcontroller can be awakened from the “start logic” feature on the I/O port.
d When awakened from deep sleep, the value of the Power-down Configuration

Register (LPC_SYSCON -> PDRUNCFG) is updated from the Wakeup
Configuration Register (LPC_SYSCON -> PDAWAKECFG).

Deep power
down mode

In this mode, most parts of the system are powered down. The status of the processor
and RAM are lost. However, data in four general-purpose registers inside the power
management unit are retained. This mode is entered by entering sleep mode with the
following:
d The deep sleep mode is enabled (SLEEPDEEP bit in SCB -> SCR set).
d The DPDEN bit in the PCON register in the power management unit is set, The

processor can be awakened by reset or by the “start logic” feature on the I/O port.

322 Chapter 17
The first example we will be working on is a low-power version of the blinky application. For a

simple blinky application, there is no need to use PLL and the oscillator for external crystal.

We can just use the 12MHz internal RC oscillator provided in the LPC111x. Therefore, we

can edit two define constants in system_LPC11xx.c (full listing in appendix H.1) to disable

the oscillator for the external crystal and to disable the PLL setup:
#defi

#defi

#
#

/
v
v

i
{

}

v
{

}

ne CLOCK_SETUP 0

ne SYSPLL_SETUP 0
In this example we are going to toggle pin 0 of port 2. The processor is put into sleep mode

most of the time, and it is awakened only when the 32-bit timer 0 reaches the required value.

The Sleep-on-Exit feature is also enabled to obtain the shortest active cycles. The blinky

application code can be written as shown:
include "LPC11XX.h"
define KEIL_MCB1000_BOARD

/ Function declarations
oid LedOutputCfg(void); // Set I/O pin connected to LED as output
oid Timer0_Intr_Config(void); // Setup timer

nt main(void)

 SystemInit(); // Switch Clock to 12MHz
 // (use internal RC oscillator only, PLL disabled)
 // Initialize LED output
 LedOutputCfg();
 Timer0_Intr_Config(); // Program timer interrupt 2 Hz
 SCB->SCR = SCB->SCR | 0x2;// Turn on Sleep-On-Exit feature
 while(1) {
 __WFI(); // Enter sleep mode
 };
 // end main

oid Timer0_Intr_Config(void)
 // Use 32-bit timer 0
 // Enable clock to 32-bit timer 0
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<9);

 LPC_TMR32B0->TCR = 0; // Disable timer
 LPC_TMR32B0->PR = 0; // Prescaler set to 0 (TC increment every cycle)
 LPC_TMR32B0->PC = 0; // Prescaler counter current value clear
 LPC_TMR32B0->TC = 0; // Timer counter current value clear
 LPC_TMR32B0->MR0 = 5999999; // Match Register set to "6 million - 1"
 LPC_TMR32B0->MCR = 3; // When match MR0, generate interrupt and reset
 LPC_TMR32B0->TCR = 1; // Enable timer
 NVIC_EnableIRQ(TIMER_32_0_IRQn); // Enable 32-bit timer 0 interrupt
 return;

void TIMER32_0_IRQHandler(void)

 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

{
 LPC_TMR32B0->IR = LPC_TMR32B0->IR; // Clear interrupt
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];

 // Toggle bit 7
#endif
 return;
}

// Switch LED signal (P2_0) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config

Using Low-Power Features in Programming 323
The blinky program executes the timer 0 interrupt service routine twice per second, with the

LED blinky at a rate of 1 Hz.

To try to push the power consumption lower,wewill use the deep sleep feature in thenext example.

By using the deep sleep mode, we can power down a number of parts in the microcontroller.

Caution

Be careful when developing applications with deep sleep mode or deep power down mode. In
these two modes you could lose connectivity between the in-circuit debugger and the micro-
controller. If you power down the microcontroller soon after it starts running, you could end up
being unable to connect the debugger to the microcontroller to carry out debug operations. This
also affects flash programming. There are various solutions to this problem:

1. During software development you could add conditional executed code at the initialization
stage so that you can switch a pin at reset to disable the deep sleep or power-down operation.
This conditional executed code could be removed from the project later on once you are sure
that the power management code is working correctly.

2. Depending on the microcontroller product, there can be a special boot mode to disable the
execution of the application programmed in the flash memory. In the NXP LPC111x, port
0 bit 1 can be used in such situation. The NXP111x has an in-system programming (ISP)
feature to allow the flash to be programmed using the boot loader and the serial port. By
pulling bit 1 of port 0 to low at powerup reset, the ISP program in the boot loader will be
executed. You can use the ISP feature to update the flash or to connect the in-circuit debugger
to the microcontroller and update the flash.

For example, if you are using Keil MCB1000 board with the NXP LPC1114 microcontroller and
accidentally lock up the board because you have used the powerdown feature, you can
disconnect power to the board, press and hold the boot button, and connect the power again.
Then you should be able to reprogram the flash.

324 Chapter 17
The blinky example for deep sleep is very different from the previous example, for a number of

reasons:

• During deep sleep, the internal RC oscillator is stopped, so we use the watchdog oscillator

instead.

• To achieve lower power, the prescaler on the watchdog oscillator is used to reduce the

clock frequency to a lower speed.

• The microcontroller has to wake up using the start logic on the LPC111x. Therefore, the

wakeup exception and wakeup handler are used instead of the timer interrupt.

• Start logic on the NXP LPC111x is triggered by I/O port activities. So we use the timer

match event output to drive an I/O port output and then use this signal level to trigger

the wakeup as shown in Figure 17.7.

The power management of the LPC111x is controlled by a number of registers (Table 17.5).

The details of these registers can be found in the NXP LPC111x User Manual.

Before using the deep sleep mode, we need to configure these registers and then program the

System Control Register (SCB -> SCR) to enable the deep sleep mode. We also need to

program the NVIC, timer, LED output, watchdog clock, and start logic. The example code for

blinky in deep sleep is implemented as follows:

16-bit timer #0

Port 0, bit 8

I/O pad

MAT0 (Match Output 0)

I/O Port 0

Pin multiplexing

I/O pin configuration
registers (IOCON)

Timer
match
event

Start logic
Wakeup
InterruptCortex-M0

Wakeup

Figure 17.7:
Deep sleep wakeup mechanism used for deep sleep example.

Table 17.5: System Configuration Registers Needed for Deep Sleep Program

Register Symbol Descriptions

Power-Down Configuration
Register

LPC_SYSCON -> PDRUNCFG Power-down control for running mode

Deep Sleep Mode Configuration
Register

LPC_SYSCON -> PDSLEEPCFG Power-down configuration to be used
when the Cortex-M0 is in deep sleep

Wakeup Configuration Register LPC_SYSCON ->
PDAWAKECFG

Value to be copied to LPC_SYSCON ->
PDRUNCFG when the microcontroller
wakes up from deep sleep

#include "LPC11XX.h"
#define KEIL_MCB1000_BOARD

/* Function declarations */
void LedOutputCfg(void); // Set I/O pin connected to LED as output
void Timer0_Config(void); // Setup timer

/* Power down control bit definitions */
#define IRC_OUT_PD (0x1<<0)
#define IRC_PD (0x1<<1)

(Continued)

Using Low-Power Features in Programming 325

#define FLASH_PD (0x1<<2)
#define BOD_PD (0x1<<3)
#define ADC_PD (0x1<<4)
#define SYS_OSC_PD (0x1<<5)
#define WDT_OSC_PD (0x1<<6)
#define SYS_PLL_PD (0x1<<7)
#define USB_PLL_PD (0x1<<8)
#define MAIN_REGUL_PD (0x1<<9)
#define USB_PHY_PD (0x1<<10)
#define RESERVED1_PD (0x1<<11)
#define LP_REGUL_PD (0x1<<12)

int main(void)
{
 /* Use internal OSC for now */
 LPC_SYSCON->SYSAHBCLKDIV = 1; /* AHB clock same as system clock */

 /* Initialize hardware */
 LedOutputCfg(); /* Program LED I/O */
 Timer0_Config(); /* Program timer */

 /* Use port0_8 as wakeup source, i/o pin */
 LPC_IOCON->PIO0_8 = (2<<0); // Function set to MAT0
 /* Only edge trigger. Activation polarity on P0.8 is rising edge. */
 LPC_SYSCON->STARTAPRP0 = LPC_SYSCON->STARTAPRP0 | (1<<8);
 /* Clear all wakeup source */
 LPC_SYSCON->STARTRSRP0CLR = 0xFFFFFFFF;
 /* Enable Port 0.1 as wakeup source. */
 LPC_SYSCON->STARTERP0 = 1<<8;

 NVIC_ClearPendingIRQ(WAKEUP8_IRQn);
 NVIC_EnableIRQ(WAKEUP8_IRQn); // Enable wake up handler

 /* Turn off all other peripheral dividers */
 LPC_SYSCON->SSP0CLKDIV = 0;
 LPC_SYSCON->SSP1CLKDIV = 0;
 LPC_SYSCON->WDTCLKDIV = 0;
 LPC_SYSCON->SYSTICKCLKDIV = 0;

 /* Turn on the watchdog oscillator */
 LPC_SYSCON->PDRUNCFG &= ~(1<<6);
 LPC_SYSCON->WDTOSCCTRL = (0x1<<5) | 0x1F; // Run watchdog at slow speed,
 // with 1/64 prescale

 /* Switch MAINCLKSEL to Watchdog Oscillator */
 LPC_SYSCON->MAINCLKSEL = 2; // Set clock source to watchdog osc
 LPC_SYSCON->MAINCLKUEN = 0; // Enable update to watchdog oscillator
 LPC_SYSCON->MAINCLKUEN = 1;
 while (!(LPC_SYSCON->MAINCLKUEN & 0x01)); // wait to ensure update completed

—Cont’d

 /* Enable flash and watchdog oscillator */

326 Chapter 17

 LPC_SYSCON->PDRUNCFG = ~(WDT_OSC_PD | FLASH_PD | MAIN_REGUL_PD | LP_REGUL_PD);

 /* Copy current run mode power down configuration
 to wake up configuration register so that
 current configuration is restored at wakeup */
 LPC_SYSCON->PDAWAKECFG = LPC_SYSCON->PDRUNCFG;

 /* For deep sleep - retain power to flash, watchdog and reserved */
 LPC_SYSCON->PDSLEEPCFG = ~(FLASH_PD|WDT_OSC_PD|MAIN_REGUL_PD);

 LPC_TMR16B0->TCR = 1; // Enable timer

 SCB->SCR = SCB->SCR | 0x4; // Turn on deep sleep feature
 while(1) {
 __WFI(); // Enter sleep mode
 };
} // end main

void Timer0_Config(void)
{ // Use 16-bit timer 0
 // Enable clock to 16-bit timer 0
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<7);

 LPC_TMR16B0->TCR = 2; // Disable and reset timer
 LPC_TMR16B0->TCR = 0; // Disable timer
 LPC_TMR16B0->PR = 95; // Prescaler set to 0 (TC increment every 96 cycle)
 // Watchdog oscillator will be configured as approx 9600 Hz.
 // By having prescale of 96, the timer increment every 10 ms
 LPC_TMR16B0->PC = 0; // Prescaler counter current value clear
 LPC_TMR16B0->TC = 0; // Timer counter current value clear
 LPC_TMR16B0->MR0 = 199; // Match Register set to "200 - 1"
 // because timer count at 100 Hz,
 // match occur once every second
 LPC_TMR16B0->EMR = (0x2<<4); // Enable match output
 LPC_IOCON->PIO0_8= (2<<0); // Set PIO0_8 to MAT0 output function
 LPC_TMR16B0->MCR = 2; // When match MR0, reset counter
 return;
} // end Timer0_Config

void WAKEUP_IRQHandler(void)
{
 unsigned int regVal;
 int i,j;
 regVal = LPC_SYSCON->STARTSRP0;
 if (regVal != 0)
 {
 LPC_SYSCON->STARTRSRP0CLR = regVal;
 }
 /* Clear the timer match output to 0 */
 LPC_TMR16B0->EMR = LPC_TMR16B0->EMR & ~(1<<0);

(Continued)

Using Low-Power Features in Programming 327

 }
 LPC_GPIO2->DIR = LPC_GPIO2->DIR & ~(0x1); // turn off output to save power
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7); // enable output
 for (i=0; i< 4; i++){
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];

//Toggle bit 7

 for (j=0; j<30;j++) { __ISB(); } // delay
 }
 LPC_GPIO0->DIR = LPC_GPIO0->DIR & ~(1<<7); // turn off output to save power
#endif
 return;
}
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);
 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1; // enable output
 for (i=0; i< 4; i++){
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
 for (j=0; j<30;j++) { __ISB(); } // delay

—Cont’d

328 Chapter 17

Using Low-Power Features in Programming 329
When the counter timer reaches 99, the counter resets and bit 8 of port 0 is driven high by
the timer match output. This triggers the start logic and the wakeup exception. The LED

activity is handled within the wakeup exception handler. After the LED stops blinking, the

LED output is turned off and the processor returns to sleep.

Note that when a debugger is connected to a system, in some microcontrollers the

system design might automatically disable some of the low-power optimizations to allow the

debug operation to be performed correctly. Therefore, when trying to measure the power

consumption of the system, you might need to disconnect the microcontroller system

from the debugger. In some cases, the debugger needs to be disconnected from the

system before powering up the microcontroller to minimize the power consumption,

because the effect of a debug connection to the power management circuit might retain

until the power supply has been disconnected.

CHAPTER 18

Using SVC, PendSV, and Keil RTX Kernel

Introduction

In Chapter 10 we covered the hardware features in the Cortex-M0 processor related to the

operating system. In this chapter we will use the SVC and PendSV features in programming

examples. This chapter also introduces the Keil RTX Kernel, which is included in the Keil

MDK, including the evaluation version.

In practice, the SVC is rarely used directly without the OS. For applications with an embedded

OS, the application programming interface (API) of the OS normally handles these for you.

Nevertheless, the information about using SVC and PendSV can still be useful for developers

of debugging software.

Using the SVC Exception

SuperVisor Call (SVC) is commonly used in an OS environment for application tasks to access

to system services provided by the OS. In general, using the SVC involves the following

process:

1. Set up optional input parameters to pass to the SVC handler in registers (e.g., R0 to R3)

based on programming practices outlined by AAPCS.

2. Execute the SVC instruction.

3. The SVC exception handler starts execution and can optionally extract the address of the

stack frame using SP values.

4. Using the extracted stack frame address, the SVC exception handler can locate and read the

input parameters that are stored as stacked registers.

5. Optionally, the SVC exception handler can also track the immediate value in the executed

SVC instruction using the stacked PC value in the stack frame.

6. The SVC exception handler then carries out the required processing.

7. If the SVC exception handler needs to return a value back to the application task that made

the SVC call, it needs to put the return value back onto the stack frame, usually where the

stacked R0 is located.

8. The SVC exception handler executes an exception return, and the contents of the stack

frame are restored to the register bank.

9. The modified stacked R0 value in the stack frame, which contains the return value of the

SVC handler, is loaded into R0 and can be used by the application task as the return value.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10018-7

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

331

http://dx.doi.org/10.1016/B978-0-12-385477-3.10018-7

332 Chapter 18
Youmight wonder why we need to extract the input parameters from the stack frame, instead of

just using the values in the register bank. The reason is that if another exception with a priority

level higher than the SVC exception occurred during stacking, the other exception handler

would be executed first and it could change the values in registers R0 to R3 and R12 before the

SVC handler is entered. (In Cortex-M processors, exceptions handlers can be normal C

functions; therefore, these registers can be changed.)

Similarly, the return value has to be put into the stack frame. Otherwise, the value stored into

R0 will be lost during the unstacking process of returning from the exception.

In the next step, we will see how to do all of this in a programming example. The following

example is based in Keil MDK and can also be used on the ARM RealView Development Suite.

First, we need to ensure that the “SVC_Handler” has already been defined in the vector table. If

you are using CMSIS-based software packages from microcontroller vendors, the

“SVC_Handler” definition should be included in the vector table already. Otherwise, you might

need to add this to the vector table.

Second, we need to be able to put the input parameters into the right registers and execute

the SVC instruction. With Keil MDK or ARM RVDS, the “__svc” keyword can be used to

define the SVC function including the SVC number (the immediate value in the SVC

instruction), the input parameters, and the return parameter definitions. You can define multiple

SVC functions with different SVC numbers. For example, the following code defined three

SVC function prototypes:
int
int
int
__svc(0x00) svc_service_add(int x, int y);
__svc(0x01) svc_service_sub(int x, int y);
__svc(0x02) svc_service_incr(int x);
Once the SVC functions have been defined, we can use them in our application code. For

example,
z ¼ svc_service_add(x, y);
The code for the SVC handler is separated into two parts in the following example:

• The first part is an assembly wrapper code to extract the starting address of the exception

stack frame and put it to register R0 as an input parameter for the second part.

• The second part extracts the SVC number and input parameters from the stack frame

and carries out the SVC operation in C. The program code might also need to deal with

error conditions if an SVC instruction is executed with an invalid SVC number.

The first half of the SVC handler has to be carried out in assembly because we cannot tell

the stack frame starting location from a C-based SVC handler. Even if we can find out the

current value of the stack pointers, we do not know how many registers would have been

pushed onto the stack at the beginning of C handler.

Using SVC, PendSV, and Keil RTX Kernel 333
Using the embedded assembly feature, the first part of the SVC handler can bewritten as follows:
// S
//
__as
{

M
M
T
B
M
L
B

stac
M
L
B

}

s
#
#
#

/
i
i
i

v

/
i
{

VC handler - Assembly wrapper to extract
stack frame starting address

m void SVC_Handler(void)
OVS
OV
ST
EQ
RS
DR

RS
DR
X

vc_
inc
inc
inc

/ D
nt
nt
nt

oid

/ F
nt

 in

 Sy
 Ua

 x
 z
 pr

 x
 z
 pr
r0, #4
r1, LR
r0, r1
stacking_used_MSP
R0, PSP ; first parameter - stacking was using PSP
R1,¼__cpp(SVC_Handler_main)
R1
X

king_used_MSP

R0, MSP ; first parameter - stacking was using MSP
R1,¼__cpp(SVC_Handler_main)
R1
We use BX instruction to branch instead of using “B __cpp(SVC_Handler_main).” This is

because in case the linker rearranged the positioning of the function order, the BX instruction

will still be able to reach the branch destination.

The second part of the SVC handler used the extracted stack frame starting address as the input

parameter and used it as a pointer to an integer array to access the stacked register values. The

completed example code is listed in the following box:
demo.c
lude "LPC11XX.h"
lude "uart_io.h"
lude <stdio.h>

efine SVC function
__svc(0x00) svc_service_add(int x, int y);
__svc(0x01) svc_service_sub(int x, int y);
__svc(0x02) svc_service_incr(int x);

 SVC_Handler_main(unsigned int * svc_args);

unction declarations
main(void)

t x, y, z;

stemInit(); // System Initialization
rtConfig(); // Initialize UART

= 3; y = 5;
= svc_service_add(x, y);
intf ("3+5 = %d \n", z);

= 9; y = 2;
= svc_service_sub(x, y);
intf ("9-2 = %d \n", z);

(Continued)

 while(1);
}

// SVC handler - Assembly wrapper to extract
// stack frame starting address
__asm void SVC_Handler(void)
{
 MOVS r0, #4
 MOV r1, LR
 TST r0, r1
 BEQ stacking_used_MSP
 MRS R0, PSP ; first parameter - stacking was using PSP
 LDR R1,=__cpp(SVC_Handler_main)
 BX R1
stacking_used_MSP
 MRS R0, MSP ; first parameter - stacking was using MSP
 LDR R1,=__cpp(SVC_Handler_main)
 BX R1
}

// SVC handler - main code to handle processing
// Input parameter is stack frame starting address
// obtained from assembly wrapper.
void SVC_Handler_main(unsigned int * svc_args)
{
 // Stack frame contains:
 // r0, r1, r2, r3, r12, r14, the return address and xPSR

 // - Stacked R0 = svc_args[0]
 // - Stacked R1 = svc_args[1]
 // - Stacked R2 = svc_args[2]
 // - Stacked R3 = svc_args[3]
 // - Stacked R12 = svc_args[4]
 // - Stacked LR = svc_args[5]
 // - Stacked PC = svc_args[6]
 // - Stacked xPSR= svc_args[7]

 unsigned int svc_number;
 svc_number = ((char *)svc_args[6])[-2];
 switch(svc_number)
 {
 case 0: svc_args[0] = svc_args[0] + svc_args[1];
 break;
 case 1: svc_args[0] = svc_args[0] - svc_args[1];
 break;
 case 2: svc_args[0] = svc_args[0] + 1;
 break;
 default: // Unknown SVC request
 break;
 }
 return;
}

 x = 3;
 z = svc_service_incr(x);
 printf ("3++ = %d \n", z);

svc_demo.c—Cont’d

334 Chapter 18

Using SVC, PendSV, and Keil RTX Kernel 335
After the program executes, the UART outputs the expected results generated from the SVC
functions.

The priority level of the SVC exception is programmable. To assign a new priority level to the

SVC exception, we can use the CMSIS function NVIC_SetPriority. For example, if we want to

set the SVC priority level to 0x80, we can use
pe
#
#
#
v

i

NVIC_SetPriority(SVCall_IRQn, 0x2);
The function automatically shifts the priority level value to the implemented bit of the priority

level register (0x2<<6 equals 0x80).

Using the PendSV Exception

Unlike the SVC, the PendSV exception is triggered by writing to the Interrupt Control State

Register (address 0xE000ED04; see Table 9.6). If the PendSV exception is blocked due to an

insufficient priority level, it will wait until the current priority level drops or the blocking (e.g.,

PRIMASK) is removed.

To put the PendSV exception into pending state, we can use the following C code:
SCB->ICSR ¼ SCB->ICSR j (1<<28); // Set PendSV pending status
The priority level of the PendSVexception is programmable. To assign a new priority level to

the PendSVexception, we can use the CMSIS function NVIC_SetPriority. For example, if we

want to set the PendSV priority level to 0xC0, we can use
NVIC_SetPriority(PendSV_IRQn, 0x3); // Set PendSV to lowest level
The function automatically shifts the priority level value to the implemented bit of the priority

level register (0x3<<6 equals 0xC0).

The following code demonstrates the triggering and setup for the PendSVexception. It sets up

a timer exception at high priority and the PendSV exception at lower priority. Each time

the high-priority timer exception is triggered, the timer handler only executes for a short period

of time, carries out essential tasks, and sets the pending status of PendSV. The PendSV is

executed after the timer handler completes and reports to the terminal that the timer exception

has been executed.
ndsv_demo.c
include "LPC11XX.h"
include "uart_io.h"
include <stdio.h>
oid Timer0_Intr_Config(void); // declare timer initialization function

nt main(void)

(Continued)

{
 SystemInit(); // System Initialization
 UartConfig(); // Initialize UART

 NVIC_SetPriority(TIMER_32_0_IRQn, 0x0); // Set Timer to highest level
 NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest level

 // Program timer interrupt at 1 Hz.
 // At 48MHz, Timer trigger every 4800000 CPU cycles
 Timer0_Intr_Config();
 while(1);
}

void PendSV_Handler(void)
{
 printf ("[PendSV] Timer interrupt triggered\n");
 return;
}

void TIMER32_0_IRQHandler(void)
{
 LPC_TMR32B0->IR = LPC_TMR32B0->IR; // Clear interrupt
 SCB->ICSR = SCB->ICSR | (1<<28); // Set PendSV pending status
 return;
}

void Timer0_Intr_Config(void)
{ // Use 32-bit timer 0
 // Enable clock to 32-bit timer 0
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<9);

 LPC_TMR32B0->TCR = 0; // Disable timer
 LPC_TMR32B0->PR = 0; // Prescaler set to 0 (TC increment every cycle)
 LPC_TMR32B0->PC = 0; // Prescaler counter current value clear
 LPC_TMR32B0->TC = 0; // Timer counter current value clear
 LPC_TMR32B0->MR0 = 47999999; // Match Register set to "48 million - 1"
 LPC_TMR32B0->MCR = 3; // When match MR0, generate interrupt and reset
 LPC_TMR32B0->TCR = 1; // Enable timer
 NVIC_EnableIRQ(TIMER_32_0_IRQn); // Enable 32-bit timer 0 interrupt
 return;
}

pendsv_demo.c—Cont’d

336 Chapter 18
With this arrangement, the processing task required by the timer exception is split into two

halves. Because the “printf” process can take a long time, it is executed by the PendSVat a low

priority so that other higher or medium priority exceptions can take place while printf is

running (Figure 18.1). This type of interrupt processing method can be applied to many

applications to help improve the interrupt response of embedded systems.

Another use of the PendSV exception is for context switching in an OS environment; please

refer to Chapter 10.

Thread

Timer

Exception
Priority

High

Low

Thread

PendSV PendSV

IRQ

Thread

Urgent processing task
execute at high priority

without delay.

Less urgent part of the
timer interrupt processing

handled in low priority
PendSV exception

Other interrupt does not
get blocked by less

urgent processing task

Timer
interrupt

processing
partitioned

into two
halves

Timer
interrupt

Timer

Figure 18.1:
Using PendSV to improve a system-level interrupt response.

Using SVC, PendSV, and Keil RTX Kernel 337
Unlike the SVC, the PendSVexception is not precise, which means after the instruction that set

the PendSV exception pending status is executed, the processor can still execute a number of

instructions before the exception sequence takes place. For this reason, PendSV can only work

as a subroutine without any input parameters and output return values.

Using an Embedded OS

When the complexity of applications increases, the application code has to handle more and

more tasks in parallel and it is more and more difficult to ensure such applications run smoothly

without an embedded OS. An embedded OS divides the available CPU processing time into

a number of time slots that carry out different tasks in different time slots. Because the

switching of tasks happens a hundred times or more per second, it appears to the application

that the tasks are running simultaneously.

Many embedded applications do not require an OS. For example, if the applications do not

have to handle many tasks in parallel or if the additional tasks are relatively short so they can

be processed inside interrupt handlers, the use of an embedded OS is not required. For

simple applications, use of an OS could result in unnecessary overhead. For example, the OS

requires extra program size and RAM size, and the OS itself also requires a small amount of

processing time. On the other hand, if an application has a number of parallel tasks and

requires a good response time for each task, then the use of an embedded OS can be very

important.

An embedded OS requires a timer to generate interrupt so that the OS can carry out task

scheduling and system management. On the Cortex-M0, the SysTick timer is dedicated for this

purpose. An embedded OS might also utilize various OS features on the Cortex-M0, like

separate stack pointers for kernel and threads, SVC, and PendSV.

338 Chapter 18
A number of embedded operating systems are available for the Cortex-M0 processor. As an

example, we will look at the Keil Real-Time eXecutive (RTX) kernel.

Keil RTX Real-Time Kernel

Features Overview

The Keil RTX Real-Time kernel is a royalty-free, real-time operating system (RTOS) targeted

for microcontroller applications. Depending on the version of Keil MDK product you are

using, it includes either a precompiled RTX kernel library, or the source code version of the

RTX Kernel. You can also get the RTX Kernel source code as a part of the RL-ARM (Real-

Time Library) product (Figure 18.2). The precompiled version of RTX kernel library is fully

functional and has the same features as the source code version. Even though you are using

evaluation versions of the Keil MDK product, the RTX Kernel provided is functionally

identical to the source code version, so you can try out all the Keil RTX example projects in this

chapter using an evaluation version of the Keil MDK.

The RTX kernel is supported on all Cortex-M processors in addition to traditional ARM

processors such as ARM7 and ARM9. It has the following features:

• Flexible scheduler, which supports preemptive, round-robin, and collaborative scheduling

schemes

• Support for mailboxes, events (up to 16 per task), semaphores, mutex, and timers

• An unlimited number of defined tasks, with a maximum of 250 active tasks at a time

• Up to 255 task priority levels

• Support for multithreading and thread-safe operations

• Kernel aware debug support in Keil MDK

• Fast context switching time

• Small memory footprint (less than 4 KB for the Cortex-M version, less than 5 KB for the

ARM7/9)

In addition, the Cortex-M version of the RTX kernel has the following features:

• SysTick timer support

• No interrupt lockout in theCortex-Mversions (interrupt is not disabled by theOS at any time)
RTX Kernel

TCP/IP
Networking

Flash File
System

CAN
Interface

USB Device
Interface

Real-Time Library

Figure 18.2:
The RL-ARM product.

Using SVC, PendSV, and Keil RTX Kernel 339
The RTX kernel can work with or without the other software components in the RL-ARM

library. It can also work with third-party software products, such as communication protocol

stacks, data processing codecs, and other middleware.

In the RTX kernel, each task has a priority level. Normal tasks can have a priority level

from 1 to 254, with 254 being the most important and level 1 the least important. Priority

level 0 is reserved for the idle task. If a user task is created with priority level 0, it is

automatically changed to level 1 by the task creation function. Priority level 255 is also

reserved. Note that the task priority level arrangement is completely separated from

interrupt priority.

In the RTX environment, each task can be in one of the states described in Table 18.1.
Table 18.1: Task States in RTX Kernel

State Description

RUNNING The task is currently running.
READY The task in the queue of tasks is ready to run. When the current running

task is completed, RTX will select the next highest priority task in the
ready queue and start it.

Waiting WAIT_DLY The task is waiting for a delay to complete (running os_dly_wait()).
WAIT_ITV The task is waiting for an interval to complete (see the period time

interval feature discussed in the latter part of this chapter).
WAIT_OR The task is waiting for at least one event flag. If ANY of the waiting

events occurs, the task is switched to ready state.
WAIT_AND The task is waiting for at least one event flag. If ALL of the waiting events

occur, the task is switched to ready state.
WAIT_SEM The task is waiting for a semaphore.
WAIT_MUT The task is waiting for a mutex (mutual exclusive) to become available.
WAIT_MBX The task is waiting for a mailbox message.

INACTIVE The task has not been started or the task has been deleted.
Each task must be declared with __task keyword. For example, a simple task that toggles an

LED can be written as
__task void blinky(void) {
while(1) {
LPC_GPIO2->MASKED_ACCESS[1] ¼ wLPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
os_dly_wait (50); // delay 50 clock ticks (0.5 second)
}

}

We need to initialize each task before it can be executed. In addition, the OS kernel also

requires initialization steps. Next, we will see how the OS initialization and task initializations

are carried out.

Execute reset
handler

Application specific
system initialization

Reset

Execute C startup
and enter main()

(Note: SystemInit() function might be
called from startup code)

Additional hardware
initialization routine

(Note: this can be carried out within
the OS as a task is necessary)

os_sys_init(init)

OS initialization and start kernel, with
initial task specified as init()

Task initialization
init()

Define application tasks

Task A

Task B

Task C

Figure 18.3:
RTX initialize sequence.

340 Chapter 18
OS Startup Sequence

An application using the RTX kernel has the startup sequence shown in (Figure 18.3).

The init() task is the first task executed by the OS and can be used to create additional

tasks. The name “init()” used in the flowchart is just an example, other names can be used.

The os_sys_init() function initializes and starts the OS. It must be called frommain() and

does not return.

Simple OS Example

In the first example of using the RTX kernel, we will create a simple task that toggles an LED.

The steps for creating the project are the same as they are for creating a project without an OS.

In addition to the usual project options, we also need to enable the RTX kernel option

(Figure 18.4).

Figure 18.4:
RTX kernel option in Keil MDK.

Using SVC, PendSV, and Keil RTX Kernel 341
The project also requires a configuration file called RTX_config.c. This file defines a number of

parameters used by the RTX kernel, including clock frequency settings and stack settings.

An example of the RTX_config.c is provided in Appendix H.5. You can also find this file in

the examples in the Keil MDK installations. You can reuse the RTX_config.c from RTX

examples for Cortex-M0 or Cortex-M3 in your Cortex-M0 project.

You need to edit a few parameters in the RTX_config.c to ensure the setting matches your

project settings. Some of these are described in Table 18.2.

The descriptions for the remaining parameters can be found in the comments in RTX_config.c

in the appendix H.
Table 18.2: Several Example Parameters in RTX_config.c

Value in this Project Descriptions

OS_CLOCK 48000000 Clock frequency
OS_TICK 10000 Time interval between the OS timer tick in us. 10000¼ 10 ms.
OS_TASKCNT 6 Maximum number of concurrent running tasks
OS_PRIVCNT 0 Number of tasks with a user-provided stack
OS_STKSIZE 50 Stack size for tasks (in bytes)
OS_STKCHECK 1 Enables the stack stacking code to detect stack overflow
OS_TIMERCNT 0 Number of user timers
OS_ROBIN 1 Enables round-robin task switching
OS_ROBINTOUT 5 Identifies how long a task will execute before a task switch

342 Chapter 18
The actual code for the application is very simple. To use the OS, we need to use the “RTL.h”

header provided in MDK. In the LED toggling task, we use an OS function os_dly_wait
(50) to produce a delay of 50 OS timer ticks. The LED flashes at a rate of once per second

(toggles twice per second).
blinky.c (with RTX)
#include <RTL.h>
#include "LPC11XX.h"
#define KEIL_MCB1000_BOARD

OS_TID t_blinky; // Declare a task ID for blink

__task void blinky(void) {
 while(1) {
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];//Toggle bit 7
#endif
 os_dly_wait (50); // delay 50 clock ticks
 }
 }

__task void init (void) {
 t_blinky = os_tsk_create (blinky, 1); // Create a task "blinky" with priority 1
 os_tsk_delete_self ();
}

// Switch LED signal (P2_0) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else

 // For LPCXpresso, use P0.7 for LED output

 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);

 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 LedOutputCfg(); // Initialize LED output
 os_sys_init(init); // Initialize OS
} // end main

Using SVC, PendSV, and Keil RTX Kernel 343
For each task (apart from the initial task), a task identifier value is required, and this is defined

with data type OS_TID. This task ID value is assigned when the task is created and is required

for intertask communications, which will be demonstrated later.

Apart fromos_tsk_create(), various other functions canbeused to create tasks (Table18.3).

You can also detect the task ID value using the function shown in Table 18.4.
Table 18.3: Functions to Create New Tasks

Task Creation Functions Description

os_tsk_create Create a new task.
os_tsk_create_ex Create a new task with an argument passing to the new task.
os_tsk_create_user Create a new task with separate stack.
os_tsk_create_user_ex Create a new task with a separate stack and with an argument

passing to the new task.

Table 18.4: Functions to Determine Task ID

Task ID Function Description

os_tsk_self Return the task ID of the task.
After a task has been created, it can also be deleted. For example, the initial task (init) deletes

itself after all the required tasks have been created (Table 18.5).

After a task has been created, you can change the priority of a task (Table 18.6).

Table 18.6: Functions to Manage Task Priority Level

Task Priority Functions Description

os_tsk_prio Change the priority level of a task.
os_tsk_prio_self Change the priority level of a current task.

Table 18.5: Functions to Delete Task

Task Delete Functions Description

os_tsk_delete Delete a task.
os_tsk_delete_self Delete the task itself.

344 Chapter 18
Details of each OS function can be found on the Keil web site: RL-ARM User’s Guide.

Intertask Communications

In most complex applications, there can be various interaction between tasks. Instead of using

polling loops to check the status of shared variables, we should use the intertask communi-

cation features provided in the OS. Otherwise, a task waiting for input from another task will

stay in the ready task queue and could be executed when a time slot is available. This can end

up wasting the processing time of the processor.

Most embedded OSs provide a number of methods to handle intertask communications. For

example, a simple handheld device might have the tasks and interactions shown in (Figure 18.5).
Key pad task

User interface task

LCD display
functions

event

Device functional
task

UART
console task messages

Device functional
task

Device functional
task

event

event

event

mutex

Figure 18.5:
Interactions between tasks in an example embedded project.

Using SVC, PendSV, and Keil RTX Kernel 345
In Keil RTX kernel, the communication between tasks can be handled by the following:

• Events

• Mailbox (messages)

• Semaphore

• Mutual exclusive (MUTEX)

You can also combine these communication channels and use shared data to handle data

transfers between tasks. Using these OS-provided functions correctly allows the task schedule

in the OS kernel to understand the task processing activities and allow the tasks to be scheduled

efficiently.

Event Communications

In RTX kernel, each task can have up to 16 event inputs. Each event input is represented

by a bit in a 16-bit event pattern. The following example demonstrates the most simple

event communicationdtwo tasks are created, one (eventgen) generates events regularly to

the blinky task. The blinky task then toggles the LED when an event is received

(Figure 18.6).

The code for the event communication demonstration is shown next. (The LED I/O

configuration code is the same as in the previous example and is omitted from the listing.)
Event Generator (eventgen)

Wait 50 ticks

Send event
0x0001 Wait for event

0x0001

Toggle LED

Blinky task

Figure 18.6:
Simple event communication between two tasks.

blinky_event.c (the LED I/O configuration code omitted as it is same as previous)
#include <RTL.h>
#include "LPC11XX.h"

OS_TID t_eventgen; // Declare a task ID for event generator
OS_TID t_blinky; // Declare a task ID for blink

__task void blinky(void) {
 while(1) {
 os_evt_wait_and (0x0001, 0xffff); // wait for an event flag 0x0001, no timeout
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
 }
 }

__task void eventgen(void) { // Event generator
 while (1) {
 os_dly_wait(50);
 os_evt_set (0x0001, t_blinky); // Send a event 0x0001 to blinky task
 }
 }

__task void init (void) {
 t_blinky = os_tsk_create (blinky, 1); // Create a task "blinky" with priority
1
 t_eventgen = os_tsk_create (eventgen, 1); // Create a task "eventgen" with
priority 1
 os_tsk_delete_self ();
}

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 LedOutputCfg(); // Initialize LED (GPIO #2, bit0) output
 os_sys_init(init); // Initialize OS
} // end main

346 Chapter 18
The event functions in the Keil RTX kernel allow a task to wait for multiple events and

continue if any one of the events is asserted (OR arrangement) or continue if all of the required

events are asserted (AND arrangement) (Table 18.7).
Table 18.7: Functions for Event Communications

Event Functions Description

os_evt_set Send an event pattern to a task
os_evt_clr Clear an event from a task.
os_evt_wait_and Wait until all the required flags are received.
os_evt_wait_or Wait until any of the required flags are received.
os_evt_get Obtained the bit pattern value of the event received.
isr_evt_set Set the event to a task from interrupt service routine.

Using SVC, PendSV, and Keil RTX Kernel 347
For example, a task that was waiting for an event might need to respond differently based

on the source of the received event. In this case, you can use each bit of the event signal for

each event source, and then detect which event it received using the os_evt_get function

(Figure 18.7).
Task X

Task Y

Task Z

os_evt_wait_or(0x07,
0xFFFF)

E = os_evt_get()

0x01

0x02

0x04

E bit-0 = 1? Response to
task X

E bit-1 = 1? Response to
task Y

E bit-2 = 1? Response to
task Z

Figure 18.7:
Using the os_evt_get() function to detect which task generates the event.
Mutual Exclusive

Very often, multiple tasks need access to the same resource such as hardware peripherals. In

such cases, we can define mutual exclusive (MUTEX) to ensure that only one task can

access to a hardware resource at one time (Figure 18.8). The following example shows two
Task 1 UartLock

MUTEX

Task 2

UART
(printf)

Figure 18.8:
Using the MUTEX to control hardware resource sharing.

348 Chapter 18
tasks both using the UART interface. To prevent error, the MUTEX is used so that only one

printf can be executed at a time.

The program code to demonstrate MUTEX is as follows:
mutex_demo.c
#include <RTL.h>
#include "LPC11XX.h"
#include "uart_io.h"
#include <stdio.h>

OS_TID t_task1; // Declare a task ID for task1
OS_TID t_task2; // Declare a task ID for task2
OS_MUT UartLock; // Declare a MUTEX for Uart access

__task void task1(void) {
 while(1) {
 os_dly_wait(50);
 os_mut_wait(UartLock, 0xFFFF); // Wait for UART access lock,
 // with indefinite timeout period
 printf ("Task 1 running.\n");
 os_mut_release(UartLock); // Finished using UART, MUTEX release
 }
 }

__task void task2(void) {
 while (1) {
 os_dly_wait(50);
 os_mut_wait(UartLock, 0xFFFF); // Wait for UART access lock,
 // with indefinite timeout period
 printf ("Task 2 running.\n");
 os_mut_release(UartLock); // Finished using UART, MUTEX release
 }
 }

__task void init (void) {os_mut_init(UartLock);
 t_task1 = os_tsk_create (task1, 1); // Create a task "task1" with priority 1
 t_task2 = os_tsk_create (task2, 1); // Create a task "task2" with priority 1

 os_tsk_delete_self ();
}

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 UartConfig(); // Configure UART
 os_sys_init(init); // Initialize OS
} // end main

Using SVC, PendSV, and Keil RTX Kernel 349
In this example we did not define a timeout value while waiting for the lock. You can

define a time out value when using the os_mut_wait function. The os_mut_wait
function return value can be used to determine if the mutex lock has been gained

successfully (Table 18.8).
Table 18.8: Functions for the Mutual Exclusive Operation

Mutex Functions Description

os_mut_init Initialize a mutex
os_mut_wait Attempt to obtain a mutex lock, if the mutex is locked

by another task, wait until the mutex is free.
os_mut_release Release a locked mutex.
Semaphore

The semaphore feature is similar to MUTEX. Whereas MUTEX limits just one task access

to a shared resource, semaphore can limit a fixed number of tasks to access a pool of

shared resources. Imagine that only a limited number of toys are available in a playroom,

and several children want to play with these toys. A token system can be set up so that

only the children who get the token can enter the playroom. Once a child finishes playing,

he or she returns the token, leaves the room, and another child can then take the token and

enter the playroom. This is how a semaphore works. A semaphore object needs to be

initialized to the maximum number of tasks (i.e., number of toys available) that can use the

shared resource, and before each task can use the resource, it needs to request a token. If

no tokens are left, the task must wait. The token must be returned when the task finishes

with the shared resource.

The mutex is a special case of semaphore for which the maximum number of available tokens

is 1. To illustrate, we can modify the last MUTEX example to use the semaphore feature

instead:
semaphore_demo.c
#include <RTL.h>
#include "LPC11XX.h"
#include "uart_io.h"
#include <stdio.h>

OS_TID t_task1; // Declare a task ID for task1
OS_TID t_task2; // Declare a task ID for task2
OS_SEM UartLock; // Declare a Semaphore for Uart access

(Continued)

 os_dly_wait(50);
 os_sem_wait(UartLock, 0xFFFF); // Wait for UART access lock,
 // with indefinite timeout period
 printf ("Task 1 running.\n");
 os_sem_send(UartLock); // Finished using UART, increment semaphore
 }
 }

__task void task2(void) {
 while (1) {
 os_dly_wait(50);
 os_sem_wait(UartLock, 0xFFFF); // Wait for UART access lock,
 // with indefinite timeout period
 printf ("Task 2 running.\n");
 os_sem_send(UartLock); // Finished using UART, increment semaphore
 }
 }

__task void init (void) {
 os_sem_init(UartLock, 1); // Create a semaphore called UartLock with
 // initial count of 1
 t_task1 = os_tsk_create (task1, 1); // Create a task "task1" with priority 1
 t_task2 = os_tsk_create (task2, 1); // Create a task "task2" with priority 1
 os_tsk_delete_self ();
}

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 UartConfig(); // Configure UART
 os_sys_init(init); // Initialize OS
} // end main

__task void task1(void) {
 while(1) {

semaphore_demo.c—Cont’d

350 Chapter 18
Table 18.9 lists the semaphore functions available in RTX.
Table 18.9: Functions for Mutual Exclusive Operation

Semaphore
Functions

Description

os_sem_init Initializes a semaphore with a value.
os_sem_wait Attempts to obtain a semaphore token. If the semaphore value is 0, waits

until another task releases a token.
os_sem_send Releases a semaphore token (value increases by 1).
isr_sem_send Releases a semaphore token (increases the number of tokens in

a semaphore) from an interrupt service routine.

Using SVC, PendSV, and Keil RTX Kernel 351
Mailbox Messages

For transferring of more complex information between tasks, we can use the mailbox feature

in the Keil RTX kernel. This feature allows us to define a data set in the memory used by one task

and then transfer the pointer of the data set to another task. A mailbox in Keil RTX supports

multiple messages, so several tasks can send messages to the same mailbox at the same time

without losing any information. Themaximumnumber ofmessages amailbox can hold is defined

when the mailbox is declared. In most cases, a capacity of 20 messages should be sufficient.

In the following example, three tasks are defined: two for creating and sending messages

and one for receiving and printing out the messages. The message contents are created in

a memory pool for fixed block allocation. The pointers to the messages‘ contents are trans-

ferred using the mailbox (Figure 18.9).
send_msg_1
(Task 1)

mpool
(Memory pool for

message contents)

Print_msg
(Task 3)

send_msg_2
(Task 2)

mailbox1
(Mailbox)

Mailbox
message

Message
contents

Figure 18.9:
A simple demonstration of using the mailbox feature to transfer messages.
The two tasks that create messages generate messages regularly, with each message containing

two words. The messages are stored in a memory buffer called “mpool”, a fixed block-size

memory pool. Each time a message is created, the task needs to allocate space in the memory

pool to hold the message content. The pointer to the location of the message content is then sent

to the third task by the mailbox.
mailbox_demo.c
#include <RTL.h>
#include "LPC11XX.h"
#include "uart_io.h"
#include <stdio.h>

OS_TID t_sendmsg_1; // Declare a task ID for task1
OS_TID t_sendmsg_2; // Declare a task ID for task2
OS_TID t_printmsg; // Declare a task ID for printmsg

(Continued)

// each message contains two integers
_declare_box(mpool, 20, 16);

__task void send_msg_1(void) { // sender of message
 unsigned int *msg;
 int counter=0;
 while(1) {
 os_dly_wait(100);
 msg = _alloc_box(mpool); // allocate block for message content
 if (*msg == 0) {
 printf ("_alloc_box failed\n");
 while (1);}
 msg[0] = counter;// Message
 msg[1] = 0x1234; // Message
 os_mbx_send(mailbox1, (void *) msg, 0xFFFF); // Send to mail box
 counter ++;
 }
 }

__task void send_msg_2(void) { // sender of message
 unsigned int *msg;
 int counter=0x100;
 while(1) {
 os_dly_wait(100);
 msg = _alloc_box(mpool); // allocate block for message content
 if (*msg == 0) {
 printf ("_alloc_box failed\n");
 while (1);}
 msg[0] = counter;// Message
 msg[1] = 0x4567; // Message
 os_mbx_send(mailbox1, (void *) msg, 0xFFFF); // Send to mail box
 counter ++;
 }
 }

__task void print_msg(void) { // receiver of message
 unsigned int *msg;
 unsigned int received_values[2];
 while (1) {
 os_mbx_wait(mailbox1, (void *)&msg, 0xFFFF);
 received_values[0] = msg[0];
 received_values[1] = msg[1];
 _free_box(mpool, msg);
 printf ("Received values %x, %x\n",received_values[0],received_values[1]);

}

}

// define a memory pool for message box
os_mbx_declare (mailbox1, 16);

// Declare 16 blocks of 20 bytes for message contents

mailbox_demo.c—Cont’d

352 Chapter 18

 t_sendmsg_1= os_tsk_create (send_msg_1,1);
 // Create a task "send_msg_2" with priority 1
 t_sendmsg_2= os_tsk_create (send_msg_2,1);
 // Create a task "print_msg" with priority 1
 t_printmsg = os_tsk_create (print_msg, 1);
 os_tsk_delete_self ();
}

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 UartConfig(); // Configure UART
 os_sys_init(init); // Initialize OS
} // end main

 // Create a task "send_msg_1" with priority 1

 // Initial fixed block size memory pool, // block size is 20
 status = _init_box (mpool, size of (mpool), 20);
 if (status != 0) {

printf ("_init_box failed\n");
while (1);}

 os_mbx_init(mailbox1, size of(mailbox1)); // Initialize mailbox1

__task void init (void) {
 int status;

Using SVC, PendSV, and Keil RTX Kernel 353
The third task (print_msg) receives the message, and then from the pointer received, it can ex-

tract themessage contents frommpool and free the allocated space after themessagecontent is read.

A number of RTX functions were used in this example. These functions are briefly described in

Table 18.10.
Table 18.10: Functions for Mailbox and Messaging Operation

Mailbox
Functions

Description

os_mbx_declare Create a macro to define a mailbox object.
os_mbx_init Initialize a mailbox object.
os_mbx_send Send a message pointer to a mailbox object.
os_mbx_wait Wait for a message from a mailbox object. If a message is available, get the

pointer of the message.
os_mbx_check Check how many messages can still be added to a mailbox object (it is not

used in the example).
_declare_box Declare a memory pool for fixed block size allocation.
_init_box Initialize a fixed block size memory pool.
_alloc_box Allocate a block of memory from the memory pool.
_free_box Return the allocated memory block to the memory pool.

354 Chapter 18
To run this example, OS_STKSIZE setting in RTX_config.c might need to be adjusted (a value

of 100 was used, and it worked successfully).

A number of additional RTX functions are available for accessing the mailbox from interrupt

service routines (Table 18.11).
Table 18.11: Functions for Mailbox and Messaging Operation from an Interrupt Service

Routine

Mailbox
Functions

Description

isr_mbx_check Check available space in the mailbox from the interrupt service routine.
isr_mbx_receive Receive a mailbox message in an interrupt service routine.
isr_mbx_send Send a mailbox message in an interrupt service routine.
Periodic Time interval

In addition to the delay function os_dly_wait, you can also set up a task so that it wakes up
periodically using the periodic time interval feature (Table 18.12). Different from the

os_dly_wait, the periodic time interval feature can ensure the task is awake between a fixed

number of ticks, even if the task’s running time is more than one tick (Figure 18.10).
Using delay (os_dly_wait)

Using time interval
(os_itv_wait)

100 ticks

Run

n ticks 100 ticks

Run

n ticks

Run
n ticks

100 ticks

Run
n ticks

Run

Run

n ticks

n ticks

100 ticks

Figure 18.10:
The difference between a delay function and a time interval function.

Table 18.12: Periodic Time Interval Functions

Mailbox Functions Description

os_itv_set Set the periodic time interval value.
os_itv_wait Wait until the periodic time interval reaches its value.
We can modify the previous blinky example to create an example for the periodic

time interval version fairly easily. The only change is the delay setup code inside the

blinky task:

blinky.c (using time interval feature)
#include <RTL.h>
#include "LPC11XX.h"

OS_TID t_blinky; // Declare a task ID for blink

__task void blinky(void) {
os_itv_set(50); // set time interval to 50

 while(1) {
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
 os_itv_wait(); // wait until time interval reach 50
 }
 }

__task void init (void) {
 t_blinky = os_tsk_create (blinky, 1); // Create a task "blinky" with priority 1

 os_tsk_delete_self ();
}

// Switch LED signal (P2_0) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
 return;
} // end LedOutputCfg

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 LedOutputCfg(); // Initialize LED (GPIO #2, bit0) output
 os_sys_init(init); // Initialize OS
} // end main

Using SVC, PendSV, and Keil RTX Kernel 355
Note: You cannot mix periodic time interval functions and os_dly_wait() functions in

a single task.

356 Chapter 18
Other RTX Features

In addition to the mentioned functions, the RTX kernel library has a number of other features

and functions that are not covered in the previous examples. Table 18.13 shows some of the

additional functions in the RTX kernel.
Table 18.13: Some Additional Functions Provided in the RTX Kernel

Functions Description

tsk_lock Disable RTX kernel task switching (for a program sequence that is not
thread safe).

tsk_unlock Enable RTX kernel task switching.
os_tmr_create Set up and start a timer.
os_tmr_call Call this user-defined function when a timer created by os_tmr_create is

reached.
os_tmr_kill Delete a timer created by os_tmr_create.
The details of the available OS functions are presented on the Keil web site within the

RL-ARM User’s Guide.

Application Example

Using the RTX kernel, it is simple to develop applications that have to deal with several

concurrent tasks. For example, the dial control interface covered in Chapter 15 can be modified

to use RTX and add LED toggling with variable speed (controlled by the dial) as a separate task

(Figure 18.11).
PIOINT3_IRQHandler
(dial movement detection)

control
(task for UART display)

event

blinky
(task for LED toggling)

DialValue

(global
variable)

Figure 18.11:
Dial control interface example using RTX.
In this example, the event is generated from an interrupt handler; therefore, the

function isr_evt_set is used instead of os_evt_set.

dial_ctrl.c (using RTX)
#include <RTL.h>
#include <LPC11XX.h>
#include <stdio.h>
#include "uart_io.h"
//#define KEIL_MCB1000_BOARD

OS_TID t_blinky; // Declare a task ID for LED blinky
OS_TID t_ctrl; // Declare a task ID for main control

// Function declarations
void DialIOcfg(void); // Configure Port 3 for dial interface
void LedOutputCfg(void); // Set I/O pin connected to LED as output

// Global variable for communicating between main program and ISR
volatile int DialValue; // Dial value (0 to 0xFF)
short int last_state; // Last state of I/O port signals

__task void blinky(void) {
 while(1) {
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1]; // Toggle bit 0
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7];//Toggle bit 7

#endif
 os_dly_wait (3 + (DialValue>>2)); // delay
 }
 }

__task void control(void) {
 DialValue=0;
 last_state=(LPC_GPIO3->DATA & 0xC)>>2;
 // capture and save signal levels for next compare
 while(1) {
 os_evt_wait_or(0x0001, 0xFFFF);
 printf("%d\n",DialValue);
 }
 }

__task void init (void) {
 t_blinky = os_tsk_create (blinky, 1); // Create a task "blinky" with priority 1
 t_ctrl = os_tsk_create (control, 1); // Create a task "blinky" with priority 1
 os_tsk_delete_self ();
}

int main(void)
{

(Continued)

Using SVC, PendSV, and Keil RTX Kernel 357

 SystemInit(); // Switch Clock to 48MHz
 UartConfig(); // Initialize UART
 DialIOcfg(); // IO port and interrupt setup
 LedOutputCfg();// Set I/O pin connected to LED
 printf ("\nDial test\n"); // Test message
 os_sys_init(init); // Initialize OS
} // end main

void DialIOcfg(void)
{ // The inputs are P3.2 and P3.3
 // Enable clock to GPIO block (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<6);
 // PIO1_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=nDCD)
 LPC_IOCON->PIO3_2 = (0x0) + (0<<3) + (1<<5);
 // PIO1_6 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=RI)
 LPC_IOCON->PIO3_3 = (0x0) + (0<<3) + (1<<5);
 // Set direction of P3.2 and P3.3 as input
 LPC_GPIO3->DIR = LPC_GPIO3->DIR & ~(0x0C); // Clear bit [3:2] to 0
 // Set interrupt of P3.2 and P3.3 as edge sensitive
 LPC_GPIO3->IS = LPC_GPIO3->IS & ~(0x0C); // Clear bit [3:2] to 0

 LPC_GPIO3->IC = LPC_GPIO3->IC | (0x0C); // write bit [3:2] to 1
 // Clear any previous occurred interrupt for port 3
 NVIC_ClearPendingIRQ(EINT3_IRQn);
 // Set priority of port 3 interrupt
 NVIC_SetPriority(EINT3_IRQn, 0);
 // Enable interrupt at NVIC
 NVIC_EnableIRQ(EINT3_IRQn);
 return;
}
// Switch LED signal (P0_7) to output port with no pull up or pulldown
void LedOutputCfg(void)
{
 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

 // Set interrupt of P3.2 and P3.3 for both rising and falling edge
 LPC_GPIO3->IBE = LPC_GPIO3->IBE | (0x0C); // Set bit [3:2] to 1
 // Set interrupt mask of P3.2 and P3.3
 LPC_GPIO3->IE = LPC_GPIO3->IE | (0x0C); // Set bit [3:2] to 1

 // Clear any previous interrupt of P3.2 and P3.3

#ifdef KEIL_MCB1000_BOARD

dial_ctrl.c (using RTX)—Cont’d

358 Chapter 18

 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

 // Initial bit 0 output is 0
 LPC_GPIO2->MASKED_ACCESS[1] = 0;
 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;
#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);

#endif
 return;

} // end LedOutputCfg

// Interrupt handler for port 3
void PIOINT3_IRQHandler(void)

{
 short int new_state;
 // Pattern for determine the direction of changes
 // Clock wise pattern is 00 -> 01 -> 11 -> 10 -> 00 -> ...
 // Anti Clock wise pattern is 00 -> 10 -> 11 -> 01 -> 00 -> ...
 // After merging the new_state and last_state, clock wise can be
 // pattern b0100(4), b1101(13), b1011(11) and b0010(2)
 // anti-clockwise can be pattern b1000(8), b1110(14),b0111(7) and b0001(1)
 const signed char Pattern[] = { 0,-1,1,0, 1,0,0,-1, -1,0,0,1, 0,1,-1,0};
 // Clear asserted interrupt P3.2 or P3.3
 LPC_GPIO3->IC = LPC_GPIO3->MIS & (0x0C); // write bit [3:2] to 1
 // Extract bit 3 and 2 and combine with last state
 new_state = (LPC_GPIO3->DATA & 0xC) | last_state;
 // Obtain increment/decrement info from new_state and calculate new DialValue
 DialValue = (DialValue + Pattern[new_state]) & 0xFF;
 // Save the current state for next time
 last_state = (new_state & 0xC) >> 2;
 isr_evt_set(0x1, t_ctrl);// Send event
 return;
}

Using SVC, PendSV, and Keil RTX Kernel 359

CHAPTER 19

Getting Started with the ARM RealView
Development Suite

Overview

In addition to the ARM Keil Microcontroller Development Kit (MDK), ARM also provides

another development suite called the RealView Development Suite (RVDS). Although it is

based on the same C compiler, RVDS is targeted at the higher end of the market and has the

following additional features:

• Supports all modern ARM processors including Cortex-A9/A8/A5

• RealView debugger provides multiprocessor debug support and full CoreSight debug support

• Offers profiler-driven compilation

• Supports Windows, Linux, and Unix

• Offers instruction set simulation (ISS) models

• Offers real-time system models (fast models)

When using RVDS, instead of targeting a microcontroller device, you target the compilation

for a processor or ARM architecture version. This results in a number of differences

between command line options in RVDS and Keil MDK. In this chapter, we will cover the

basic steps of using RVDS to create your programs.

Typically, the software compilation flowusingRVDS can be summarized as shown in Figure 19.1.

An integrated development environment (IDE) called the ARMWorkbench IDE is included in

RVDS. It is based in the open-source Eclipse IDE. You can also use RVDS either with the IDE

or on the command line. In this chapter, we will focus mainly on the command line operation.

Details of using the ARM Workbench IDE are covered in the ARM Workbench IDE User

Guide (document DUI0330, reference 5). It can be downloaded from the ARMweb site (http://

informcenter.arm.com).

Simple Application Example

Using RVDS on the command line is straightforward. Based on the CMSIS version of the

blinky example, we can compile the project with a few commands. First, we collect all the files

necessary to build the application into a project folder. The folder named “Project” shown in

Figure 19.2 is only an example; you can use other folder names.
The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10019-9

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

361

http://informcenter.arm.com
http://informcenter.arm.com
http://dx.doi.org/10.1016/B978-0-12-385477-3.10019-9

Assembler

(armasm)

C Compiler

(armcc /

armcpp)

.c
.cpp

.s

Linker

(armlink)

C source
code

Assembly
source code

.o

.o

Object files

Object files

.elf

Executable
image

.scat
Scatter loading file

(memory layout
details, optional)

Instruction Set

Simulator

Flash

programmer

ARM
Cortex-M0

Microcontroller

Flash

Debugger

(RVD)

Testing by
simulation

Testing using
real hardware

Utility

(fromelf)

Binary
file Hex

file

Disassembled
listing

.axf

Figure 19.1:
Example of the software generation flow in RVDS.

Project
startup_LPC11xx.s

blinky.c

(Start up code including
vector table)

LPC11xx.h

(SystemInit function)

(Application code)

system_LPC11xx.c
system_LPC11xx.h

core_cm0.h

(Hardware register
definitions, exception

type definitions)

(Processor register
definitions, processor
feature access functions)

(Declare SystemInit
function)

Figure 19.2:
Blinky project in RVDS.

362 Chapter 19

Getting Started with the ARM RealView Development Suite 363
In this example, we are going to reuse the program code from the previous Keil MDK projects

for NXP LPC1114. If you have Keil MDK installed, you can find these files in the locations

identified in Table 19.1.
Table 19.1: Locations of LPC1114 Support Files in Keil MDK Installation

File Location (assuming you have Keil MDK installed in C:\KEIL)

startup_LPC11xx.s C:\Keil\ARM\Startup\NXP\LPC11xx
system_LPC11xx.c C:\Keil\ARM\Startup\NXP\LPC11xx, or Appendix H of this book
system_LPC11xx.h C:\Keil\ARM\INC\NXP\LPC11xx, or Appendix H of this book
LPC11xx.h C:\Keil\ARM\INC\NXP\LPC11xx
Blinky.c See example code in Chapter 15
core_cm0.h C:\Keil\ARM\INC
If you do not have Keil MDK software installed, you can download the required files from the

NXP web site at http://ics.nxp.com/support/documents/microcontrollers/zip/code.bundle.

lpc11xx.keil.zip. In addition, you can also download the generic CMSIS support files from

www.onarm.com.

Once you have copied the files into the project (see the note on the include path that follows),

we can compile the project with the following commands:
As
arma

Co
armc

Co
armc

Li
arml

Ge
from
semble startup code
sm -g --cpu Cortex-M0 startup_LPC11xx.s -o startup_LPC11xx.o

mpile application code
c -c -g --cpu Cortex-M0 blinky.c -o blinky.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

mpile system initialization code
c -c -g --cpu Cortex-M0 system_LPC11xx.c -o system_LPC11xx.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

nking stage
ink startup_LPC11xx.o system_LPC11xx.o blinky.o --ro-base 0x0 --rw_base
0x10000000 "--keep¼startup_LPC11xx.o(RESET)" "--first¼startup_LPC11xx.o(RESET)"
--map --entry¼Reset_Handler -o blinky.elf

nerate disassembled listing for checking
elf -c blinky.elf eoutput¼list.txt
In the preceding example, we used the files from Keil MDK directly by adding an include

path using the “-I” option. In this way, we do not have to copy the files across to the local

directory.

The commonly used options for the program generation flows in RVDS include those

described in Tables 19.2, 19.3, 19.4, and 19.5.

http://ics.nxp.com/support/documents/microcontrollers/zip/code.bundle.lpc11xx.keil.zip
http://ics.nxp.com/support/documents/microcontrollers/zip/code.bundle.lpc11xx.keil.zip
http://www.onarm.com

Table 19.2: Commonly Used Options for armasm

armasm Options Descriptions

--cpu Cortex-M0 Define the processor type.
-I <directory> Define the search path for include files.
-g Generate an object with debug information (DWARF debug table).
-o <file> Output an object file name.
--list <file> Output a detailed listing of the assembly language produced.
--thumb Use the UAL Thumb assembly syntax (equivalent to the use of the

THUMB directive in the assembly header).

Table 19.3: Commonly Used Options for armcc

armcc Options Descriptions

--cpu Cortex-M0 Define the processor type.
-I <directory> Define the search path for include files.
-c Perform the compile step, but not the link step.
-g Generate the object with debug information (DWARF debug

table).
-o <file> Output an object file name.
--list <file> Output a detailed listing of the assembly language produced.
--thumb Target the Thumb instruction set. It is not required if you have

specified the processor type to Cortex-M0, as it only supports
Thumb.

-Ospace/-Otime Optimize for code size or execution speed.
-O0/-O1/-O2/-O3 Set the optimization level. If this option is not used, the compiler

uses level 2 by default.
--multiply_latency¼<n> If you are using a Cortex-M0 processor with a small multiplier

(e.g., Cortex-M0 in minimum size configuration), the multiply
instruction take 32 cycle. By using “--multiply_latency ¼ 32”,
option the C compiler can optimize the code better.

Table 19.4: Commonly Used Options for armlink

armlink options Descriptions

--keep¼<object>(<section>) Specify that the section inside the specific object file must not be removed
by an unused section elimination.

--first¼<object>(<section>) Specify the section to be put in the beginning of the execution region.
--scatter <file> Specify the scatter loading file (memory layout information).
--map Enable printing of a memory map.
--entry¼<location> Specify the entry point of the image (program starting point).
--ro_base¼<address> Specify the starting address of the execution region.
--rw_base¼<address> Specify the starting address of the RW region (e.g., RAM).
-o <file> Output an image file name.

364 Chapter 19

Table 19.5: Commonly Used Options for fromelf

fromelf Options Descriptions

-c / --text -c Create a disassembled listing (output from this operation cannot be fed back to armasm).
-d / --text -d Print the contents of the data sections.
-s / --text -s Print the symbol table and versioning table.
-e / --text -e Decode the exception table information for the object. Use with -c when disassembling

the image.
--disassemble Create a disassembled versionof the image. (You can reassemble the output using armasm.)
--bin Produce a binary file (for example, fromelf --bin --output¼outfile.bin infile.axf).
--i32 Generate a hex file in the Intel Hex32 format.
--m32 Generate the Motorola 32-bit format (32-bit S-record).
--vhx Generate the Verilog Hex format.
--output¼<file> Specify an output file.

Getting Started with the ARM RealView Development Suite 365
Additional details of the available command line options can be found in the following

documents: (Note: These document names are for RealView Development Suite 4.0. other

versions of RVDS might have different document names.)

• armasm: RealView Compilation Tools Assembler Guide

• armcc: RealView Compilation Tools Compiler User Guide

• armlink: RealView Compilation Tools Linker User Guide

• fromelf: RealView Compilation Tools Utilities Guide

All of these documents are automatically installed on your machine when you install RVDS, or

alternatively you can find them on the ARM web site at http://informcenter.arm.com.

Apart from using a batch file (for Windows platforms) or shell scripts (for Linux/Unix plat-

forms), users of Linux, UNIX, or Windows with Cygwin (or similar) environments can also

create files to handle the compile process.

Using the Scatter Loading File

In the previous example, we used command line options to specify the address range of the

read-only region (flash/ROM) and read-write region (RAM). This is fine for many simple

projects. However, for applications with a more complex memory layout, or if you want to

arrange the memory map in specific ways, a scatter loading file should be used to describe the

layout of the memory system.

To use the scatter-loading feature, we use the --scatter option in armlink. Using the previous

blinky example, we can convert the program generation flow to use scatter loading:
As

Co
semble startup code
armasm -g --cpu Cortex-M0 startup_LPC11xx.s -o startup_LPC11xx.o

mpile application code

http://informcenter.arm.com

armc

Co
armc

Li
arml

Ge
from

sc
LO
{

}

366 Chapter 19
c -c -g --cpu Cortex-M0 blinky.c -o blinky.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

mpile system initialization code
c -c -g --cpu Cortex-M0 system_LPC11xx.c -o system_LPC11xx.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

nking stage
ink startup_LPC11xx.o system_LPC11xx.o blinky.o --scatter scatter.scat "--
keep¼startup_LPC11xx.o(RESET)" --entry Reset_Handler --map -o blinky.elf

nerate disassembled listing for checking
elf -c -e -d -s blinky.elf --output¼list.txt
In this example, the scatter loading file we used is called scatter.scat:
atter.scat
AD_REGION 0x00000000 0x00200000
; flash memory start at 0x00000000
;; Maximum of 48 exceptions (48*4 bytes == 0xC0)
VECTORS 0x0 0xC0
{
 ; Provided by the user in startup_LPC11xx.s
 * (RESET,+FIRST)
}

CODE 0xC0 FIXED
{ ; The rest of the program code start from 0xC0
 * (+RO)
}

DATA 0x10000000 0x2000
{ ; In LPC1114, the SRAM start at 0x10000000
 * (+RW, +ZI)
}
Using the scatter loading file, the “RESET” section in the startup code is allocated to the

beginning of the memory. As a result, we do not need to use the --first option when running

armlink. For systems with multiple ROM regions, you can add memory sections and assign

different objects to different memory sections.

The scatter loading file can also be used to define stack memory and heap memory. This will be

demonstrated in the next example when the vector table is coded in C. For this example, this

step is not required because the stack and heap are defined in the startup code.

Details of scatter loading syntax can be found in the RealView Compilation Tools Developer

Guide (reference 9).

Example with Vector Table in C

In the Keil MDK, the default startup codes for ARM microcontrollers are written in assembly.

However, you can also create the vector table in C. In the following example, we will convert

Getting Started with the ARM RealView Development Suite 367
the blinky example to use a C vector table. Based on the exception vectors definition for NXP

LPC1114, the following file “exceptions.c” is created:
exceptions.c
//***
// Function definitions
//***

static void Default_Handler(void);
// The following functions are declared with weak attributes.
// If another handler with the same name is presented it will be overridden.
void __attribute__ ((weak)) NMI_Handler(void);
void __attribute__ ((weak)) HardFault_Handler(void);
void __attribute__ ((weak)) SVC_Handler(void);
void __attribute__ ((weak)) PendSV_Handler(void);
void __attribute__ ((weak)) SysTick_Handler(void);
void __attribute__ ((weak)) WAKEUP_IRQHandler(void);
void __attribute__ ((weak)) SSP1_IRQHandler(void);
void __attribute__ ((weak)) I2C_IRQHandler(void);
void __attribute__ ((weak)) TIMER16_0_IRQHandler(void);
void __attribute__ ((weak)) TIMER16_1_IRQHandler(void);
void __attribute__ ((weak)) TIMER32_0_IRQHandler(void);
void __attribute__ ((weak)) TIMER32_1_IRQHandler(void);
void __attribute__ ((weak)) SSP0_IRQHandler(void);
void __attribute__ ((weak)) UART_IRQHandler(void);
void __attribute__ ((weak)) ADC_IRQHandler(void);
void __attribute__ ((weak)) WDT_IRQHandler(void);
void __attribute__ ((weak)) BOD_IRQHandler(void);
void __attribute__ ((weak)) PIOINT3_IRQHandler(void);
void __attribute__ ((weak)) PIOINT2_IRQHandler(void);
void __attribute__ ((weak)) PIOINT1_IRQHandler(void);
void __attribute__ ((weak)) PIOINT0_IRQHandler(void);
#pragma weak NMI_Handler = Default_Handler
#pragma weak HardFault_Handler = Default_Handler
#pragma weak SVC_Handler = Default_Handler
#pragma weak PendSV_Handler = Default_Handler
#pragma weak SysTick_Handler = Default_Handler
#pragma weak WAKEUP_IRQHandler = Default_Handler
#pragma weak SSP1_IRQHandler = Default_Handler
#pragma weak I2C_IRQHandler = Default_Handler
#pragma weak TIMER16_0_IRQHandler = Default_Handler
#pragma weak TIMER16_1_IRQHandler = Default_Handler
#pragma weak TIMER32_0_IRQHandler = Default_Handler
#pragma weak TIMER32_1_IRQHandler = Default_Handler
#pragma weak SSP0_IRQHandler = Default_Handler
#pragma weak UART_IRQHandler = Default_Handler
#pragma weak ADC_IRQHandler = Default_Handler
#pragma weak WDT_IRQHandler = Default_Handler
#pragma weak BOD_IRQHandler = Default_Handler
#pragma weak PIOINT3_IRQHandler = Default_Handler
#pragma weak PIOINT2_IRQHandler = Default_Handler
#pragma weak PIOINT1_IRQHandler = Default_Handler
#pragma weak PIOINT0_IRQHandler = Default_Handler

(Continued)

//***
// Vector table
//***
#pragma arm section rodata="RESET"

typedef void(* const ExecFuncPtr)(void) __irq;

//ExecFuncPtr exception_table[] = {
void (* const exception_table[])(void) = {
 /* (ExecFuncPtr)&Image$$ARM_LIB_STACK$$ZI$$Limit, */
 /* Initial SP, already provided by library */
 /* (ExecFuncPtr)&__main, */
 /* Initial PC, already provided by library */
 NMI_Handler,
 HardFault_Handler,
 0, 0, 0, 0, 0, 0, 0, /* Reserved */
 SVC_Handler,
 0, 0, /* Reserved */
 PendSV_Handler,
 SysTick_Handler,
 /* Configurable interrupts start here...*/
 WAKEUP_IRQHandler, /* 16+ 0: Wakeup PIO0.0 */
 WAKEUP_IRQHandler, /* 16+ 1: Wakeup PIO0.1 */
 WAKEUP_IRQHandler, /* 16+ 2: Wakeup PIO0.2 */
 WAKEUP_IRQHandler, /* 16+ 3: Wakeup PIO0.3 */
 WAKEUP_IRQHandler, /* 16+ 4: Wakeup PIO0.4 */
 WAKEUP_IRQHandler, /* 16+ 5: Wakeup PIO0.5 */
 WAKEUP_IRQHandler, /* 16+ 6: Wakeup PIO0.6 */
 WAKEUP_IRQHandler, /* 16+ 7: Wakeup PIO0.7 */
 WAKEUP_IRQHandler, /* 16+ 8: Wakeup PIO0.8 */
 WAKEUP_IRQHandler, /* 16+ 9: Wakeup PIO0.9 */
 WAKEUP_IRQHandler, /* 16+10: Wakeup PIO0.10 */
 WAKEUP_IRQHandler, /* 16+11: Wakeup PIO0.11 */
 WAKEUP_IRQHandler, /* 16+12: Wakeup PIO1.0 */
 0, /* 16+13: Reserved */
 SSP1_IRQHandler, /* 16+14: SSP1 */
 I2C_IRQHandler, /* 16+15: I2C */
 TIMER16_0_IRQHandler, /* 16+16: 16-bit Counter-Timer 0 */
 TIMER16_1_IRQHandler, /* 16+17: 16-bit Counter-Timer 1 */
 TIMER32_0_IRQHandler, /* 16+18: 32-bit Counter-Timer 0 */
 TIMER32_1_IRQHandler, /* 16+19: 32-bit Counter-Timer 1 */
 SSP0_IRQHandler, /* 16+20: SSP0 */
 UART_IRQHandler, /* 16+21: UART */
 0, /* 16+22: Reserved */

//***
// Default handler
//***
static void Default_Handler(void)
{
 while(1); // infinite loop
}

exceptions.c—Cont’d

 0, /* 16+23: Reserved */

368 Chapter 19

 ADC_IRQHandler, /* 16+24: A/D Converter */
 WDT_IRQHandler, /* 16+25: Watchdog Timer */
 BOD_IRQHandler, /* 16+26: Brown Out Detect */
 0, /* 16+27: Reserved */
 PIOINT3_IRQHandler, /* 16+28: PIO INT3 */
 PIOINT2_IRQHandler, /* 16+29: PIO INT2 */
 PIOINT1_IRQHandler, /* 16+30: PIO INT1 */
 PIOINT0_IRQHandler /* 16+31: PIO INT0 */
};

#pragma arm section

Getting Started with the ARM RealView Development Suite 369
The C-based vector table in “exceptions.c” does not contain the initial stack pointer value and

the reset vector. This will be inserted at the linking stage.

In the previous examples, the assembly startup code contains definitions for stack and heap

memory. Because the C-based vector table does not contain such information, the scatter

loading file is modified to include stack and heap memory definitions. The reset vector and

initial stack pointer values are also defined in the scatter loading file.
scatter.scat (with heap and stack definitions)
LOAD_REGION 0x00000000 0x00200000
{
 ;; Maximum of 48 exceptions (48*4 bytes == 0xC0)
 VECTORS 0x0 0xC0
 {
 ; First two entries provided by library
 ; Remaining entries provided by the user in exceptions.c

 * (:gdef:__vectab_stack_and_reset, +FIRST)
 * (RESET)
 }

 CODE 0xC0 FIXED
 {
 * (+RO)
 }

 DATA 0x10000000 0x2000
 {
 * (+RW, +ZI)
 }

 ;; Heap starts at 4KB and grows upwards
 ARM_LIB_HEAP 0x10001000 EMPTY 0x1800-0x1000
 {
 }

 ;; Stack starts at the end of the 8KB of RAM

(Continued)

 ;; And grows downwards for 2KB
 ARM_LIB_STACK 0x10002000 EMPTY -0x800
 {
 }

}

scatter.scat (with heap and stack definitions)—Cont’d

370 Chapter 19
With the vector table and the scatter loading file ready, we can generate the program image

using the following command lines:
Co
armc

Co
armc

Co
armc

Li
arml

Ge
from

As
arma

Co
armc

Co
armc

Li
mpile vector table and default handler
c -c -g --cpu Cortex-M0 exceptions.c -o exceptions.o

mpile application code
c -c -g --cpu Cortex-M0 blinky.c -o blinky.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

mpile system initialization code
c -c -g --cpu Cortex-M0 system_LPC11xx.c -o system_LPC11xx.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx

nking stage
ink exceptions.o system_LPC11xx.o blinky.o --scatter scatter.scat "--
keep¼exceptions.o(RESET)"--map -o blinky.elf

nerate disassembled listing for checking
elf -c -e -d -s blinky.elf --output¼list.txt
Using MicroLIB in RVDS

In Keil MDK, one of the project options uses MicroLIB to reduce code size. MicroLIB is an

implementation of the C library targeted specially for microcontroller applications where

available program memory size could be limited. Because MicroLIB is optimized for

small code size, the performance of the library functions is less than those in the standard C

library.

MicroLIB can also be used with RVDS. To demonstrate the use of MicroLIB, we use the RVDS

blinky example and modify the program generation script to include the “--library_
type¼microlib” option:
semble start up code
sm -g --cpu Cortex-M0 startup_LPC11xx.s -o startup_LPC11xx.o
--library_type¼microlib --pd "__MICROLIB SETA 1"

mpile application code
c -c -g --cpu Cortex-M0 blinky.c -o blinky.o -I c:\keil\arm\inc -I
c:\keil\arm\inc\nxp\LPC11xx --library_type¼microlib

mpile system initialization code
c -c -g --cpu Cortex-M0 system_LPC11xx.c -o system_LPC11xx.o -I
c:\keil\arm\inc -I c:\keil\arm\inc\nxp\LPC11xx --library_type¼microlib

nking stage

arml

Ge

sim
St

St
__

;

__

;

Getting Started with the ARM RealView Development Suite 371
ink startup_LPC11xx.o system_LPC11xx.o blinky.o "--
keep¼startup_LPC11xx.o(RESET)" "--first¼startup_LPC11xx.o(RESET)" --entry
Reset_Handler --rw_base 0x10000000 --map --ro-base 0x0 -o blinky.elf
--library_type¼microlib

nerate disassembled listing for checking
fromelf -c blinky.elf --output¼list.txt
In the assembly stage for the startup code, we added the additional option of --pd

“__MICROLIB SETA 1.” This is because MicroLIB has different stack and heap definitions

compared to the standard C library; as a result, the startup code contains the conditional

assembly directive, controlled by the __MICROLIB option.

Using Assembly for Application Development in RVDS

For small projects, it is possible to develop the entire project using assembler. For example,

a program that calculates the sum of 1 to 10 can be as simple as that shown here:
ple_prog.s (calculate sum of 1 to 10)
ack_Size EQU 0x00000200

 AREA STACK, NOINIT, READWRITE, ALIGN=3
ack_Mem SPACE Stack_Size
initial_sp
 PRESERVE8
 THUMB

Vector Table Mapped to Address 0 at Reset

 AREA RESET, DATA, READONLY
 EXPORT __Vectors

Vectors DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD SVC_Handler ; SVCall Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD PendSV_Handler ; PendSV Handler
 DCD SysTick_Handler ; SysTick Handler

 AREA |.text|, CODE, READONLY

Reset Handler

(Continued)

; Dummy Exception Handlers (infinite loops which can be modified)

NMI_Handler PROC
 EXPORT NMI_Handler [WEAK]
 B .
 ENDP
HardFault_Handler PROC
 EXPORT HardFault_Handler [WEAK]

 B .
 ENDP
SVC_Handler PROC
 EXPORT SVC_Handler [WEAK]
 B .
 ENDP
PendSV_Handler PROC
 EXPORT PendSV_Handler [WEAK]
 B .
 ENDP
SysTick_Handler PROC
 EXPORT SysTick_Handler [WEAK]
 B .
 ENDP

 ALIGN
 END

Reset_Handler PROC
 EXPORT Reset_Handler [WEAK]
; --- Start of main program code ---
; Calculate the sum of 1 to 10
 MOVS R0, #10
 MOVS R1, #0
 ; Calculate 10+9+8...+1
loop
 ADDS R1, R1, R0
 SUBS R0, R0, #1
 BNE loop
 ; Result is now in R1
 B . ; Branch to self (infinite loop)
; --- End of main program code ---

 ENDP

simple_prog.s (calculate sum of 1 to 10)—Cont’d

372 Chapter 19
The program combined the vector table, the main application code, some dummy exception

handlers, and the stack definition. Because there is only one object file, there is no need to carry

out a separate link stage. All you need to assemble the program and generate the execution

image can be carried out in just one armasm command:

Getting Started with the ARM RealView Development Suite 373
Generate executable image
armasm -g --cpu Cortex-M0 simple_prog.s -o simple_prog.elf

Generate disassembled code for checking
fromelf -c simple_prog.elf --output¼list.txt

For most applications, it is common to separate the vector table and the application code. For

example, we can reuse the assembly version of the blinky example in Chapter 16 and assemble

it using RVDS as follows:

Assemble the vector table and startup code
armasm -g --cpu Cortex-M0 startup_LPC11xx.s -o startup_LPC11xx.o

Assemble the application code
armasm -g --cpu Cortex-M0 blinky.s -o blinky.o

Linking stage
armlink startup_LPC11xx.o blinky.o "--keep¼startup_LPC11xx.o(RESET)" "--

first¼startup_LPC11xx.o(RESET)"--entry Reset_Handler --rw_base 0x10000000 --map
--ro-base 0x0 -o blinky.elf

Create disassembled list for checking
fromelf -c blinky.elf --output¼list.txt

The general assembly programming techniques for RVDS are the same as in Keil MDK, which

is covered in Chapter 16.
Flash Programming

After generating the compiled image, we often need to program the image into the flash

memory of the microcontroller for testing. RVDS contains flash programming features for

a number of ARMmicrocontroller devices. The details of using flash programming with RVDS

are described in the ARM Workbench IDE User Guide. At the time of this writing, the RVDS

installation (4.0-SP3) does not have flash programming support on the NXP LPC11xx product.

However, you can create your own flash programming configuration files, and this topic is also

covered in the ARM Workbench IDE User Guide (reference 5) and ARM Application Note

190, “Creating Flash Algorithms with Eclipse.”

Alternatively, there are a number of other solutions:

1. Using Keil MDK

• If you have access to Keil MDK and a supported in-circuit debugger (e.g., ULINK 2),

you can use the flash programming feature in Keil MDK to program the image created

in RVDS into the flash memory.

• To use Keil MDK to program on your image, you need to change the file extension

from .elf to .axf.

• The next step is to create a mVision project in the same directory with the

same name (e.g., blinky). In the project creation wizard, select the microcontroller

374 Chapter 19
device you use, and when asked to copy the default startup code, click “no” to prevent

the existing file (if there is one) from being overwritten.

• Now you need to set the debug options to use your in-circuit debugger (e.g., ULINK 2)

and flash programming option if necessary. By default the flash programming option

should have been set up for you automatically.

• Once the execution image (with .AXF file extension) has been built, click the flash

programming button on the toolbar . The compiled image will then be programmed

into the flash memory.

• After the image is programmed in to the flash memory, you can start a debug session

using the mVision debugger to debug your program.

2. Using other flash programming utilities

• Most ARM microcontrollers have flash programming utilities provided by the micro-

controller vendors or other third parties. For example, the NXP LPC11xx microcon-

troller devices can be programmed using a tool called “Flash Magic,” provided

by Embedded Systems Academy (www.flashmagictool.com). This tool works with the

built-in flash memory programming firmware on the LPC11XX microcontroller

devices and allows the device to be programmed with a serial communication

connection.

Note that with the NXP LPC11xx series, the address 0x1C-0x1F in the flash memory is used as

a checksum for the on-chip boot loader. Although flash memory programmers in Keil ULINK

products handle this address automatically, third-party flash memory programmers may not be

aware of this and might report an error when the programmed value and the read back value do

not match. In version 4.10 and later of the Keil MDK, a utility called ELFDWT is included that

can insert the checksum value in the generated AXF executable image. This allows all flash

programmers supporting LPC11xx to use the created image. More information on the

ELFDWT utility is covered in Chapter 14.

Debugging Using RealView Debugger

RVDS includes the RealView Debugger (RVD). To use RVD with a target system, you

need to have a run-time control unit called RealView-ICE (Figure 19.3). The RealView-ICE

ships with a standard 20-pin JTAG connector and can be connected to the debug host

using either a USB or an Ethernet connection.

By default, RealView-ICE supports the JTAG debug protocol. To demonstrate the use of RVD

with the Cortex-M0 with the JTAG debug protocol, here we use the Keil Microcontroller

Prototyping System (MPS), a FPGA platform for prototyping Cortex-M systems, commonly

used for system-on-chip or ASIC prototyping (Figure 19.4). (The existing NXP LPC11xx

microcontrollers do not support JTAG debug.)

http://www.flashmagictool.com

Figure 19.3:
RealView-ICE.

Figure 19.4:
Microcontroller Prototyping System (MPS).

Getting Started with the ARM RealView Development Suite 375
The MPS system contains two main FPGAs. One is for the processor and memory inter-

face, and the other is a peripheral FPGA, which users can modify for SoC development.

The processor FPGA can be switched between various Cortex-M processors including the

Cortex-M0.

376 Chapter 19
The MPS memory system contains 64 MB of flash memory and two SRAMs of 4 MB each. By

default, the boot loader remaps one of the 4MB SRAMs to address 0x0 after it has been booted

up so that users can download test code to SRAM and execute it from SRAM at high speed

(zero wait state at 50 MHz).

After launching RVD, you need to create a connection to the RealView ICE. Do this by

accessing the Connect-to-Target function in the pull-down menu (Figure 19.5).

You can then add a connection configuration in the Connect-to-Target window (Figure 19.6).
Figure 19.5:
Connect-to-target function in the RealView debugger.

Figure 19.6:
Connect-to-Target window.

Getting Started with the ARM RealView Development Suite 377
With RealView-ICE connected to your host personal computer (either by Ethernet or by USB),

it will be detected in the RVconfig window (Figure 19.7).

After the RealView-ICE is connected, you can then use the Auto Configure function to

detect the Cortex-M0 on the JTAG scan chain (Figure 19.8). We can then close the RVconfig

window and save the configuration.
Figure 19.7:
Connect to Target window.

Figure 19.8:
Cortex-M0 detected by auto configure.

378 Chapter 19
Back at the Connect-to-Target window, we can now expand the RealView ICE, locate the

Cortex-M0 configuration, and connect to it by double-clicking on the Cortex-M0 connec-

tion (Figure 19.9). After the connection is made, the processor is put into a debug state

and halts.
Figure 19.9:
Connected to Cortex-M0.
Before we load a compiled image and start debugging, we need to make the following

adjustment: Click on the debug tab of the “Registers” windows, and change the reset type to

“Ctrl_Reg.” This setting is used to control the reset being made by SYSRESETREQ rather than

using the reset through the JTAG connection (Figure 19.10).

Now we are ready to load our compiled image into memory. This can be done by accessing the

load image function in the pull-down menu: Target / Load image. The image is loaded and

the program counter stops at the reset handler (Figure 19.11).

Now we are ready to run the program or debug using various features in RVD, including the

following:

• Halting, single stepping, and restarting

• Processor registers accesses

• Memory examination (can be done without halting the processor)

• Breakpoint and watchpoint

In RVD, most of the debug operations can also be automated using scripts. For example, we

can put the operations from changing the reset type to starting the program execution into

a short script file called “blinky.inc” (script files in RVD normally have an “.inc” file

extension).

Figure 19.10:
Change the reset-type setting before continuing.

Figure 19.11:
Image loaded.

Getting Started with the ARM RealView Development Suite 379

// C
setr

// L
load

// R
rese

// s
go

380 Chapter 19
hange reset type to control register
eg @Debug_RESETOPERATION¼0x00000004

oad file
/r 'C:\CortexM0\31_rvds_mps_blinky\blinky.elf'

eset
t

tart program execution
By creating this file, we can set up the system and get the program running by starting the script

from the pull-down menu: choose Tools / Include commands from file, and then select the

RVD script that we created.

Using Serial Wire Debug with the RealView Debugger

A serial wire debug interface can be used with the RVD and the RealView-ICE. However, this

can only be achieved using an LVDS probe v2 (Figure 19.12). The 20-pin IDC connection

cannot be used for serial wire debug operations. You also need RealView-ICE version 3.4 or

later for serial wire debug operations.

To enable the serial wire debug operation, follow these steps:

• Connect the LVDS probe v2 to the JTAG B connector at the front of the RealView-ICE.

• Start the RealView ICE Update utility, and connect to the RealView-ICE. Then check

if you have updated firmware in the RealView-ICE (e.g., version 3.4 or later). If not, update

the firmware to version 3.4.
Figure 19.12:
LVDS probe v2.

Figure 19.13:
Update the LVDS probe.

Getting Started with the ARM RealView Development Suite 381
• You also need to update the LVDS probe by selecting “Update LVDS probe” in the Real-

View ICE Update utility (Figure 19.13).

• Reboot the RealView-ICE when the update has completed.

• Disconnect the RealView ICE Update utility from the RealView-ICE, and then start the

RealView debugger.

• Create a new connection and connect to the RealView-ICE as shown in Figure 19.6

• In the RVConfig window, select “Advanced” settings; you will then find the serial wire

debug option (as shown in Figure 19.14).

• Select SWD for LVDS Debug Interface mode (Figure 19.14). The use of the SWJ switching

sequence is not essential for most Cortex-M0 devices. However, it is essential for most

Cortex-M3 devices because the debug access port in most of the Cortex-M3 devices supports

both JTAG and serial wire debug protocol, and JTAG protocol is used by default.

• Now you can connect to the Cortex-M0 using the serial wire debug interface (Figure 19.15).

Note that the first version of the LVDS probe cannot support serial wire debug.

Retargeting in RVDS

One of the advanced features available in RealView Debugger RVD is semihosting support.

This allows I/O functions like “printf,” “scanf,” and even file operations like “fopen” and

“fread” to be carried out via the debugger. For example, a small program that requests user

inputs (“scanf”) and generates output messages (“printf”) can be compiled with RVDS and

then tested with RVD though the StdIO console window.

Figure 19.14:
Serial wire debug option in RVI advance settings.

Figure 19.15:
RealView-ICE connected to the Cortex-M0 using the serial wire debug interface.

382 Chapter 19

Getting Started with the ARM RealView Development Suite 383
To demonstrate, a simple “hello” program is created:
hello.c
#include "MPS_CM0.h"
#include "stdio.h"
int main(void)
{
 char name[20];
 SystemInit();

 while(1){
 printf("Please enter your name :");
 scanf ("%s", &name[0]);
 printf("Hello %s, nice to meet you.\n\n", name);
 }

} // end main
This program is then compiled with RVDS, without retargeting I/O through the UART.
When the program is executed in RVD, the StdIO console window will display the output

message and allow us to input information (bottom of Figure 19.16).
Figure 19.16:
StdIO console provides input and output functions.

384 Chapter 19
Although it is possible to handle input output functions by setting up retargeting using

UART, in some system-on-chip designs a UART interface might not be available. The

semihosting support also allows data used for software testing to be stored on the debug host

(personal computer) and accessed by the application running on the target system to access

these files.

CHAPTER 20

Getting Started with the GNU C Compiler

Overview

Apart from development tool chains produced by ARM, you can also develop software for

Cortex-M0 microcontrollers using various development tools from other vendors. These

include a number of development suites based on the GNU tool chain. Some of these tool

chains are available free of charge, and others are available at a low cost and provide various

additional features to assist software development.

The full release of the GNU C compiler is available from GNU Compiler home page

(http://gcc.gnu.org).In this chapter, we will demonstrate compiling programs for Cortex-M0

using Sourcery Gþþ Lite, available from CodeSourcery (www.codesourcery.com). This

product is available free of charge and is available as various precompiled packages

including prebuilt packages for Windows and Linux. Using a prebuilt package is generally

much easier than building a tool chain from the source. Prebuilt packages usually also

include linker script examples and startup code. On the CodeSourcery web site, you can

find various versions of Sourcery Gþþ Lite (Table 20.1).

For Cortex-M0 software development, in most cases we should be using the EABI version of

the Sourcery Gþþ. If your application is going to be running on a Cortex-M0 system with

a mClinux operation system, then you should use the mClinux version.

The Sourcery Gþþ Lite edition supports software development tools in command line

versions only. Apart from the Lite edition, CodeSourcery also provides a number of other

editions of Sourcery Gþþ (Table 20.2).
Table 20.1: Available Sourcery GDD Lite Package

Target OS Development Platform Descriptions

EABI Windows/Linux For development without a targeted operating system
mClinux Windows/Linux For development of applications running on the mClinux

operating system
Linux Windows/Linux For development of applications running on the Linux

operating system
SymbianOS Windows/Linux For development of applications running on the Symbian

operating system

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10020-5

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

385

http://gcc.gnu.org
http://www.codesourcery.com
http://dx.doi.org/10.1016/B978-0-12-385477-3.10020-5

Table 20.2: Sourcery GDD Editions

Edition Features

Lite edition Free command lines tools only, unsupported.
Personal edition Low-cost development suite with limited supports. Features included the

following:
d Integration of the Eclipse integrated development environment (IDE)
d Simulator and JTAG/BDM support
d Supports for various ARM microcontrollers including ready-to-use linker

scripts debug configurations and peripheral registers browsing
d Preconfigured board supports and Board Builder Wizard to set up support

for customer boards
d Debug interface supports, including the following:

Keil ULINK 2
ARMUSB
SEGGER J-Link

d Design examples
Academic edition Same as the personal edition, for academic institute noncommercial use only
Standard edition Includes all features in the personal edition, with additional libraries and

unlimited technical support
Professional edition Includes all features in standard edition, with priority support and critical

defect correction

386 Chapter 20
Apart from CodeSourcery, a number of other tool vendors provide GNU-based development

packages. Because the examples in this chapter cover the development of software using

the command line tools, most of the information is also applicable to other GNU-based tool

chains. Information about the use of IDE, project management, and the debug environment is

typically tool chain dependent; please refer to the documentation available from tool vendors.

Typical Development Flow

The GNU tool chain contains the C compiler, assembler, linker, libraries, debugger, and

additional utilities. You can develop applications using C, assembly, or a mix of both languages

(Table 20.3).
Table 20.3: Command Names

Tools Generic Command Name Command Name in CodeSourcery
ARM EABI Package

C compiler gcc arm-none-eabi-gcc
Assembler as arm-none-eabi-as
Linker ld arm-none-eabi-ld
Binary file generation objcopy arm-none-eabi-objcopy
Disassembler objdump arm-none-eabi-objdump

Getting Started with the GNU C Compiler 387
The prefix of commands reflects the type of the prebuilt tool chain. In this case, the tool chain is

prebuilt for the ARM EABI version without targeted OS.

The typical development flow of software development using gcc is shown in Figure 20.1.

Unlike ARM RVDS or Keil MDK-ARM, the linking stage is usually carried out by the C

compiler rather than as a separate step. This ensures that the details of the required parameters

and libraries are passed on to the linker correctly. Using the linker as a separate step can be

error prone and is not recommended.
C Compiler

(gcc)

.c
.cpp

.s

Linker

(ld)

C source code

Assembly
source code

Executable
image

Linker script

.ld

.out

Instruction Set
Simulator

Flash
programmer

Debugger

Binary / hex

file generation

(objopy)

Assembler

(as)

Figure 20.1:
Typical program generation flow.
Simple C Application Development

Based on the blinky example developed previously (Figure 20.2), we can compile the same

program using gcc.

When compiling applications for Cortex-M processors, Sourcery Gþþ provides a vector table.

The vector table use by Sourcery Gþþ is a part of the CodeSourcery Common Startup Code

Sequence (CS3) feature. As a result, it is not necessary to have a file for the vector table and

startup code.

The source code for blinky.c is as follows:
blinky.c for Sourcery G++
#include "LPC11XX.h"
#pragma weak __cs3_isr_systick = SysTick_Handler

#define KEIL_MCB1000_BOARD

(Continued)

// Function declarations
void LedOutputCfg(void); // Set I/O pin connected to LED as output

int main(void)
{
 // Switch Clock to 48MHz
 SystemInit();
 // Initialize LED output
 LedOutputCfg();
 // Program SysTick timer interrupt at 1KHz.
 // At 48MHz, SysTick trigger every 48000 CPU cycles
 SysTick_Config(48000);

 while(1);
} // end main

// SysTick handler to toggle LED every 500 ticks
void SysTick_Handler(void)
{
static short int TickCount = 0;
if ((TickCount++) == 500) { // for every 500 counts, toggle LED
 TickCount = 0; // reset counter to 0
#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 LPC_GPIO2->MASKED_ACCESS[1] = ~LPC_GPIO2->MASKED_ACCESS[1];

// Toggle bit 0
#else
 // For LPCXpresso, use P0.7 for LED output
 LPC_GPIO0->MASKED_ACCESS[1<<7] = ~LPC_GPIO0->MASKED_ACCESS[1<<7]; // Toggle bit 7
#endif
 }
return;
}
// Switch LED signal (P0_7) to output port with no pull up or pulldown
void LedOutputCfg(void)
{

 // Enable clock to IO configuration block (bit[16] of AHBCLOCK Control register)
 // and enable clock to GPIO (bit[6] of AHBCLOCK Control register
 LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16) | (1<<6);

#ifdef KEIL_MCB1000_BOARD
 // For Keil MCB1000, use P2.0 for LED output
 // PIO2_0 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=DTR, 2=SSEL1)
 LPC_IOCON->PIO2_0 = (0<<5) + (0<<3) + (0x0);

blinky.c for Sourcery G++—Cont’d

 // Set pin 7 to 0 as output
 LPC_GPIO2->DIR = LPC_GPIO2->DIR | 0x1;

// Initial bit 0 output is 0
LPC_GPIO2->MASKED_ACCESS[1] = 0;

388 Chapter 20

#else
 // For LPCXpresso, use P0.7 for LED output
 // PIO0_7 IO output config
 // bit[5] - Hysteresis (0=disable, 1 =enable)
 // bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 // bit[2:0] - Function (0 = IO, 1=CTS)
 LPC_IOCON->PIO0_7 = (0x0) + (0<<3) + (0<<5);
 // Initial bit[7] output is 0
 LPC_GPIO0->MASKED_ACCESS[1<<7] = 0;
 // Set pin 7 as output
 LPC_GPIO0->DIR = LPC_GPIO0->DIR | (1<<7);
#endif
 return;
} // end LedOutputCfg

Getting Started with the GNU C Compiler 389
Project
directory

blinky.c

LPC11xx.h

(SystemInit function)

(Application code)

system_LPC11xx.c

system_LPC11xx.h

core_cm0.h

(Hardware register
definitions, exception

type definitions)

(Processor register
definitions, processor

feature access functions)

(Declare SystemInit
function)

cmsis

lpc11xx

LPC11xx.ld
(Linker script)

core_cm0.c functions and core register
access functions)

system_LPC11xx.c (SystemInit function)

(Special instructions access

Figure 20.2:
Simple blinky project.

390 Chapter 20
The line “#pragma weak __cs3_isr_systick ¼ SysTick_Handler” is used to map

the exception handler name into the CS3 exception vector name. The CS3 feature is specific to

the Sourcery Gþþ tool chain. Other tool chains might require you to provide your own vector

table definition. This will be covered in another example later.

Other files used in the project can be found in the previous examples or in the LPC11xx

example software package from the NXP web site.

To compile the program and generate the executable image, we can use the following

commands:
Op

-g
-O3
-mc
-mt
-lm

-I <
-T <
-o <
Compile and link the application
arm-none-eabi-gcc -g -O3 -mcpu¼cortex-m0 -mthumb blinky.c lpc11xx\system_LPC11xx.c

-I cmsis -I lpc11xx -T LPC1114.ld -o blinky.o
Generate disassembled listing for checking
arm-none-eabi-objdump -S blinky.o > list.txt
Generate binary image file
arm-none-eabi-objcopy -O binary blinky.o blinky.bin
Generate hex file (Intel hex format)
arm-none-eabi-objcopy -O ihex blinky.o blinky.hex
The generation of the listing file, binary file, and hex files are all optional. In most cases, the

debugger or flash programmer can take the generated executable image directly.

The command line of above the gcc compilation contains the options shown in Table 20.4.
Table 20.4: Common Line Option for gcc Used in the Example

tion Descriptions

Include debug information
Optimization level (0 to 3)

pu¼cortex-m0 Processor choice
humb Specify Thumb instruction set

Link with math library (not used in the preceding example);
this option is required when you use math functions like sin,
cos, sinf, cosf, and so on

directory> Include directory
linker script> Specify linker script
output file> Specify output file name
The linker script LPC11xx.ld can be found inAppendixG. The linker script is tool chain specific

because the symbol names being used are tool chain specific. Users of Sourcery Gþþ can find

example linker scripts in the directory arm-none-eabi/lib of the Sourcery Gþþ installation.

Users of other tool chains may find linker script examples from the tool installation. Alterna-

tively, you can use the linker script in Appendix G as a starting point and modify it.

After the program has been compiled, the generated program image blinky.o is ready to be

programmed on the microcontroller for testing.

Getting Started with the GNU C Compiler 391
CodeSourcery Common Startup Code Sequence (CS3)

The Sourcery Gþþ uses the CS3 for the C startup code and vector table. The CS3 vector

table for the Cortex-M processors is called “__cs3_interrupt_vector_micro” in the

linker script and is predefined with the following vector names shown in Table 20.5.
Table 20.5: Vector Table Symbol in the CS3 Vector Table for the Cortex-M Processor

Exception
Number

CS3
Vector Symbol

Descriptions

0 __cs3_stack Initial main stack pointer
1 __cs_reset Reset vector
2 __cs_isr_nmi Nonmaskable interrupt
3 __cs_isr_hard_fault Hard fault
4 __cs_isr_mpu_fault Memory management fault (not available in the

Cortex-M0)
5 __cs_isr_bus_fault Bus fault (not available in the Cortex-M0)
6 __cs_isr_usage_fault Usage fault (not available in the Cortex-M0)
7 . 10 __cs_isr_reserved_7

.
__cs_isr_reserved_10

Reserved exception type

11 __cs_isr_svcall SuperVisor Call
12 __cs_isr_debug Debug monitor (not available in the Cortex-M0)
13 __cs_isr_reserved_13 Reserved exception type
14 __cs_isr_pendsv PendSV exception
15 __cs_isr_systick System Tick Timer exception
16 . 47 __cs_isr_external_0

.
__cs_isr_external_31

External interrupt
Because the symbol names do not match the exception handler names we used in the

application code, we used the line “#pragma weak __cs3_isr_systick ¼
SysTick_Handler” in the blinky.c so that the linker can insert the correct vector value to

the vector table. Alternatively, we can handle the mapping by modifying the linker script.

In other GNU-based tool chains, other startup code and vector table handling mechanisms are

available. Because of the different of symbol names, the linker scripts used for Sourcery Gþþ
cannot be used directly on other GNU tool chains.

Using a User-Defined Vector Table

You can replace the CS3 vector table with your own vector table implementation. In the CMSIS

software package from ARM (you can download it from www.onarm.com), you can find

examples of the CMSIS vector table in assembly targeted for Sourcery Gþþ. This can be

modified to be used with LPC11xx.

http://www.onarm.com

392 Chapter 20
The following assembler code, “startup_LPC11xx.s,” provides the CMSIS version of the

vector table for LPC11xx:
startup_LPC11xx.s

/***/
/* startup_LPC11xx.s: Startup file for LPC11xx device series */
/***/
/* Version: CodeSourcery Sourcery G++ Lite (with CS3) */
/***/

/*
//*** <<< Use Configuration Wizard in Context Menu >>> ***
*/

/*
// <h> Stack Configuration
// <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
// </h>
*/

 .equ Stack_Size, 0x00000100
 .section ".stack", "w"
 .align 3
 .globl __cs3_stack_mem
 .globl __cs3_stack_size
__cs3_stack_mem:
 .if Stack_Size
 .space Stack_Size
 .endif
 .size __cs3_stack_mem, . - __cs3_stack_mem
 .set __cs3_stack_size, . - __cs3_stack_mem

/*
// <h> Heap Configuration
// <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
// </h>
*/

 .equ Heap_Size, 0x00001000

 .section ".heap", "w"
 .align 3
 .globl __cs3_heap_start
 .globl __cs3_heap_end
__cs3_heap_start:
 .if Heap_Size
 .space Heap_Size
 .endif
__cs3_heap_end:
/* Vector Table */

 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long SVC_Handler /* SVCall Handler */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long PendSV_Handler /* PendSV Handler */
 .long SysTick_Handler /* SysTick Handler */

 /* External Interrupts */
 .long WAKEUP_IRQHandler /* 16+ 0: Wakeup PIO0.0 */
 .long WAKEUP_IRQHandler /* 16+ 1: Wakeup PIO0.1 */
 .long WAKEUP_IRQHandler /* 16+ 2: Wakeup PIO0.2 */
 .long WAKEUP_IRQHandler /* 16+ 3: Wakeup PIO0.3 */
 .long WAKEUP_IRQHandler /* 16+ 4: Wakeup PIO0.4 */
 .long WAKEUP_IRQHandler /* 16+ 5: Wakeup PIO0.5 */
 .long WAKEUP_IRQHandler /* 16+ 6: Wakeup PIO0.6 */
 .long WAKEUP_IRQHandler /* 16+ 7: Wakeup PIO0.7 */
 .long WAKEUP_IRQHandler /* 16+ 8: Wakeup PIO0.8 */
 .long WAKEUP_IRQHandler /* 16+ 9: Wakeup PIO0.9 */
 .long WAKEUP_IRQHandler /* 16+10: Wakeup PIO0.10 */
 .long WAKEUP_IRQHandler /* 16+11: Wakeup PIO0.11 */
 .long WAKEUP_IRQHandler /* 16+12: Wakeup PIO1.0 */
 .long 0 /* 16+13: Reserved */
 .long SSP1_IRQHandler /* 16+14: SSP1 */
 .long I2C_IRQHandler /* 16+15: I2C */
 .long TIMER16_0_IRQHandler /* 16+16: 16-bit Counter-Timer 0 */
 .long TIMER16_1_IRQHandler /* 16+17: 16-bit Counter-Timer 1 */
 .long TIMER32_0_IRQHandler /* 16+18: 32-bit Counter-Timer 0 */
 .long TIMER32_1_IRQHandler /* 16+19: 32-bit Counter-Timer 1 */
 .long SSP0_IRQHandler /* 16+20: SSP */
 .long UART_IRQHandler /* 16+21: UART */
 .long 0 /* 16+22: Reserved */
 .long 0 /* 16+23: Reserved */
 .long ADC_IRQHandler /* 16+24: A/D Converter */
 .long WDT_IRQHandler /* 16+25: Watchdog Timer */

 .globl __cs3_interrupt_vector_cortex_m
 .type __cs3_interrupt_vector_cortex_m, %object

__cs3_interrupt_vector_cortex_m:
 .long __cs3_stack /* Top of Stack */
 .long __cs3_reset /* Reset Handler */
 .long NMI_Handler /* NMI Handler */
 .long HardFault_Handler /* Hard Fault Handler */

 .section ".cs3.interrupt_vector"

(Continued)

Getting Started with the GNU C Compiler 393

 LDR R0, =SystemInit
 BLX R0
 LDR R0,=_start
 BX R0
 .pool
 .cantunwind
 .fnend
 .size __cs3_reset_cortex_m,.-__cs3_reset_cortex_m

 .section ".text"

/* Exception Handlers */

 .weak NMI_Handler
 .type NMI_Handler, %function
NMI_Handler:
 B .
 .size NMI_Handler, . - NMI_Handler

 .weak HardFault_Handler
 .type HardFault_Handler, %function
HardFault_Handler:
 B .
 .size HardFault_Handler, . - HardFault_Handler

 .weak SVC_Handler
 .type SVC_Handler, %function
SVC_Handler:
 B .
 .size SVC_Handler, . - SVC_Handler

 .weak PendSV_Handler
 .type PendSV_Handler, %function

 .long PIOINT2_IRQHandler /* 16+29: PIO INT2 */
 .long PIOINT1_IRQHandler /* 16+30: PIO INT1 */
 .long PIOINT0_IRQHandler /* 16+31: PIO INT0 */

 .size __cs3_interrupt_vector_cortex_m, . - __cs3_interrupt_vector_cortex_m

 .thumb

/* Reset Handler */

 .section .cs3.reset,"x",%progbits
 .thumb_func
 .globl __cs3_reset_cortex_m
 .type __cs3_reset_cortex_m, %function
__cs3_reset_cortex_m:
 .fnstart

 .long PIOINT3_IRQHandler /* 16+28: PIO INT3 */

 .long BOD_IRQHandler /* 16+26: Brown Out Detect */
 .long 0 /* 16+27: Reserved */

startup_LPC11xx.s—Cont’d

394 Chapter 20

 .weak SysTick_Handler
 .type SysTick_Handler, %function
SysTick_Handler:
 B .
 .size SysTick_Handler, . - SysTick_Handler

/* IRQ Handlers */

 .globl Default_Handler
 .type Default_Handler, %function
Default_Handler:
 B .
 .size Default_Handler, . - Default_Handler

 .macro IRQ handler
 .weak \handler
 .set \handler, Default_Handler
 .endm

 IRQ WAKEUP_IRQHandler
 IRQ SSP1_IRQHandler
 IRQ I2C_IRQHandler
 IRQ TIMER16_0_IRQHandler
 IRQ TIMER16_1_IRQHandler
 IRQ TIMER32_0_IRQHandler
 IRQ TIMER32_1_IRQHandler
 IRQ SSP0_IRQHandler
 IRQ UART_IRQHandler
 IRQ ADC_IRQHandler
 IRQ WDT_IRQHandler
 IRQ BOD_IRQHandler
 IRQ PIOINT3_IRQHandler
 IRQ PIOINT2_IRQHandler
 IRQ PIOINT1_IRQHandler
 IRQ PIOINT0_IRQHandler

 .end

 B .
 .size PendSV_Handler, . - PendSV_Handler

PendSV_Handler:

Getting Started with the GNU C Compiler 395
Based on the previous blinky example, the user-defined vector table can be included in the

compilation stage:
arm-none-eabi-gcc -g -O3 -mcpu¼cortex-m0 -mthumb blinky.c lpc11xx\system_LPC11xx.c
startup_LPC11xx.s -I cmsis -I lpc11xx -T LPC1114.ld -o blinky.o
Using Printf in gcc

Gcc supports retargeting (e.g., printf). The retargeting implementation in Gcc is

different from ARM development tools like Keil MDK-ARM or RVDS. The following

example demonstrates the retargeting of the text I/O function (printf).

396 Chapter 20
A simple hello world program “hello.c” is created as follows:
hello.c
#include "LPC11XX.h"
#include <stdio.h>
#include "uart_io.h"

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 UartConfig();
 printf ("Hello world\n");
 while(1);
} // end main

// Retarget function
int _write_r(void *reent, int fd, char *ptr, size_t len)
{
 size_t i;
 for (i=0; i<len;i++) {
 UartPutc(ptr[i]); // call character output function in uart_io.c
 }
 return len;
The printf retargeting is handled by the “_write_r” function. This function calls the UART

function “UartPutc” to output a character. We also include a UART program file called

“uart_io.c” in this example, which contains the “UartConfig” function for initialization of the
UART interface.

To compile and link this example, the following command line is used:

}

arm-
l

none-eabi-gcc -g -O3 -mcpu¼cortex-m0 -mthumb hello.c uart_io.c
pc11xx\system_LPC11xx.c -I cmsis -I lpc11xx -T LPC1114.ld -o hello.o
When the program is executed, the UART is initialized and the message “Hello world” is

output through the UART interface.
Inline Assembler

The GNU C compiler supports inline assembler. The general syntax is as follows:
__asm (“ inst1 op1, op2, . \n”

“ inst2 op1, op2, . \n”
.
“ instN op1, op2, . \n”

: output_operands /* optional */
: input_operands /* optional */
: clobbered_operands /* optional */

);

Getting Started with the GNU C Compiler 397
In simple caseswhere the assembly instruction does not require parameters, it can be as simple as

void Sleep(void)
{ // Enter sleep using WFI instruction

__asm (

.
__as

svc_d
#incl
#incl
#incl
“ WFI\n”);
;
return

}

If the assembly code requires input and output parameters, then you might need to define

the input and output operands and the clobbered register lists if any other register is modified

by the inline assembly operation. For example, the inline assembly code to multiply a value

by 10 can be written as
unsigned int DataIn, DataOut;
m(“ movs r0, %0\n”
“ movs r3, #10\n”
“ muls r0, r0, r3\n”
“ movs %1, r0\n”
:”¼r (DataOut) : “r” (DataIn) : “cc”, “r0”, “r3”);
In the code example, %0 is the first input parameter and %1 is the first output parameter.

Because the operand order is output_operands, input_operands, and clobbered_operands,

“DataOut” is assigned to %0, and “DataIn” is assigned to %1. The code changes register
R3, so it needs to be added to the clobbered operand list.

More details of the inline assembly in GNU C compiler can be found online in the GNU tool

chain documentation, GCC-Inline-Assembly-HOWTO.

SVC Example in gcc

You can mix C program and assembly code in a single gcc compilation step. The following

SVC example demonstrates the use of inline assembler in C code, as well as compiling C code

files and assembly language file in a single gcc compilation step.

An assembly file is used for the wrapper function for the SVC handler. Details of this

arrangement are covered in Chapter 18. To generate the SVC instruction and to set up

input parameters, inline assembly is used. A C languageebased SVC handler is also included

to display the input parameters and the SVC number. The C SVC handler requires an input

parameter that indicates the starting address of the SVC exception stack frame.

Instead of using “printf” for display, we used our own UART functions to display the text

and values so as to reduce code size. The following is the program listing for “svc_demo.c”:
emo.c
ude "LPC11XX.h"
ude <stdio.h>
ude "uart_io.h"

(Continued)

int main(void)
{
 unsigned int DataIn1, DataIn2;
 SystemInit(); // Switch Clock to 48MHz
 UartConfig();
 UartPuts("SVC demo\n");
 DataIn1 = 0x12;
 DataIn2 = 0x34;

 __asm (
 " movs r0,%0\n"
 " movs r1,%1\n"
 " svc 0x3\n"
 : : "r" (DataIn1), "r" (DataIn2) : "cc", "r0", "r1");

 while(1);
} // end main
void SVC_Handler_c(unsigned int * svc_args)
{
 // Stack frame contains:
 // r0, r1, r2, r3, r12, r14, the return address and xPSR
 // - Stacked R0 = svc_args[0]
 // - Stacked R1 = svc_args[1]
 // - Stacked R2 = svc_args[2]
 // - Stacked R3 = svc_args[3]
 // - Stacked R12 = svc_args[4]
 // - Stacked LR = svc_args[5]
 // - Stacked PC = svc_args[6]
 // - Stacked xPSR= svc_args[7]

 unsigned int svc_number;
 svc_number = ((char *)svc_args[6])[-2];
 UartPuts("SVC Handler:\n");
 UartPuts("- R0 = 0x");
 UartPutHex(svc_args[0]);
 UartPutc('\n');

 UartPuts("- R1 = 0x");
 UartPutHex(svc_args[1]);
 UartPutc('\n');

 UartPuts("- SVC number = 0x");
 UartPutHex(svc_number);
 UartPutc('\n');
 return;
}

svc_demo.c—Cont’d

398 Chapter 20
A separate assembly file called “handlers.s” is created, which contains the assembly wrapper
function for the SVC handler. This wrapper extracts the starting address of the SVC exception

stack frame and passes it to the C-based SVC handler to display the results.

handlers.s
 .text
 .syntax unified
 .thumb
 .type SVC_Handler, %function
 .global SVC_Handler
 .global SVC_Handler_c

SVC_Handler:
 movs r0, #4
 mov r1, lr
 tst r0, r1
 beq svc_stacking_used_MSP
 mrs r0, psp /* first parameter - stacking was using PSP */
 ldr r1,=SVC_Handler_c
 bx r1
svc_stacking_used_MSP:
 mrs r0, msp /* first parameter - stacking was using MSP */
 ldr r1,=SVC_Handler_c
 bx r1
 .end

Getting Started with the GNU C Compiler 399
When the SVC instruction in the svc_demo.c is executed, the SVC exception starts the

SVC_Handler in “handlers.s.” The starting address of the stack frame is extracted from the

current value of LR and stores it in R0 as an input parameter for the SVC_Handler_c
function in “svc_demo.c.” The C-based SVC handler can then extract the input parameters

(stacked register values) from the stack frame, and it can extract the SVC number used when

the SVC instruction is executed.

To build this example, the following command is used:

arm-none-eabi-gcc -g -O2 -mcpu¼cortex-m0 -mthumb svc_demo.c uart_io.c handlers.s
startup_LPC11xx.s lpc11xx\system_LPC11xx.c -I cmsis -I lpc11xx -T LPC1114.ld -o
svc_demo.o

This assembly code “handlers.s” and the assembly startup code are handled by the C compiler

automatically in a single step compilation.

Alternatively, you can avoid using a separate assembly file by creating the SVC handler

wrapper using an attribute naked C function, which contains inline assembly of the

SVC_Handler that extracts the stack frame location and branch to the C handler

“SVC_Handler_c.” In this way, all can be done in just one C file.
void SVC_Handler(void) __attribute__((naked));
void SVC_Handler(void)
{

 __asm(" movs r0, #4\n"
(Continued)

 " mov r1, lr \n"
 " tst r0, r1\n"
 " beq svc_stacking_used_MSP\n"
 " mrs r0, psp \n"
 " ldr r1,=SVC_Handler_c \n"
 " bx r1\n"
 "svc_stacking_used_MSP: \n”
 " mrs r0, msp\n"
 " ldr r1,=SVC_Handler_c\n"
 " bx r1\n");
}

—Cont’d

400 Chapter 20
Hard Fault Handler Example

Using the same techniques, we can create a hard fault handler that reports the occurrence of the

hard fault, and we can extract stacked register values including the stacked PC value. The

stacked PC value is very useful for identifying locations of problems in software. By creating

a disassembly listing of the compiled program image, we can use the stacked program counter

value to identify where the hard fault occurred. The hard fault handler demonstrated here also

reports other stacked register values. For example, the IPSR value in the stacked xPSR

indicates if the fault occurred within an exception handler, and other registers might indicate

address values being used for an invalid memory access.

The program listing to demonstrate the hard fault handler is as follows:
hardfault_handler_demo.c
#include "LPC11XX.h"
#include <stdio.h>
#include "uart_io.h"

#define INVALID_ADDRESS (*((volatile unsigned long *)(0xFFFF0000)))

int main(void)
{
 SystemInit(); // Switch Clock to 48MHz
 UartConfig();
 UartPuts("Hardfault handler demo\n");

 /* Generate fault */
 INVALID_ADDRESS = INVALID_ADDRESS + 1;

 while(1);
} // end main

 // - Stacked R0 = hf_args[0]
 // - Stacked R1 = hf_args[1]
 // - Stacked R2 = hf_args[2]
 // - Stacked R3 = hf_args[3]
 // - Stacked R12 = hf_args[4]
 // - Stacked LR = hf_args[5]
 // - Stacked PC = hf_args[6]
 // - Stacked xPSR= hf_args[7]

 UartPuts("HardFault Handler:\n");

 UartPuts("- R0 = 0x");
 UartPutHex(hf_args[0]);
 UartPutc('\n');

 UartPuts("- R1 = 0x");
 UartPutHex(hf_args[1]);
 UartPutc('\n');

 UartPuts("- R2 = 0x");
 UartPutHex(hf_args[2]);
 UartPutc('\n');

 UartPuts("- R3 = 0x");
 UartPutHex(hf_args[3]);
 UartPutc('\n');

 UartPuts("- R12 = 0x");
 UartPutHex(hf_args[4]);
 UartPutc('\n');

 UartPuts("- LR = 0x");
 UartPutHex(hf_args[5]);
 UartPutc('\n');

 UartPuts("- PC = 0x");
 UartPutHex(hf_args[6]);
 UartPutc('\n');

 UartPuts("- xPSR= 0x");
 UartPutHex(hf_args[7]);
 UartPutc('\n');

 while (1);
 return;
}

void HardFault_Handler_c(unsigned int * hf_args)
{
 // Stack frame contains:
 // r0, r1, r2, r3, r12, r14, the return address and xPSR

Getting Started with the GNU C Compiler 401

402 Chapter 20
The program requires an assembly wrapper, “handlers.s,” to extract the exception stack frame
starting address. The program code for this wrapper function is as follows:
handlers.s
 .text
 .syntax unified
 .thumb
 .type HardFault_Handler, %function
 .global HardFault_Handler
 .global HardFault_Handler_c

HardFault_Handler:
 movs r0, #4
 mov r1, lr
 tst r0, r1
 beq hf_stacking_used_MSP
 mrs r0, psp /* first parameter - stacking was using PSP */
 ldr r1,=HardFault_Handler_c
 bx r1
hf_stacking_used_MSP:
 mrs r0, msp /* first parameter - stacking was using MSP */
 ldr r1,=HardFault_Handler_c
 bx r1
 .end
We can compile this example in the same way as the SVC demonstration example:

arm-none-eabi-gcc -g -O2 -mcpu¼cortex-m0 -mthumb hardfault_handler_demo.c uart_io.c
handlers.s startup_LPC11xx.s lpc11xx\system_LPC11xx.c -I cmsis -I lpc11xx -T
LPC1114.ld -o hardfault_handler_demo.o

Note that the C-based HardFault handler can only work if the main stack pointer is still

pointing at valid memory location.

Again, just like the SVC example, you can create the HardFault handler wrapper using an

attribute naked C function with inline assembly code to locate the stack frame and jump to the

C code. This could all be done in just one C file.
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler(void)
{
 __asm(" movs r0, #4\n"
 " mov r1, lr \n"
 " tst r0, r1\n"
 " beq hf_stacking_used_MSP\n"
 " mrs r0, psp \n"
 " ldr r1,=HardFault_Handler_c \n"
 " bx r1\n"

 "hf_stacking_used_MSP: \n”
 " mrs r0, msp\n"
 " ldr r1,=HardFault_Handler_c\n"
 " bx r1\n");
}

Getting Started with the GNU C Compiler 403
Flash Programming and Debug
After the program image is generated, we need to program the image onto the flash memory of

the microcontroller and test/debug the application. If you are using the Sourcery Gþþ personal

edition, academic edition, or professional edition, the development suite already includes flash

programming and debug interface support for a number of ARM microcontrollers. Other

development suites based on the GNU C compiler might also include device support for the

Cortex-M0 microcontroller you use.

If you are using the Sourcery Gþþ Lite (the free version), then you will need a third-party tool

for flash programming and debug. Chapter 19 outlined a number of possible solutions,

including third-party flash programming tools and alternative debug arrangements. Because

almost all development tools for ARM support the DWARF file format (which is used by gcc),

compiled images from gcc can often be imported to other debug environments.

CHAPTER 21

Software Porting

Overview

As software reuse becomes more common, software porting is becoming a more common task

for embedded software developers. In this chapter, we will look into differences between

various common ARM processors for microcontrollers and what areas in a program need to be

modified when porting software between them.

This chapter also covers software porting of software from 8-bit and 16-bit architectures.
ARM Processors

A number of ARM processors are used in microcontroller products (Table 21.1).
Table 21.1: Commonly Used ARM Processors on Microcontrollers

Processor Descriptions

ARM7TDMI A very popular 32-bit processor and widely supported by development tools. It is
based on ARM architecture version 4T and supports both ARM and Thumb
instruction set. Upward compatible to ARM9, ARM11, and Cortex-A/R
processors.

ARM920T/922T/
940T

Microcontrollers based on these processors are less common nowadays. They are
based on ARM architecture version 4T but with Harvard bus architecture. They also
support cache, MMU, or MPU features.

ARM9E processor
family

Most of the ARM9 microcontrollers are based on the ARM9E processor family. They
are based on ARM architecture version v5TE (with Enhanced DSP instructions) and
various memory system features (cache, TCM, MMU, MPU, DMA, etc.) depending
on processor model. Usually they are targeted at higher end of microcontroller
application space with high operating frequency and larger memory system
support.

Cortex-M3 The first ARM Cortex processor designed specifically for microcontroller
applications. It combines high-performance, high-energy efficiency, low interrupt
latency and ease of use. It is based on ARM Architecture v7-M and supports the
Thumb instruction set only. Upward compatible to Cortex-M4.

Cortex-M1 A processor design specifically for FPGA application. Based in ARM architecture
v6-M, a subset of ARMv7-M, the Cortex-M1 supports a smaller instruction set
compared to Cortex-M3. It uses the same exception processing model and shares the
same benefitsdC friendly and easy to usedas in Cortex-M3.

(Continued)

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10021-7

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

405

http://dx.doi.org/10.1016/B978-0-12-385477-3.10021-7

Table 21.1: Commonly Used ARM Processors on MicrocontrollersdCont’d

Processor Descriptions

Cortex-M0 Using the ARMv6-M architecture, the Cortex-M0 is developed for ultra low-power
designs and is target for general microcontroller applications where good
performance, high energy efficiency, and deterministic behavior are required.

Cortex-M4 The latest edition of the ARM Cortex-M processor family targeted at the digital signal
controller applications. Based on ARMv7-ME architecture, the Cortex-M4 provides
all the features of the Cortex-M3 and also single precision floating point (optional)
and SIMD instructions.

406 Chapter 21
The main differences between the Cortex-M processors are illustrated in Figure 21.1.
Thumb
instruction set

NVIC

Low power

32-bit Thumb
instructions

Bit-band feature

Bit field
processing

Cortex-M0

Cortex-M3
Cortex-M4

Multi-processor
supportDebug Low gate count

Deterministic
interrupt latency

More debug and
trace features

SIMD instructions

Saturated maths

Single cycle MAC

Hardware divide

Up to 240
interrupts

Memory
Protection Unit

0.9

1.25

Cortex-M1

TCM

FPGA
optimization

0.8

Low cost microcontrollers, 8-bit / 16-
bit processor replacement, ultra low
power or mixed signal applications

High performance microcontrollers,
low power / low cost microcontrollers,

embedded systems with high
reliability requirements

Digital Signal Controllers,
high quality audio
processing, highly

precise industrial / motor
controls

FPGA
applications,

emerging
applications

DMIPS/MHz

Floating point
(optional)

Figure 21.1:
The Cortex-M processor family.
In this chapter we will cover the detailed differences between the Cortex-M0 and some of these

processors.

Differences between the ARM7TDMI and the Cortex-M0

There are a large number of differences between the ARM7TDMI and the Cortex-M0.

Operation Mode

The ARM7TDMI has a number of operation modes, whereas the Cortex-M0 only has two

modes, as described in Table 21.2.

Some of the exception models from the ARM7TDMI are combined in Handler mode in the

Cortex-M0 with different exception types. Consider the example presented in Table 21.3.

The reduction of operation modes simplifies Cortex-M0 programming.

Table 21.2: Operation Modes Comparison

between the ARM7TDMI and the Cortex-M0

Operation Modes in
ARM7TDMI

Operation Modes in
Cortex-M0

System
Supervisor
IRQ
FIQ
Undefined (Undef)
Abort
User

Thread
Handler

Table 21.3: Exception Comparison between the

ARM7TDMI and the Cortex-M0

Exceptions in the
ARM7TDMI

Exception in the
Cortex-M0

IRQ
FIQ
Undefined (Undef)
Abort
Supervisor

Interrupts
Interrupts
Hard fault
Hard fault
SVC

Software Porting 407
Registers

The ARM7TDMI has a register bank with banked registers based on current operation mode.

In Cortex-M0, only the SP is banked (Figure 21.2). And in most simple applications without an

OS, only the MSP is required.

There are some differences between the CPSR (Current Program Status Register) in the

ARM7TDMI and the xPSR in the Cortex-M0. For instance, the mode bits in CPSR are

removed, replaced by IPSR, and interrupt masking bit I-bit is replaced by the PRIMASK

register, which is separate from the xPSR.

Despite the differences between the register banks, the programmer’s model or R0 to R15

remains the same. As a result, Thumb instruction codes on the ARM7TDMI can be reused on

the Cortex-M0, simplifying software porting.

Instruction Set

The ARM7TDMI supports the ARM instructions (32-bit) and Thumb instructions (16-bit)

in ARM architecture v4T. The Cortex-M0 supports Thumb instructions in ARMv6-M, which is

a superset of the Thumb instructions supported by the ARM7TDMI. However, the Cortex-M0

Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

SPSR_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R13_irq

R14_irq

R13_svc

R14_svc

R13_undef

R14_undef

R13_abt

R14_abt

SPSR_irq SPSR_svc SPSR_undef SPSR_abt

FIQ mode
banked
registers

IRQ mode
banked
registers

SVC mode
banked
registers

Common
registers

Undef mode
banked

registers

Abort mode
banked

registers

0M-xetroC ni sretsigeRIMDT7MRA ni sretsigeR
Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

xPSR

CONTROL

PRIMASK

Figure 21.2:
Register bank differences between the ARM7TDMI and the Cortex-M0.

4
0
8

C
hapter

2
1

Software Porting 409
does not support ARM instructions. Therefore, applications for the ARM7TDMI must be

modified when porting to Cortex-M0.

Interrupts

The ARM7TDMI supports an IRQ interrupt input and a Fast Interrupt (FIQ) input. Normally

a separate interrupt controller is required in an ARM7TDMI microcontroller to allow

multiple interrupt sources to share the IRQ and FIQ inputs. Because the FIQ has more banked

registers and its vector is located at the end of the vector table, it can work faster by

reducing the register stacking required, and the FIQ handler can be placed at the end of vector

table to avoid branch penalty.

Unlike the ARM7TDMI, the Cortex-M0 has a built-in interrupt controller called NVIC with up

to 32 interrupt inputs. Each interrupt can be programmed at one of the four available priority

levels. There is no need to separate interrupts into IRQ and FIQ, because the stacking of registers

is handled automatically by hardware. In addition, the vector table in the Cortex-M0 stores the

starting address of each interrupt service routine, while in the ARM7TDMI the vector table

holds instructions (usually branch instructions that branch to interrupt service routines).

When the ARM7TDMI receives an interrupt request, the interrupt service routine starts in

ARM state (using ARM instruction). Additional assembly wrapper code is also required to

support nested interrupts. In the Cortex-M0, there is no need to use assembly wrappers for

normal interrupt processing.

Porting Software from the ARM7TDMI to the Cortex-M0

Application code for the ARM7TDMI must be modified and recompiled to be used on the

Cortex-M0.

Startup Code and Vector Table

Because the vector table and the initialization sequence are different between the ARM7TDMI

and the Cortex-M0, the startup code and the vector table must be replaced (Table 21.4).

Example of startup code for the Cortex-M0 can be found in various examples in this book.

Interrupt

Because the interrupt controller used in microcontrollers with the ARM7TDMI would be

different from the NVIC in the Cortex-M0, all the interrupt control code needs to be updated. It

is recommended to use the NVIC access functions defined in CMSIS for portability reason.

The interrupt wrapper function for nested interrupt support in the ARM7TDMImust be removed.

If the interrupt service routine was written in assembly, the handler code will probably require

Table 21.4: Vector Table Differences between the ARM7TDMI and the Cortex-M0

Vector Table in the Arm7TDMI Vector Table in the Cortex-M0

Vectors
B Reset_Handler
B Undef_Handler
B SWI_Handler
B PrefetchAbort_Handler
B DataAbort_Handler
B IRQ_Handler
B FIQ_Handler

Reset_Handler ; Setup Stack for each mode
LDR R0,¼Stack_Top
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
. ; setup stack for other modes
IMPORT __main
LDR R0, ¼__main ; Enter C startup
BX R0

Vectors
IMPORT __main
DCD _stack_top ; Main SP starting value
DCD __main ; Enter C startup
DCD NMI_Handler
DCD HardFault_Handler
DCD 0, 0, 0, 0, 0, 0, 0
DCD SVC_Handler
DCD 0, 0
DCD PendSV_Handler
DCD SysTick_Handler
. ; vectors for other interrupt handlers

410 Chapter 21
rewriting because many ARM instructions cannot be directly mapped to Thumb instructions. For

example, the exception handler in the ARM7TDMI can be terminated by “MOVS PC, LR”
(ARM instruction). This is not valid for the Cortex-M0 and must be replaced by “BX LR”.

FIQ handlers for the ARM7TDMI might rely on the banked registers R8 to R14 in the

ARM7TDMI to save execution time. For example, constants used by the FIQ handler might be

preloaded into these banked registers before the FIQ is enabled so that the FIQ handler can be

simplified. When porting such handlers to the Cortex-M0 processor, the banked registers are not

available and therefore these constants must be loaded into the registers within the handler.

In some cases you might find assembly code being used to enable or disable interrupts by

modifying the I-bit in CPSR. In the Cortex-M0, this is replaced by the PRIMASK interrupt

masking register. Note that in the ARM7TDMI you can carry out the exception return and

change the I-bit in a single exception return instruction. In the Cortex-M0 processor,

PRIMASK and xPSR are separate registers, so if the PRIMASK is set during the exception

handler, it must be cleared before the exception exit. Otherwise the PRIMASK will remain set

and no other interrupt can be accepted.

C Program Code

Apart from the usual changes caused by peripherals, memory map, and system-level feature

differences, the C applications might require changes in the following areas:

• Compile directives like “#pragma arm” and “#pragma thumb” are no longer required

because the Cortex-M0 supports Thumb instructions only.

Software Porting 411
• For ARM RVDS or Keil MDK, all inline assembly has to be rewritten, either using

embedded assembler, separate assembly code, or as C functions. Inline assembly in

these tools only supports ARM instructions. Users of the GNU C compiler might also need

to modify their inline assembly code.

• Exception handlers can be simplified because in the Cortex-M0, each interrupt has

its own interrupt vector. There is no need to use software to determine which

interrupt service is required, and there is no software overhead in supporting nested

interrupts.

• Although the “__irq” directive is not essential in the Cortex-M0 exception handlers, this

directive for interrupt handlers can be retained in ARM RVDS or Keil MDK projects

for clarity. It might also help software porting if the application has to be ported to other

ARM processors in the future.

The C code should be recompiled to ensure that only Thumb instructions are used and no

attempt to switch to ARM state should be contained in the compiled code. Similarly, library

files must also be updated to ensure they will work with the Cortex-M0.

Assembly Code

Because the Cortex-M0 does not support the ARM instruction set, assembly code that uses

ARM instructions has to be rewritten.

Be careful with legacy Thumb programs that use the CODE16 directive. When the CODE16

directive is used, the instructions are interpreted as traditional Thumb syntax. For example,

data processing op-codes without S suffixes are converted to instructions that update

APSR when the CODE16 directive is used. However, you can reuse assembly files with the

CODE16 directive because it is still supported by existing ARM development tools. For

new assembly code, the THUMB directive is recommended, which indicates to the assembly

that the Unified Assembly Language (UAL) is used. With UAL syntax, data processing

instructions updating the APSR require the S suffix.

Fault handlers and system exception handlers like SWI must also be updated to work with the

Cortex-M0.

Atomic Access

Because Thumb instructions do not support swap (SWP and SWPB instructions), the code for

handling atomic access must be changed. For single processor systems without other bus

masters, you can use either the exception mechanism or PRIMASK to achieve atomic

operations. For example, because there can only be one instance of the SVC exception running

(when an exception handler is running, other exceptions of the same or lower priority levels are

blocked), you can use SVC as a gateway to handle atomic operations.

412 Chapter 21
Optimizations

After getting the software working on the Cortex-M0, there are various areas you can look into

to optimize your application code.

For assembly code migrated from the ARM7TDMI, the data type conversion operation is one

of the potential areas for improvement because of new instructions available in the ARMv6-M

architecture.

If the interrupt handlers were written in assembly, there might be chance that the stacking oper-

ations can be reduced because the exception sequence automatically stacks R0-R3 and R12.

More sleep modes features are available in the Cortex-M0 that can be used to reduce power

consumption. To take the full advantages of the low-power features on a Cortex-M0 micro-

controller, you will need to modify your application code to make use of the power

management features in the microcontroller. These features are dependent on the micro-

controller product, and the information in this area can usually be found in user manuals or

application notes provided by the microcontroller vendors.

With the nested interrupts being automatically handled by processor hardware and the avail-

ability of programmable priority levels in the NVIC, the priority level of the exceptions can be

rearranged for best system performance.

Differences between the Cortex-M1 and the Cortex-M0

Both the Cortex-M1 and the Cortex-M0 are based on the ARM architecture v6-M, so the

differences between the Cortex-M1 and the Cortex-M0 are relatively small.
Instruction Set

In the Cortex-M1 processor, WFI, WFE and SEV instructions are executed as NOPs. There is

no sleep feature on current implementations of the Cortex-M1 processor.

SVC instruction support is optional in the Cortex-M1 (based on the design configuration

parameter defined by an FPGA designer), whereas in the Cortex-M0 processor, SVC

instruction is always available.
NVIC

SVC and PendSVexceptions are optional in the Cortex-M1 processor. They are always present

in the Cortex-M0. Interrupt latency are also different between the two processors. Some

optimizations related to interrupt latency (e.g. zero jitter) are not available on the current

implementations of Cortex-M1 processor.

Software Porting 413
System-Level Features

The Cortex-M1 has Tightly Coupled Memory (TCM) support to allow memory blocks in the

FPGA to connect to the Cortex-M1 directly for high-speed access, whereas the Cortex-M0

processor has various low-power support features like WIC (Wakeup Interrupt Controller).

There are also a number of differences in the configuration options between the two processors.

These options are only available for FPGA designers (for Cortex-M1 users) or ASIC designers

(for Cortex-M0 microcontroller vendors). For example, with the Cortex-M1 processor you can

include both the serial wire debug and the JTAG debug interface, whereas Cortex-M0

microcontrollers normally only support either the serial wire or the JTAG debug interface.

Porting Software between the Cortex-M0 and the Cortex-M1

In general, software porting between Cortex-M0 and Cortex-M1 is extremely easy. Apart from

peripheral programming model differences, there are few required changes.

Because both processors are based on the same instruction set, and the architecture version is

the same, the same software code can often be used directly when porting from one processor

to another. The only exception is when the software code uses sleep features. Because the

Cortex-M1 does not support sleep mode, application code using WFI and WFE might need to

be modified.

There is also a small chance that the software needs minor adjustment because of execution

timing differences.

At the time of writing, no CMSIS software package is available for the Cortex-M1. However,

you can use the same CMSIS files for the Cortex-M0 on Cortex-M1 programming, because

they are based on the same version of the ARMv6-M architecture.

Differences between the Cortex-M3 and the Cortex-M0

The Cortex-M3 processor is based on the ARMv7-M architecture. It supports many more 32-

bit Thumb instructions and a number of extra system features. The performance of the Cortex-

M3 is also higher than that for the Cortex-M0. These factors make the Cortex-M3 very

attractive to demanding applications in the automotive and industrial control areas.

Programmer’s Model

The ARMv7-M architecture is a superset of the ARMv6-M architecture. So it provides all

the features available in the ARMv6-M. The Cortex-M3 processor also provides various

additional features. For the programmer’s model, it has an extra nonprivileged mode (User

Thread) when the processor is not executing exception handlers. The user Thread mode access

Privileged
Handler

User Thread

Privileged
Thread

Start
(reset)

Exception
Exception

exit

Exception

Exception
exit

Program of
CONTROL

register

Available in
Cortex-M3

Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

Special

Registers

xPSR

PRIMASK

FAULTMASK

BASEPRI

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL
Additional bit fields

in Cortex-M3

Figure 21.3:
Programmer’s model differences between the Cortex-M0 and the Cortex-M3.

414 Chapter 21
to the processor configuration registers (e.g., NVIC, SysTick) is restricted, and an optional

memory protection unit (MPU) can be used to block programs running in user threads from

accessing certain memory regions (Figure 21.3).

Apart from the extra operation mode, the Cortex-M3 also has additional interrupt masking

registers. The BASEPRI register allows interrupts to of certain priority level or lower to be

blocked, and the FAULTMASK provides additional fault management features.

The CONTROL register in the Cortex-M3 also has an additional bit (bit[0]) to select whether

the thread should be in privileged or user Thread mode.

The xPSR in the Cortex-M3 also has a number of additional bits to allow an interrupted

multiple load/store instruction to be resumed from the interrupted transfer and to allow an

instruction sequence (up to four instructions) to be conditionally executed.

NVIC and Exceptions

The NVIC in the Cortex-M3 supports up to 240 interrupts. The number of priority levels is also

configurable by the chip designers, from 8 levels to 256 levels (in most cases 8 levels to

Software Porting 415
32 levels). The priority level settings can also be configured into preemption priority (for

nested interrupt) and subpriority (used when multiple interrupts of the same preempt priority

are happening at the same time) by software.

One of the major differences between the NVIC in the Cortex-M3 and Cortex-M0 is that most

of the NVIC registers in the Cortex-M3 can be accessed using word, half word, or byte

transfers. With the Cortex-M0, the NVIC must be accessed using a word transfer. For example,

if an interrupt priority register needs to be updated, you need to read the whole word (which

consists of priority-level settings for four interrupts), modify 1 byte, and then write it back.

In the Cortex-M3, this can be carried out using just a single byte-size write to the priority-level

register. For users of the CMSIS device driver library, this difference does not cause a

software porting issue, as the CMSIS NVIC access function names are the same and the

functions use the correct access method for the processor.

The NVIC in the Cortex-M3 also supports dynamic changing of priority levelsdin contrast to

the Cortex-M0, where the priority level of an interrupt should not be changed after it is enabled.

The Cortex-M3 has additional fault handlers with programmable priority levels. It allows the

embedded systems to be protected by two levels of fault exception handlers (Figure 21.4).

When used together with the memory protection unit in the Cortex-M3, robust systems can be

build for embedded systems that require high reliability.

The NVIC in the Cortex-M3 also supports the following features:

• Vector Table Offset Register. The vector table can be relocated to another address in the

CODE memory region or the SRAM memory region.

• Software Trigger Interrupt Register. Apart from using NVIC Interrupt Pending Set

Register, the pending status of interrupts can be set using this register.
Fault

Bus Fault
exception

MemManage
Fault exception

Usage Fault
exception

Hard Fault
exception

First level of fault handling Second level of fault handling

Further fault
during handler

Lock up

Further fault
during handler

Figure 21.4:
Multiple levels of fault handling in the Cortex-M3.

416 Chapter 21
• Interrupt Active Status Register. The active status of each interrupt can be determined by

software.

• Additional fault status registers for indicating causes of fault exceptions and fault address

• An additional exception called the debug monitor for debug purposes.

Instruction Set

In addition to the Thumb instructions supported in the Cortex-M0 processor, the Cortex-M3

also supports a number of additional 16-bit and 32-bit Thumb instructions. These include the

following:

• Signed and unsigned divide instructions (SDIV and UDIV)

• Compare and branch if zero (CBZ), compare and branch if not zero (CBNZ)

• IF-THEN (IT) instruction, allowing up to four subsequence instructions to be conditionally

executed based on the status in APSR.

• Multiply and accumulate instructions for 32-bit and 64-bit results.

• Count leading zero (CLZ)

• Bit field processing instructions for bit order reversing, bit field insert, bit field clear, and

bit field extract

• Table branch instructions (commonly used for the switch statement in C)

• Saturation operation instructions

• Exclusive accesses for multiprocessor environments

• Additional instructions that allows high registers (R8 and above) to be used in data

processing, memory accesses, and branches

These additional instructions allow faster processing of complex data like floating point values.

They also allow the Cortex-M3 to be used in audio signal processing applications, real time

control systems.

System-Level Features

The Cortex-M3 includes a number of system-level features that are not available on the Cortex-

M0. These include the following:

• Memory protection unit (MPU). A memory access monitoring unit that provides eight

memory regions. Each memory region can be defined with different locations and size,

as well as different memory access permissions and access behavior. If an access

violation is found, the access is blocked and a fault exception is triggered. The OS can use

the MPU to ensure each task can only access permitted memory space to increase system

reliability.

• Unaligned memory accesses. In the Cortex-M0, all the data transfer operations must be

aligned. This means a word-size data transfer must have an address value divisible by 4,

Software Porting 417
and half-word data transfer must occur at even addresses. The Cortex-M3 processor allows

many memory access instructions to generate unaligned transfers. On the Cortex-M0

processor, access of unaligned data has to be carried out by multiple instructions.

• Bit band regions. The Cortex-M3 has two bit addressable memory regions called the bit-

band regions. The first bit-band region is in the first 1 MB of the SRAM region, and the

second one is the first 1 MB of the peripheral region. Using another memory address range

called bit-band alias, the bit data in the bit band region can be individually accessed and

modified.

• Exclusive accesses. The Cortex-M3 supports exclusive accesses, which are used to handle

shared data in multiprocessor systems such as semaphores. The processor bus interface

supports additional signals for connecting to an exclusive access monitor unit on the bus

system.

Debug Features

The Cortex-M3 provides additional breakpoints and data watchpoints in its debug system.

The breakpoint unit can also be used to remap instruction or literal data accesses from the

original address (e.g., mask ROM) to a different location in the SRAM region. This allows

nonerasable program memories to be patched with a small programmable memory (Table 21.5).
Table 21.5: Debug and Trace Feature Comparison

Cortex-M0 Cortex-M3

Breakpoints Up to 4 Up to 8
Watchpoints Up to 2 Up to 4
Instruction trace d Optional
Data trace d Yes
Event trace d Yes
Software trace d Yes
In addition to the standard debug features, the Cortex-M3 also has trace features. The optional

Embedded Trace Macrocell (ETM) allows information about instruction execution to be

captured so that the instruction execution sequence can be reconstructed on debugging hosts.

The Data Watch-point and Trace (DWT) unit can be used to generate trace for watched data

variables or access to memory ranges. The DWT can also be used to generate event trace,

which shows information of exception entrance and exit. The trace data can be captured using

a trace port analyzer such as the ARM RealView-Trace unit or an in-circuit debugger such as

the Keil ULINKPro.

The Cortex-M3 processor also supports software-generated trace though a unit called the

Instrumentation Trace Macrocell (ITM). The ITM provides 32 message channels and allows

software to generate text messages or data output.

418 Chapter 21
Porting Software between the Cortex-M0 and the Cortex-M3

Although there are a number of differences between the Cortex-M0 (ARMv6-M) and the

Cortex-M3 (ARMv7-M), porting software between the two processors is usually easy. Because

the ARMv7-M supports all features in the ARMv6-M, applications developed for the

Cortex-M0 can work on the Cortex-M3 directly, apart from changes that result from their

peripheral differences (Figure 21.5).

Normally, when porting an application from the Cortex-M0 to the Cortex-M3, you only need to

change the device driver library, change the peripheral access code, and update the software for

system features like clock speed, sleep modes, and the like.

Porting software from the Cortex-M3 to the Cortex-M0 might require more effort. Apart from

switching the device driver library, you also need to consider the following areas:

• NVIC and SCB (System Control Block) registers in the Cortex-M0 can only be

accessed in word-size transfers. If any program code accesses these registers in byte-size

transfers or half-word transfers, they need to be modified. If the NVIC and SCB are

accessed by using CMSIS functions, switching the CMSIS-compliant device driver to use

the Cortex-M0 should automatically handle these differences.

• Some registers in the NVIC and the SCB in the Cortex-M3 are not available in the Cortex-

M0. These include the Interrupt Active Status Register, the Software Trigger Interrupt

Register, the Vector Table Offset Register, and some of the fault status registers.

• The bit-band feature in the Cortex-M3 is not available in the Cortex-M0. If the bit-band

alias access is used, it needs to be converted to use normal memory accesses and handle

bit extract or bit modification by software.

• If the application contains assembly code or embedded assembly code, the assembly code

might require modification because some of the instructions are not available on the

Cortex-M0. For C application code, some instructions such as hardware divide are not
ARM

Cortex-M0

ARM

Cortex-M3

Upward compatible

Simple porting,
recompile

0.9 DMIPS/MHz

Von Neumann
architecture

1.25 DMIPS/MHz

Harvard bus
architecture

Figure 21.5:
Compatibility between the Cortex-M0 processor and the Cortex-M3 processor.

Administrator
高亮

Software Porting 419
available in the Cortex-M0. In this case, the compiler will automatically call the C library

to handle the divide operation.

• Unaligned data transfer is not available on the Cortex-M0.

• Some instructions available in the Cortex-M3 (e.g., exclusive accesses, bit field

processing) are not available on the Cortex-M0.

Some Cortex-M0 microcontrollers support a memory remapping feature. Applications that use

the vector table relocation feature on the Cortex-M3 might able to use the memory remapping

feature to handle vector table relocation.

Applications that require the user Thread mode or the MPU feature cannot be ported to the

Cortex-M0 because these features are not supported in the Cortex-M0.

Porting Software between the Cortex-M0 and the Cortex-M4 Processor

The Cortex-M4 processor is based on the same architecture as that used for the Cortex-M3. It is

similar to the Cortex-M3 in many aspects: it has the same Harvard bus architecture, approx-

imately the same performance in terms of Dhrystone DMIPS/MHz, the same exception types,

and so on.

Compared to the Cortex-M3, the Cortex-M4 has additional instructions such as single

instruction, multiple data (SIMD) instructions, saturation arithmetic instructions, data

packing and extraction instructions, and optional single precision floating point instructions if

a floating point unit is implemented. The floating point support in the Cortex-M4 is optional;

therefore, not all Cortex-M4 microcontrollers will support this feature. If the floating point unit

is included, it includes an additional floating point register bank and additional registers, as

well as extra bit fields in the xPSR and CONTROL special registers (Figure 21.6). The floating

point unit can be turned on or off by software to reduce power consumption.

Apart from these additional instructions, the system features of the Cortex-M4 are similar to

those of the Cortex-M3 processor. Therefore, the techniques for porting software between the

Cortex-M0 and the Cortex-M3 processors can also be used on porting software between the

Cortex-M0 and Cortex-M4 processors. However, because of the differences between the nature

of the two processors, some applications developed for the Cortex-M4 processor (e.g., high-

end audio processing or industrial applications that require floating point operations) are

unsuitable for the Cortex-M0 processor.

Porting Software from 8-Bit/16-Bit Microcontrollers to the Cortex-M0

Common Modifications

Some application developers might need to port applications from 8-bit or 16-bit

microcontrollers to the Cortex-M0. By moving from these architectures to the

Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

Special registers

xPSR

PRIMASK

FAULTMASK

BASEPRI

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL

Special
Registers

D0

FPU register bank (Only for floating point option)

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

S0

S2

S4

S6

S8

S10

S12

S14

S16

S18

S20

S22

S24

S26

S28

S30

S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

S21

S23

S25

S27

S29

S31

FPSCR FP Status and Control Register

Figure 21.6:
Programmer’s model of the Cortex-M4 with a floating point.

420 Chapter 21
Cortex-M0, often you can get better code density, higher performance, and lower power

consumption.

When porting applications from these microcontrollers to the Cortex-M0, the modifications of

the software typically involve the following:

• Startup code and vector table. Different processor architectures have different startup code

and interrupt vector tables. Usually the startup code and the vector table will have to be

replaced.

• Stack allocation adjustment.With the Cortex-M processors, the stack size requirement can

be very different from an 8-bit or 16-bit architecture. In addition, the methods to define

stack location and stack size are also different from 8-bit and 16-bit development tools.

Software Porting 421
• Architecture-specific/tool-chain-specific C language extensions. Many of the C compilers

for 8-bit and 16-bit microcontrollers support a number of C language extensions features.

These include special data types like Special Function Registers (SFRs) and bit data in

8051, or various “#pragma” statements in various C compilers.

• Interrupt control. In 8-bit and 16-bit microcontroller programming, the interrupt configu-

ration is usually done by directly writing to various interrupt control registers. When

porting the applications to the ARM Cortex-M processor family, these codes should be

converted to use the CMSIS interrupt control functions. For example, the enable and disable

functions of interrupts can be converted to “__enable_irq()” and “__disable_irq
()”. The configuration of individual interrupts can be handled by various NVIC functions

in CMSIS.

• Peripheral programming. In 8-bit and 16-bit microcontroller programming, the peripherals

control is usually handled by programming to registers directly. When using ARM

microcontrollers, many microcontroller vendors provide device driver libraries to make

use of the microcontroller easier. You can use these library functions to reduce software

development time or write to the hardware registers directly if preferred. If you prefer

to program the peripherals by accessing the registers directly, it is still beneficial to use the

header files in the device driver library as these have all the peripheral registers defined and

can save you time preparing and validating the code.

• Assembly code and inline assembly. Obviously all the assembly and inline assembly code

needs to be rewritten. In many cases, you can rewrite the required function in C when the

application is ported to the Cortex-M0.

• Unaligned data. Some 8-bit or 16-bit microcontrollers might support unaligned

data. Because the Cortex-M0 does not support unaligned data, some data structures

definitions or pointer manipulation codes might need to be changed. For data

structures that require unaligned data handling, we can use the __packed attribute

when defining the structure. However, the Cortex-M0 requires multiple instructions to

access unaligned data. So it is best to convert the data structures so that all elements

inside are aligned.

• Be aware of data size differences. The integers in most 8-bit and 16-bit processors are

16-bit, whereas in ARM architectures integers are 32-bit. This difference causes changes in

behavior of overflow situations, it can also affect the memory size required for storing

the data. For example, when a program file defines an array of integers from 8-bit or 16-bit

architecture, we might want to change the code to use “short int” or “int16_t” (in
“stdint.h,” introduced in C99) when porting the code to ARM architecture so that the size

remains unchanged.

• Floating point. Many 8-bit and 16-bit microcontrollers define “double” (double preci-
sion floating point) as 32-bit data. In ARM architecture, “double” is 64-bit. When

porting applications containing floating point operations, you might need to change the

422 Chapter 21
double precision floating point data to “float” (single precision floating point).

Otherwise the processing speed would be reduced and the program size could increase

because of the requirement to process the data in extra precision. For the same reason,

some function calls for mathematical operation might need to be changed to ensure that

the single precision version is used. For example, by default “cos()” is the double

precision version of the cosine function; for single precision operation, use “cosf()”

instead.

• Adding fault handlers. In many 8-bit and 16-bit microcontrollers, there are no fault excep-

tions. Although embedded applications can operate without any fault handlers, the addition

of fault handlers can help an embedded system to recover from error (e.g., data corruption

caused by voltage drop or electromagnetic interference).

Memory Requirements

One of the points mentioned earlier is the stack size. After porting to the ARM architecture, the

required stack size could increase or decrease, depending on the application. The stack size

might increase for the following reasons:

• Each register push takes 4 bytes of memory in ARM, whereas in 16-bit or 8-bit models,

each register push takes 2 bytes or 1 byte.

• In ARM programming, local variables are often stored in stack, whereas in some architec-

tures local variables might be defined in a separate data memory area.

On the other hand, the stack size could decrease for the following reasons:

• With 8-bit or 16-bit architecture, multiple registers are required to hold large data, and

often these architectures have fewer registers compared to ARM, so more stacking

would be required.

• The more powerful addressing mode in ARM means address calculations can be carried

out on the fly without taking up register space. The reduction of register space used for

an operation can reduce the stacking requirement.

Overall, the total RAM size required could decrease significantly after porting because in

some architectures, such as the 8051, local variables are defined statically in data memory

space rather on the stack. So the memory space is used even when the function or subroutine is

not running. On the other hand, in ARM processors, the local variables allocated on the stack

only take up memory space when the function or subroutine is executing. Also, with more

registers available in the ARM processor’s register bank compared to some other architectures,

some of the local variables might only need to be stored in the register bank instead of taking

up memory space.

The program memory requirement in the ARM Cortex-M0 is normally much lower than it

is for 8-bit microcontrollers, and it is often lower than that required for most 16-bit

Software Porting 423
microcontrollers. So when you port your applications from these microcontrollers to the

ARM Cortex-M0 microcontroller, you can use a device with smaller flash memory size.

The reduction of the program memory size is often caused by the following:

• Better efficiency at handling 16-bit and 32-bit data (including integers and pointers)

• More powerful addressing modes

• Some memory access instructions can handle multiple data, including PUSH and POP

There can be exceptions. For applications that contains only a small amount of code, the code

size in ARM Cortex-M0 microcontrollers could be larger compared to that for 8-bit or 16-bit

microcontrollers for a couple of reasons:

• The ARM Cortex-M0 might have a much larger vector table because of more

interrupts.

• The C startup code for ARM Cortex-M0 might be larger. If you are using ARM

development tools like the Keil MDK or the RealView Development Suite, switching to

the MicroLIB might help to reduce the code size.

Nonapplicable Optimizations for 8-Bit or 16-Bit Microcontrollers

Some optimization techniques used in 8-bit/16-bit microcontroller programming are not

required on ARM processors. In some cases, these optimizations might result in extra overhead

because of architectural differences. For example, many 8-bit microcontroller programmers

use character data as loop counters for array accesses:
unsigned char i; /* use 8-bit data to avoid 16-bit processing */
char a[10], b[10];
for (i¼0;i<10;iþþ) a[i] ¼ b[i];
When compiling the same program on ARM processors, the compiler will have to insert

a UXTB instruction to replicate the overflow behavior of the array index (“i”). To avoid this

extra overhead, we should declare “i” as integer “int”, “int32_t”, or “uint32_t” for
best performance.

Another example is the unnecessary use of casting. For example, the following code uses

casting to avoid the generation of a 16 � 16 multiply operation in an 8-bit processor:
unsigned int x, y, z;
z ¼ ((char) x) * ((char) y); /* assumed both x and y must

be less than 256 */
Again, such a casting operation will result in extra instructions in ARM architecture. Since

Cortex-M0 can handle a 32 � 32 multiply with a 32-bit result in a single instruction, the

program code can be simplified:
unsigned int x, y, z;
z ¼ x * y;

424 Chapter 21
Example: Migrate from the 8051 to the ARM Cortex-M0

In general, because most applications can be programmed in C entirely on the Cortex-M0, the

porting of applications from 8-bit/16-bit microcontrollers is usually straightforward and easy.

Here we will see some simple examples of the modifications required.

Vector Table

In the 8051, the vector table contains a number of JMP instructions that branch to the

start of the interrupt service routines. In some development environments, the compiler might

create the vector table for you automatically. In ARM, the vector table contains the address of

the main stack pointer initial values and starting addresses of the exception handlers. The

vector table is part of the startup code, which is often provided by the development environ-

ment. For example, when creating a new project, the Keil MDK project wizard will offer to

copy and add the default startup code, which contains the vector table (Table 21.6).
Table 21.6: Vector Table Porting

8051 Cortex-M0

org 00h __Vectors DCD __initial_sp ; Top of Stack

DCD Reset_Handler ; Reset Handler

DCD NMI_Handler ; NMI Handler

DCD HardFault_Handler ; Hard Fault

DCD 0,0,0,0,0,0,0 ; Reserved

DCD SVC_Handler ; SVCall Handler

DCD 0,0 ; Reserved

DCD PendSV_Handler ; PendSV Handler

DCD SysTick_Handler ; SysTick
Handler

; External Interrupts

DCD WAKEUP_IRQHandler ; Wakeup
PIO0.0

...

jmp start
org 03h ; Ext Int0 vector

ljmp handle_interrupt0
org 0Bh ;Timer 0 vector

ljmp handle_timer0
org 13h ; Ext Int1 vector

ljmp handle_interrupt1
org 1Bh ; Timer 1 vector

ljmp handle_timer1
org 23h ; Serial interrupt

ljmp handle_serial0
org 2bh ; Timer 2 vector

ljmp handle_timer2
Data Type

In some cases, we need to modify the data type so as to maintain the same program behavior

(Table 21.7).
Table 21.7: Data Type Change during Software Porting

8051 Cortex-M0

int my_data[20]; // array of 16-bit values
double pi;

short int my_data[20]; // array of 16-bit values
float pi;

Software Porting 425
Some function calls might also need to be changed if we want to ensure only single precision

floating point is used (Table 21.8).
Table 21.8: Floating Point C Code Change during Software Porting

8051 Cortex-M0

Y ¼ T*atan(T2*sin(Y)*cos(Y)/
(cos(XþY)þcos(X-Y)-1.0));

Y ¼ T*atanf(T2*sinf(Y)*cosf(Y)/
(cosf(XþY)þcosf(X-Y)-1.0F));
Some special data types in 8051 are not available on the Cortex-M0: bit, sbit, sfr, sfr16, idata,

xdata, and bdata.

Interrupt

Interrupt control code in 8051 are normally written as direct access to SFRs. They

need to be changed to the CMSIS functions when ported to the ARM Cortex-M0.

(Table 21.9).
Table 21.9: Interrupt Control Change during Software Porting

8051 Cortex-M0

EA ¼ 0; /* Disable all interrupts */
EA ¼ 1; /* Enable all interrupts */

__disable_irq(); /* Disable all interrupts */
__enable_irq(); /* Enable all interrupts */

EX0 ¼ 1; /* Enable Interrupt 0 */
EX0 ¼ 0; /* Disable Interrupt 0 */
PX0 ¼ 1; /* Set interrupt 0 to high priority*/

NVIC_EnableIRQ(Interrupt0_IRQn);
NVIC_DisableIRQ(Interrupt0_IRQn);
NVIC_SetPriority(Interrupt0_IRQn, 0);
The interrupt service routine also requires minor modifications. Some of the special

directives used by the interrupt service routine need to be removed when the application code

is ported to the Cortex-M0 (Table 21.10).
Table 21.10: Interrupt Handler Change during Software Porting

8051 Cortex-M0

void timer1_isr(void) interrupt 1 using 2
{ /* Use register bank 2 */
.;
return;
}

__irq void timer1_isr(void)
{
.;
return;
}

426 Chapter 21
Sleep Mode

Entering of sleep mode is different too (Table 21.11). In 8051, sleep mode can be entered

by setting the IDL (idle) bit in PCON. In the Cortex-M0, you can use the WFI instruction, or

use vendor-specific functions provided in the device driver library.
Table 21.11: Sleep Mode Control Change during Software Porting

8051 Cortex-M0

PCON ¼ PCON j 1; /* Enter Idle mode */ __WFI(); /* Enter sleep mode */

CHAPTER 22

Cortex-M0 Products

Overview

A number of ARM Cortex-M0 products are available, including microcontrollers, develop-

ment boards, starter kits, and development suites. In this chapter we will have a quick glance at

some of these products.

The descriptions here are based on information collected in the middle of 2010. Not every

product is listed here, and additional products might be available that I am not aware off. By the

time this book is printed, more products will have been released. For information about

microcontroller devices based on the Cortex-M0 processor, the device database on www.

onarm.com/devices provides a lot of useful information.

Microcontroller Products and Application-Specific Standard Products
(ASSPs)

NXP Cortex-M0 Microcontrollers

NXP (www.nxp.com) provides a number of Cortex-M0 microcontrollers. The ARM

Cortex-M0ebased LPC1000 microcontroller family provides low-cost 32-bit MCU products

targeted for traditional 8/16-bit MCU applications. They provide performance, low-power,

and easy-to-use peripherals. Table 22.1 details the current range of products within the

LPC1000, and more variants are planned.
Table 22.1: LPC1000 Product Family

Product Features

LPC1111, LPC1112,
LPC1113 and LPC1114

8KB to 32KB of flash memory, 2KB to 8KB of SRAM, GPIO, UART, SPI, SSP, I2C,
16-bit timers and 32-bit timers, watchdog timer, serial wire debug, power
management unit, 10-bit ADC, Brown-Out Detect, In System Programmable
(ISP), and In Application Programmable (IAP); 2mA deep sleep current

LPC11C12, LPC11C14 All features of LPC1112/LPC1114, plus a CAN controller
LPC1102 Up to 32KB of flash memory, 8KB of SRAM. GPIO, UART, SPI, 16-bit timers and

32-bit timers, 10-bit ADC. 130 mA/MHz.
LPC1224, LPC1225,
LPC1226, LPC1227

32KB to 128KB of flash memory, 4KB to 8KB of SRAM, micro-DMA controller,
GPIO, UART(2), SSP/SPI, I2C Fast Modeþ, RTC, 16-bit and 32-bit timers,
windowed WDT, 10-bit ADC, analog comparators (2), same clocking and power
features as LPC1112/LPC1114

The Definitive Guide to the ARM Cortex-M0. DOI: 10.1016/B978-0-12-385477-3.10022-9

Copyright � 2011 Man Cheung Joseph Yiu. Published by Elsevier Inc. All rights reserved.

427

http://www.onarm.com/devices
http://www.onarm.com/devices
http://www.nxp.com
http://dx.doi.org/10.1016/B978-0-12-385477-3.10022-9

Figure 22.1:
The LPC1102.

428 Chapter 22
The LPC1102 microcontroller is the smallest 32-bit microcontroller device with a package size

of only 5 mm2 (Figure 22.1). It supports many peripherals you can find in the LPC1114

like UART, SPI, timers, I/O, and ADC. Device drivers and comprehensive example codes for

all the LPC1000 products can be downloaded from the NXP web site.

NuMicroTM Microcontroller Family

The NuMicro microcontroller family was developed by Nuvoton Technology Corp (www.

nuvoton.com). The NuMicro devices included a number of product lines, as described in

Table 22.2.
Table 22.2: NuMicro Product Family

Product Lines Features

NUC140 Connectivity Line CAN, LIN, USB, and NuMicro standard features
NUC130 Automotive Line CAN, LIN, and NuMicro standard features
NUC120 USB Line USB and NuMicro standard features
NUC100 Advance Line NuMicro standard features
The common features of these product lines include the following:

• Up to 128KB flash, up to 32KB SRAM

• In System Programmable and In-Application Programmable

• Peripheral DMA mode

http://www.nuvoton.com
http://www.nuvoton.com

Cortex-M0 Products 429
• GPIO

• 24-bit timers, watchdog timer, real-time clock

• Serial interfaces including UART, SPI, I2C, I2S

• ADC, analog comparator, temperature sensor

• Brown-out detector, LDO, low-voltage reset

• Up to 50MHz operation, with wide operating voltage range

Further high-density products will provide larger memory and additional functionality

including Ethernet and motor control PWM.
Mocha-1 ARM Cortex-M0 Configurable Array

In Chapter 1 we emphasized that the Cortex-M0 processor is a good candidate for mixed-signal

applications. The Mocha-1 ARM Cortex-M0 Configurable Array is a product of Triad

Semiconductor (www.triadsemi.com). It is a flexible platform that supports a wide-range of

mixed-signal applications (Figure 22.2).

Using Via-Configurable Array (VCA) technology in conjunction with the Mocha-1 platform,

a system designer can specify custom analog and digital functions that complement the

processing and control capabilities of the Cortex-M0 processor. VCA technology configures

circuit building blocks (“tiles” of analog and digital resources) to form complex circuits, by

placing vias at specific locations of an interconnecting metal fabric. Because only a single

custom via layer and back-end metal processing is required, this approach produces custom

ASICs that are typically less expensive and provide a quicker turnaround than fully custom

ASICs (fewer IC processing steps are required to implement designs and make design

changes).
Mocha™-1

Cortex-M0

EEPROM SRAM

Via Configurable digital
Configurable

digital I/O

Via Configurable analog

Distributed
SRAM

Configurable Serial-wire
debug

Peripherals
(timers, UART, SPI,

I2C, LIN, USB, PWM,
etc)

General
Purpose IO
General

Purpose IO

analog I/O

Figure 22.2:
The Mocha-1 product.

http://www.triadsemi.com

430 Chapter 22
Implemented as an array of 99 digital tiles, the configurable digital logic portion of

the Mocha-1 platform contains nearly 75,000 ASIC gates, 12.375 kB of distributed

memory, and I/O capabilities. These resources are suitable for digital applications that

range from simple state machines (PWMs, timers, etc.) to communications interfaces (e.g.,

SPI, I2C, USB, TCP/IP) and signal processing algorithms (e.g., FFT, audio and video

processing).

Most of the analog VCA portion of the Mocha-1 platform contains three types of op-amp

based general purpose tiles (including in total 8 low-noise, 12 high-speed single-ended,

and 16 high-speed fully differential op-amps). Each tile also contains fundamental

components, such as resistors, capacitors, switches, and transistors and distributed control

logic. These tiles can be interconnected to create a variety of analog functions that include

switched-capacitor circuits and filters, active filters, digital-to-analog converters (DACs),

analog-to-digital converters (ADCs), instrumentation and programmable-gain amplifiers,

multiplexers, sample-and-hold circuits, voltage and current references, power supply and

temperature monitoring, and external sensor interfaces. Customizing each amplifier with

respect to key features (power consumption, bandwidth, output drive, common-mode

range, etc.) is accomplished via configuration as well. Other tiles are, such as the system

PLL, a 10-bit ADC, two 10-bit DACs, six current-steering DAC tiles, and a band-gap

circuit is also part of Mocha-1‘s analog VCA section and can be optimized for specific

applications.

The processor subsystem contains a Cortex-M0 with 32 kB of EEPROM and 24 kB

of SRAM. It also includes various peripherals (serial wire debug interface, watchdog

timer, GPIO) and supports several power-saving modes. The SRAM memory provides

a zero-wait state operation, whereas the EEPROM memory controller is optimized to

minimize performance impact even when running at system clock speeds that require wait

states.

Because the Mocha-1 platform must be configured before the VCA can be used, it is not

available as an off-the-shelf component as are other microcontroller devices (evaluation

versions, such as Triad Semiconductor’s TSX-1001, are available that demonstrate the plat-

form’s abilities in a microcontroller-like format). But for engineers who work on mixed-signal

applications where stock solutions are either too general-purpose or expensive, it is a desirable

alternative to the full-custom ASIC approach that can significantly reduce development time

and overall cost.

Melfas MCSTM-7000 Series Touch Screen Controllers

The MCS-7000 Series Touch screen controllers are developed by Melfas Inc (www.melfas.

com). The product family provides from 24 to 40 capacitive touch sensing channels

(Table 22.3).

http://www.melfas.com
http://www.melfas.com

Table 22.3: MCS-7000 Product Family

Product Features

MCS7024 I2C, 24 capacitive touch channels, 32KB flash and 8KB SRAM
MCS7032 I2C, 32 capacitive touch channels, 32KB flash and 8KB SRAM
MCS7040 I2C, 40 capacitive touch channels, 32KB flash and 8KB SRAM

Cortex-M0 Products 431
Compilers and Software Development Suites

Keil Microcontroller Development Kit (MDK)

The Keil MDK is a popular development suite. It consists of the following items:

• C/Cþþ compiler, assembler, linker and utilities supporting all Cortex-M, ARM7, and

ARM9 microcontrollers

• Integrated debugger supporting in-circuit debuggers such as ULINK2, ULINK-Pro,

and third-party products such as J-LINK and JtagJet. The debug environment also supports

device-level simulation for users who want to test their program but do not have access to

any hardware.

• Choices of run-time libraries: MicroLIB, a run-time library optimized for small memory

footprint, and standard full-feature C libraries

• Keil RTX real-time kernel, which allows you to develop multitasking systems easily

• Flash programming algorithms

The mVision IDE allow easy access to various project options and features. Learning to use the

Keil MDK is easy. You can download the evaluation version (limited to 32KB code size) of the

Keil MDK from the Keil web site (www.keil.com/arm). Details of using the Keil MDK are

covered in various chapters of this book starting from Chapter 14. For users who are migrating

from 8051 or C166 designs and have used Keil mVision in the past, the switch is even easier

because the same mVision environment can be used.

TASKING VX-Toolset for ARM

Apart from the development tools from ARM, there are a number of alternative choices.

For instance, the TASKING VX-toolset for ARM supports the Cortex-M processors, including

the Cortex-M0. It includes an Eclipse-based IDE and an integrated debugger, which can be

used with the in-circuit debug interface adaptor from SEGGER (J-Link).

The main features included the following:

• ISO Cþþ Compiler, scalable to ECþþ
• C compiler, Linker, Assembler for Cortex-M processors

• C/Cþþ libraries, run-time libraries, floating point libraries

http://www.keil.com/arm

432 Chapter 22
• Integrated static code analysis for CERT C secure coding standard

• MISRA C enhanced code checking

Details of the TASKING VX-toolset can be found on the TASKING web site (www.tasking.

com).

IAR Embedded Workbench for ARM

The IAR Embedded Workbench is an integrated development environment for building and

debugging ARM-based embedded applications. It includes the following main features:

• Optimizing C/Cþþ compiler

• ARM EABI and CMSIS compliant

• IAR C-SPY Debugger

• Extensive HW target system support

• Optional IAR J-Link and IAR J-Trace hardware debug probes

the details of the IAR EmbeddedWorkbench for ARM and IAR KickStart Kit for LPC1114 can

be found on www.iar.com.

CrossWorks for ARM

The CrossWorks for ARM is a C, Cþþ, and assembly development suite from Rowley

Associates (www.rowley.co.uk/arm/index.htm). It contains an IDE called CrossStudio with the

GNU tool chain integrated. The source-level debugger in CrossStudio can work with a number

of in-circuit debuggers including CrossConnect for ARM (from Rowley Associates) and

third party in-circuit debugger hardware such as the SEGGER J-Link and Amontec JTAGkey.

The CrossWorks for ARM is available in various editions, including noncommercial low-cost

packages (personal and educational licenses).

Red Suite

Red Suite from Code Red Technologies (www.code-red-tech.com) is a fully featured devel-

opment suite for ARM-based microcontrollers, which includes all the tools necessary to

develop high-quality software solutions in a timely and cost-effective fashion. The Red Suite

IDE is based on the latest version of Eclipse with many ease-of-use and microcontroller-

specific enhancements. It also features the industry standard GNU tool chain, allowing us to

provide professional quality tools at low cost.

Features

The Red Suite integrated development environment (IDE) provides a comprehensive C/Cþþ
programming environment, with syntax-coloring, source formatting, function folding, online

http://www.tasking.com
http://www.tasking.com
http://www.iar.com
http://www.rowley.co.uk/arm/index.htm
http://www.code-red-tech.com

Cortex-M0 Products 433
and offline integrated help, extensive project management automation, and integrated source

repository support (CVS integrated or Subversion via download).

It includes the following features:

• Wizards that create projects for all supported microcontrollers

• Automatic linker script generation including support for microcontroller memory maps

• Direct download to flash when debugging

• Inbuilt flash programmer

• Built-in datasheet browser

• Support for Cortex-M3, Cortex-M0, ARM7TDMI, and ARM926-EJ-based microcontrollers

With Cortex-M3-based microcontrollers, Red Suite can take advantage of its advanced

features, including the following:

• Full support for serial wire viewing (SWV) through our Red Trace technologydunique in

its class of tools

• No assembler required, even for startup code and interrupt handlers

Peripheral and Register Views

The peripheral viewer provides complete visibility of all registers and bit fields in all target

peripherals in a simple tree-structured display. A powerful processor-register viewer is

provided that gives access to all processors register and provides smart formatting for complex

registers such as flags and status registers.

Red Trace

When used with Red Probe on Cortex-M3ebased microcontrollers, the integrated Red Trace

functionality gives the developer an unprecedented level of visibility into what is really

happening on the target device. Unlike traditional trace solutions, Red Trace gathers trace data

nonintrusively while the target application continues to run at full speed.

LabView C Code Generator

Besides C and assembly languages, there are other options to create program code for Cortex-

M0 microcontrollers. One possible method is using the National Instruments LabVIEW

graphical development environment, which works on PCs as well as ARM microcontrollers

including Cortex-M0 microcontrollers.

The LabVIEW graphical programming language offers all of the features you expect in any

programming language such as looping, conditional execution, and the handling of different

data types. The main difference in working with LabVIEW is that you implement the design of

the program in diagrams. For example, you can represent a simple loop to compute the sum of

1 to 10 by the for loop shown in Figure 22.3.

Figure 22.3:
A simple loop to add 1 to 10 in LabVIEW programming (image courtesy of National

Instruments).

434 Chapter 22
The LabVIEW programming environment provides a comprehensive library of functions

including functions for digital signal processing (e.g., filter and spectral analysis),

mathematic, array/matrix processing, and so on. These ready-to-use components allow

application software to be developed without a in-depth knowledge of programming or

algorithms. For complex applications, you can design the software into a hierarchy of

modules called virtual instruments (VIs) and subVIs. For example, Figure 22.4 shows

a LabVIEW subVI on the right, which finds the largest variables from four input variables,

and this subVI is used by another VI.

What Is Needed for Using LabVIEW to Program ARM Microcontrollers?

To start using LabVIEW for the Cortex-M0 microcontroller, you need the LabVIEW C Code

Generator. The LabVIEW C Code Generator takes LabVIEW graphical code and generates

procedural C code from the diagram. Learn more about these products on the National

Instruments web site (www.ni.com/embedded).

Before importing the LabVIEW-generated C code to the embedded platform, you can test

your LabVIEW code by running the LabVIEW application on a PC. After the test is done

and you are happy with the result, you can then use the LabVIEW C Code Generator to

produce algorithm-level C code that you can integrate into another development environ-

ment and use to develop a full application. Figure 22.5 shows the typical development

steps.

The generated C code can be used in various ARM microcontrollers and various tool chains.

Development Boards

LPCXpresso

The LPCXpresso (http://ics.nxp.com/lpcxpresso) is a low-cost development platform from

NXP and Code Red Technologies. It consists of a low-cost development board and the

http://www.ni.com/embedded
http://ics.nxp.com/lpcxpresso

Figure 22.4:
Hierarchical software design in LabVIEW (image courtesy of National Instru ents).
m

Create
project

Develop
algorithm

using
graphical

code

Simulate
algorithm

on desktop
PC

Define
function

prototype to
algorithm

Generate C
code

Integrate into
C code

environment

Figure 22.5:
Example design flow (diagram courtesy of National Instruments).

436 Chapter 22
LPCXpresso IDE, a simplified Eclipse-based IDE. The LPCXpresso board is available for the

NXP LPC1114 (Cortex-M0) product and LPC1343 (Cortex-M3). An LPC1700 (Cortex-M3)

version will be available soon.

The LPCXpresso IDE contains C compiler, debugger, flash programming support, and

examples. The C compiler in the LPCXpresso IDE is based on the GNU tool chain. The

LPCXpresso IDE connects to the target board via the LPC-LINK, which is built in as part of

the LPCXpresso board (Figure 22.6).

The LPCXpresso board is divided into two halves. The first half is a simple Cortex-M0

development board with an LPC1114. The other half is the LPC-LINK, an in-circuit debugger

that allows the LPCXpresso IDE to connect to the LPC1114 via a USB connection. After the

application is developed, you can use a USB connection to download your program to the

Cortex-M0 microcontroller and test the application. The two halves of the LPCXpresso board

can be separated by cutting the PCB, which would then allow the LPC-LINK to be used with

other NXP Cortex-M microcontroller devices.
Figure 22.6:
An LPCXpresso board with an LPC1114.

Cortex-M0 Products 437
IAR KickStart Kit for LPC1114

The IAR KickStart Kit for the LPC1114 includes an LPC114 evaluation board, an IAR

Embedded Workbench (8KB KickStart edition), and an evaluation edition of IAR visual-

STATE, a UML graphical state machine development tool (Figure 22.7).
Figure 22.7:
IAR KickStart Kit for LPC1114.
LPC1114 Cortex-M0 Stamp Module

The LPC1114 Cortex-M0 Stamp module is developed by Steinert Technologies (www.steitec.

net). It provides easy access to I/O pins via 2.54mm pitch headers, making it attractive to

hobbyists and students working on educational projects (Figure 22.8).

Keil Cortex-M0 Boards

Keil provides a number of development boards including products for ARM7, ARM9, Cortex-

M3, and Cortex-M0 microcontrollers. For example, the MCBNUC1xx evaluation board

http://www.steitec.net
http://www.steitec.net

Figure 22.8:
LPC1114 stamp module from Steinert Technologies.

438 Chapter 22
contains the NUC140VE3AN device (128KB flash, 16KB SRAM) in an easy-to-use form

factor (Figure 22.9).

In addition, the MCB1000 board for NXP LPC1114 became available from Keil in the fourth

quarter of 2010 (Figure 22.10).

Figure 22.9:
Keil MCBNUC1xx evaluation board.

Figure 22.10:
Keil MCB1000 evaluation board.

APPENDIX A

Instruction Set Summary
The instructions supported on the Cortex-M0 processor include those shown in the following

table:

Syntax (Unified Assembly Language) Description
ADCS <Rd>, <Rm>
 ADD with carry and update APSR

ADDS <Rd>, <Rn>, <Rm>
 ADD registers and update APSR

ADDS <Rd>, <Rn>, #immed3
 ADD register and a 3-bit immediate value

ADDS <Rd>, #immed8
 ADD register and an 8-bit immediate value

ADD <Rd>, <Rm>
 ADD two registers without update APSR

ADD <Rd>, SP, <Rd>
 ADD the stack pointer to a register

ADD SP, <Rm>
 ADD a register to the stack pointer

ADD <Rd>, SP, #immed8
 ADD a stack pointer with an immediate value; Rd ¼ SP þ

ZeroExtend(#immed8 <<2)

ADD SP, SP, #immed7
 ADD an immediate value to the stack pointer; SP ¼ SP þ

ZeroExtend(#immed7 <<2)

ADR <Rd>, <label>
 Put an address to a register. Alternative syntax:ADD <Rd>, PC,

#immed8

ANDS <Rd>, <Rd>, <Rm>
 Logical AND between two registers

ASRS <Rd>, <Rd>, <Rm>
 Arithmetic Shift Right

ASRS <Rd>, <Rd>, #immed5
 Arithmetic Shift Right

BICS <Rd>, <Rd>, <Rm>
 Logical Bitwise Clear

B <label>
 Branch to an address (unconditional)

B <cond> <label>
 Conditional branch

BL <label>
 Branch and Link (return address store in LR)

BX <Rm>
 Branch to address in register with exchange (LSB of target

register should be set to 1 to indicate Thumb state)

BLX <Rm>
 Branch to address in register and link (return address store in LR)

with exchange (LSB of target register should be set to 1 to
indicate Thumb state)
BKPT #immed8
 Software breakpoint; immediate value of 0xAB is reserved for
semi hosting
CMP <Rn>, <Rm>
 Compare two registers and update APSR

CMP <Rn>, #immed8
 Compare a register and an 8-bit immediate value and update

APSR

CMN <Rn>, <Rm>
 Compare negative (effectively an ADD operation)

CPSIE I
 Clear PRIMASK (enable interrupt); in a CMSIS-compliant device

driver, you can use the “__enable_irq()” CMSIS function for
“CPSIE I”
CPSID I
 Set PRIMASK (disable interrupt); in a CMSIS-compliant device
driver, you can use the “__disable_irq()” CMSIS function for
“CPSIE I”
(Continued)

441

442 Appendix A
Syntax (Unified Assembly Language) Description
DMB
 Data Memory Barrier; ensures that all memory accesses
are completed before new memory access is committed; in
a CMSIS-compliant device driver, you can use the “__DMB()”
CMSIS function for DMB
DSB
 Data Synchronization Barrier; ensures that all memory accesses
are completed before next instruction is executed; in a CMSIS-
compliant device driver you can use the “__DSB()” CMSIS
function for DSB
EORS <Rd>, <Rd>, <Rm>
 Logical Exclusive OR between two registers

ISB
 Instruction Synchronization Barrier; flushes the pipeline

and ensures that all previous instructions are completed
before executing new instructions; in a CMSIS-compliant
device driver, you can use the “__ISB()” CMSIS
function for ISB
LDM <Rn>, {<Ra>, <Rb>,..}
 Load multiple registers frommemory;<Rn> is in the destination
register list and gets updated by load
LDMIA <Rn>, {<Ra>, <Rb>,..}
 Load multiple registers from memory; <Rn> is not
in the destination register list and gets updated by address
increment; alternative syntax: LDMFD <Rn>, {<Ra>,
<Rb>,..}
LDR <Rt>, [<Rn>, <Rm>]
 Load word from memory. <Rt> ¼ memory[<Rn>þ<Rm>]

LDR <Rt>, [<Rn>, #immed5]
 Load word from memory;

<Rt> ¼ memory[<Rn> þ #immed5<<2]

LDR <Rt>, [PC, #immed8]
 Load word (literal data) from memory;

<Rt> ¼ memory[PCþ #immed8<<2]

LDR <Rt>, [SP, #immed8]
 Load word from memory;

<Rt> ¼ memory[SPþ #immed8<<2]

LDRH <Rt>, [<Rn>, <Rm>]
 Load half word from memory; <Rt> ¼ memory

[<Rn>þ<Rm>]

LDRH <Rt>, [<Rn>, #immed5]
 Load half word from memory;

<Rt> ¼ memory[<Rn> þ #immed5<<1]

LDRB <Rt>, [<Rn>, <Rm>]
 Load byte from memory; <Rt> ¼ memory[<Rn>þ<Rm>]

LDRB <Rt>, [<Rn>, #immed5]
 Load byte from memory;

<Rt> ¼ memory[<Rn> þ #immed5]

LDRSH <Rt>, [<Rn>, <Rm>]
 Load signed half word from memory; <Rt> ¼ signed_extend

(memory[<Rn>þ<Rm>])

LDRSB <Rt>, [<Rn>, <Rm>]
 Load signed byte from memory; <Rt> ¼ signed_extend

(memory[<Rn>þ<Rm>])

LSLS <Rd>, <Rd>, <Rm>
 Logical shift left

LSLS <Rd>, <Rm>, #immed5
 Logical shift left

LSRS <Rd>, <Rd>, <Rm>
 Logical shift right

LSRS <Rd>, <Rm>, #immed5
 Logical shift right

MOV <Rd>, <Rm>
 Move register into register

MOVS <Rd>, <Rm>
 Move register into register and update APSR

MOVS <Rd>, #immed8
 Move immediate data (sign extended) into register

MRS <Rd>, <SpecialReg>
 Move Special Register into register; in a CMSIS-compliant device

driver library, a number of functions are available for special
register accesses (see Appendix C)
(Continued)

Instruction Set Summary 443
Syntax (Unified Assembly Language) Description
MSR <SpecialReg>, <Rd>
 Move register into Special Register; in a CMSIS-compliant device
driver library, a number of functions are available for special
register accesses (see Appendix C)
MVNS <Rd>, <Rm>
 Logical Bitwise NOT. Rd ¼ NOT(Rm)

MULS <Rd>, <Rm>, <Rd>
 Multiply

NOP
 No Operation; in a CMSIS-compliant device driver, you can use

the “__NOP()” CMSIS function for NOP

ORRS <Rd>, <Rd>, <Rm>
 Logical OR

POP {<Ra>, <Rb>,..}
POP {<Ra>, <Rb>, .., PC}
Read single or multiple registers from stack memory and update
the stack pointer
PUSH {<Ra>, <Rb>,..}
PUSH {<Ra>, <Rb>, .., LR}
Store single or multiple register to stack memory and update the
stack pointer
REV <Rd>, <Rm>
 Byte Order Reverse

REV16 <Rd>, <Rm>
 Byte Order Reverse within half word

REVSH <Rd>, <Rm>
 Byte order reverse within lower half word, then signed extend

result

RORS <Rd>, <Rd>, <Rm>
 Rotate Right

RSBS <Rd>, <Rn>, #0
 Reverse Subtract (negative).

SBCS <Rd>, <Rd>, <Rm>
 Subtract with carry (borrow)

SEV
 Send event to all processors in multiprocessing

environment (including itself); in a CMSIS-compliant
device driver, you can use the “__SEV()” CMSIS
function for SEV
STMIA <Rn>!, {<Ra>, <Rb>,....}
 Store multiple registers to memory. <Rn> gets updated by
address increment.
STR <Rt>, [<Rn>, <Rm>]
 Write word to memory; memory[<Rn>þ<Rm>] ¼ <Rt>

STR <Rt>, [<Rn>, #immed5]
 Write word to memory;

memory[<Rn> þ #immed5<<2] ¼ <Rt>

STR <Rt>, [SP, #immed8]
 Write word to memory;

memory[SPþ #immed8<<2] ¼ <Rt>

STRH <Rt>, [<Rn>, <Rm>]
 Write half word to memory; memory

[<Rn>þ<Rm>] ¼ <Rt>

STRH <Rt>, [<Rn>, #immed5]
 Write half word to memory;

memory[<Rn> þ #immed5<<1] ¼ <Rt>

STRB <Rt>, [<Rn>, <Rm>]
 Write byte to memory; memory

[<Rn>þ<Rm>] ¼ <Rt>

STRB <Rt>, [<Rn>, #immed5]
 Write byte to memory;

memory[<Rn> þ #immed5] ¼ <Rt>

SUBS <Rd>, <Rn>, <Rm>
 Subtract two registers

SUBS <Rd>, <Rn>, #immed3
 Subtract a register with a 3-bit immediate data value

SUBS <Rd>, #immed8
 Subtract a register with an 8-bit immediate data value

SUB SP, SP, #immed7
 Subtract SP by an immediate data value; SP ¼ SP e ZeroExtend

(#immed7 <<2)

SVC #<immed8>
 Supervisor call; alternative syntax: SVC <immed8>

SXTB <Rd>, <Rm>
 Signed Extend lowest byte in a word data item

SXTH <Rd>, <Rm>
 Signed Extend lower half word in a word data item

TST <Rn>, <Rm>
 Test (bitwise AND)

UXTB <Rd>, <Rm>
 Extend lowest byte in a word data item
(Continued)

444 Appendix A
Syntax (Unified Assembly Language) Description
UXTH <Rd>, <Rm>
 Extend lower half word in a word data item

WFE
 Wait for Event; if no record of previous event, enter sleep mode;

if there is previous event, clear event latch register and continue;
in a CMSIS-compliant device driver, you can use the “__WFE()”
CMSIS function for WFE, but you might get better power
optimization using vendor-specific sleep functions
WFI
 Wait For Interrupt; enter sleep mode; in a CMSIS-compliant
device driver, you can use the “__WFI()” CMSIS function for
WFI, but you might get better power optimization using vendor-
specific sleep functions
YIELD
 Hint for thread switching and indicate task is stalled; execute as
NOP on the Cortex-M0 processor

APPENDIX B

Cortex-M0 Exception Type Quick Reference

Exception Types

The exception types and corresponding control registers are listed in Table B.1.

Stack Contents after Exception Stacking

Table B.2 describes the layout of a stack frame in the stack memory after an exception stacking

sequence is carried out. This information is useful for extracting stacked data within the

exception handler.
Table B.1: Exception Types and Associated Control Registers

Exception Type Name Priority (Word address) Enable

1 Reset �3 Always
2 NMI �2 Always
3 HardFault �1 Always
11 SVC Programmable

(0xE000ED1C, byte 3)
Always

14 PendSV Programmable
(0xE000ED20, byte 2)

Always

15 SYSTICK Programmable
(0xE000ED20, byte 3)

SYSTICK Control and Status
Register (SysTick->CTRL)

16 Interrupt #0 Programmable
(0xE000E400, byte 0)

NVIC SETENA0
(0xE000E100, bit 0)

17 Interrupt #1 Programmable
(0xE000E400, byte 1)

NVIC SETENA0
(0xE000E100, bit 1)

18 Interrupt #2 Programmable
(0xE000E400, byte 2)

NVIC SETENA0
(0xE000E100, bit 2)

19 Interrupt #3 Programmable
(0xE000E400, byte 3)

NVIC SETENA0
(0xE000E100, bit 3)

20 Interrupt #4 Programmable
(0xE000E404, byte 0)

NVIC SETENA0
(0xE000E100, bit 4)

21 Interrupt #5 Programmable
(0xE000E404, byte 1)

NVIC SETENA0
(0xE000E100, bit 5)

22-31 Interrupt #6e#31 Programmable
(0xE000E404 e
0xE000E41C)

NVIC SETENA0
(0xE000E100, bit 6 e bit 31)

445

Table B.2: Stack Contents after Exception Stacking

Address Data

(Nþ36) (Previous stacked data)
(Nþ32) (Previous stacked data/padding)
(Nþ28) Stacked xPSR
(Nþ24) Stacked PC (return address)
(Nþ20) Stacked LR
(Nþ16) Stacked R12
(Nþ12) Stacked R3
(Nþ8) Stacked R2
(Nþ4) Stacked R1
New SP (N) / Stacked R0

446 Appendix B
Depending on the SP value before the exception has taken place, the previous SP can be either

the new SP value plus 32 or the new SP value plus 36. If the previous SP was aligned to a double

word aligned address boundary, then the previous SP is new SP þ 32. Otherwise, a padding

word would be allocated before stacking and therefore the previous SP is new SP þ 36.

APPENDIX C

CMSIS Quick Reference
The Cortex Microcontroller Software Interface Standard (CMSIS) contains a number of

standardized functions:

• Core peripheral access functions

• Core register access functions

• Special instruction access functions

This appendix covers the basic information about these functions and other information related

to using the CMSIS.

Data Type

The CMSIS uses standard data types defined in “stdint.h” (Table C.1).
Table C.1: Standard Data Types Used in CMSIS

Type Data

uint32_t Unsigned 32-bit integer
uint16_t Unsigned 16-bit integer
uint8_t Unsigned 8-bit integer
Exception Enumeration

Instead of using integer values for exception types, the CMSIS uses the IRQn enumeration to

identify exceptions. The CMSIS defines the following enumeration and handler names for

system exceptions:

Exception Type Exception CMSIS Handler Name CMSIS IRQn Enumeration
447
(Value)
1
 Reset
 Reset_Handler
 d

2
 NMI
 NMI_Handler
 NonMaskableInt_IRQn (�14)

3
 HardFault
 HardFault_Handler
 HardFault_IRQn (�13)

11
 SVC
 SVC_Handler
 SVCall_IRQn (�5)

14
 PendSV
 PendSV_Handler
 PendSV_IRQn (�2)

15
 SYSTICK
 SysTick_Handler
 SysTick_IRQn (�1)

448 Appendix C
The exception type 16 and above are device specific. In the case of NXP LPC11xx, these

peripheral exceptions are defined as follows:

Exception Type Exception CMSIS Handler Name CMSIS IRQn Enumeration (Value)
16
 I/O wakeup 0
 WAKEUP_IRQHandler
 WAKEUP0_IRQn (0)

17
 I/O wakeup 1
 WAKEUP_IRQHandler
 WAKEUP1_IRQn (1)

18
 I/O wakeup 2
 WAKEUP_IRQHandler
 WAKEUP2_IRQn (2)

19
 I/O wakeup 3
 WAKEUP_IRQHandler
 WAKEUP3_IRQn (3)

20
 I/O wakeup 4
 WAKEUP_IRQHandler
 WAKEUP4_IRQn (4)

21
 I/O wakeup 5
 WAKEUP_IRQHandler
 WAKEUP5_IRQn (5)

22
 I/O wakeup 6
 WAKEUP_IRQHandler
 WAKEUP6_IRQn (6)

23
 I/O wakeup 7
 WAKEUP_IRQHandler
 WAKEUP7_IRQn (7)

24
 I/O wakeup 8
 WAKEUP_IRQHandler
 WAKEUP8_IRQn (8)

25
 I/O wakeup 9
 WAKEUP_IRQHandler
 WAKEUP9_IRQn (9)

26
 I/O wakeup 10
 WAKEUP_IRQHandler
 WAKEUP10_IRQn (10)

27
 I/O wakeup 11
 WAKEUP_IRQHandler
 WAKEUP11_IRQn (11)

29
 I/O wakeup 12
 WAKEUP_IRQHandler
 WAKEUP12_IRQn (12)

29
 Reserved
 d
 d

30
 SSP1
 SSP1_IRQHandler
 SSP1_IRQn (14)

31
 I2C
 I2C_IRQHandler
 I2C_IRQn (15)

32
 16-bit Timer0
 TIMER16_0_IRQHandler
 TIMER_16_0_IRQn (16)

33
 16-bit Timer1
 TIMER16_1_IRQHandler
 TIMER_16_1_IRQn (17)

34
 32-bit Timer0
 TIMER32_0_IRQHandler
 TIMER_32_0_IRQn (18)

35
 32-bit Timer1
 TIMER32_1_IRQHandler
 TIMER_32_1_IRQn (19)

36
 SSP0
 SSP0_IRQHandler
 SSP0_IRQn (20)

37
 UART
 UART_IRQHandler
 UART_IRQn (21)

38
 Reserved
 d
 d

39
 Reserved
 d
 d

40
 A/C converter
 ADC_IRQHandler
 ADC_IRQn (24)

41
 Watchdog
 WDT_IRQHandler
 WDT_IRQn (25)

42
 Brown Out Detect
 BOD_IRQHandler
 BOD_IRQn (26)

43
 Reserved
 d
 d

44
 External IRQ 3
 PIOINT3_IRQHandler
 EINT3_IRQn (28)

45
 External IRQ 2
 PIOINT2_IRQHandler
 EINT2_IRQn (29)

46
 External IRQ 1
 PIOINT1_IRQHandler
 EINT1_IRQn (30)

47
 External IRQ 0
 PIOINT0_IRQHandler
 EINT0_IRQn (31)
NVIC Access Functions

The following functions are available for interrupt control:

Function Name void NVIC_EnableIRQ(IRQn_Type IRQn)
Description
 Enable Interrupt in NVIC Interrupt Controller

Parameter
 IRQn_Type IRQn specifies the interrupt number (IRQn enum); this function does

not support system exceptions

Return
 None

CMSIS Quick Reference 449
Function Name void NVIC_DisableIRQ(IRQn_Type IRQn)
Description
 Disable Interrupt in NVIC Interrupt Controller

Parameter
 IRQn_Type IRQn is the positive number of the external interrupt; this function

does not support system exceptions

Return
 None
Function Name uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
Description
 Read the interrupt pending bit for a device-specific interrupt source

Parameter
 IRQn_Type IRQn is the number of the device specific interrupt; this function

does not support system exceptions

Return
 1 if pending interrupt else 0
Function Name void NVIC_SetPendingIRQ(IRQn_Type IRQn)
Description
 Set the pending bit for an external interrupt

Parameter
 IRQn_Type IRQn is the number of the interrupt; this function does not

support system exceptions

Return
 None
Function Name void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
Description
 Clear the pending bit for an external interrupt

Parameter
 IRQn_Type IRQn is the number of the interrupt; this function does not

support system exceptions

Return
 None
Function Name void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
Description
 Set the priority for an interrupt or system exceptions with a programmable
priority level
Parameter
 IRQn_Type IRQn is the number of the interrupt
unint32_t priority is the priority for the interrupt; this function automatically
shifts the input priority value left to put priority value in implemented bits
Return
 None
Function Name uint32_t NVIC_GetPriority(IRQn_Type IRQn)
Description
 Read the priority for an interrupt or system exceptions with programmable
priority level
Parameter
 IRQn_Type IRQn is the number of the interrupt

Return
 uint32_t priority is the priority for the interrupt; this function automatically

shifts the input priority value right to remove unimplemented bits in the
priority value register

450 Appendix C
System and SysTick Access Functions

The following functions are available for system control and SysTick setup:

Function Name void NVIC_SystemReset(void)
Description
 Initiate a system reset request

Parameter
 None

Return
 None
Function Name uint32_t SysTick_Config(uint32_t ticks)
Description
 Initialize and start the SysTick counter and its interrupt; this
function programs the SysTick to generate SysTick exception
for every “ticks” number of core clock cycles.
Parameter
 ticks is the number of clock ticks between two interrupts

Return
 Always return 0
Function Name void SystemInit (void)
Description
 Initialize the system; device specificdthis function is
implemented in system_<device>.c (e.g., system_LPC11xx.c)
Parameter
 None

Return
 None
Function Name void SystemCoreClockUpdate (void)
Description
 Update the SystemCoreClock variable; this function is
available from CMSIS version 1.3 and is device specificdthis
function is implemented in system_<device>.c (e.g.,
system_LPC11xx.c); it should be used every time after the clock
settings have been changed
Parameter
 None

Return
 None
Core Registers Access Functions

The following functions are available for accessing core registers:
Function Name Descriptions
uint32_t __get_MSP(void)
 Get MSP value

void __set_MSP(uint32_t topOfMainStack)
 Change MSP value

uint32_t __get_PSP(void)
 Get PSP value

void __set_PSP(uint32_t topOfProcStack)
 Change PSP value

uint32_t __get_CONTROL(void)
 Get CONTROL value

void __set_CONTROL(uint32_t control)
 Change CONTROL value

CMSIS Quick Reference 451
Special Instructions Access Functions

The following special instructions access functions are available in CMSIS:

Functions for System Features
Function Name Instruction Descriptions
void __WFI(void)
 WFI
 Wait for interrupt (sleep)

void __WFE(void)
 WFE
 Wait for event (sleep)

void __SEV(void)
 SEV
 Send event

void __enable_irq(void)
 CPSIE i
 Enable interrupt (clear

PRIMASK)

void __disable_irq(void)
 CPSID i
 Disable interrupt (set

PRIMASK)

void __NOP(void)
 NOP
 No operation

void __ISB(void)
 ISB
 Instruction synchronization

barrier

void __DSB(void)
 DSB
 Data synchronization barrier

void __DMB(void)
 DMB
 Data memory barrier
Functions for Data Processing
Function Name Instruction Descriptions
uint32_t __REV(uint32_t value) R
EV
 Reverse byte order inside a word

uint32_t __REV16(uint32_t value) R
EV16
 Reverse byte order inside each of the two

half word
Note: early versions of CMSIS define input
value as uint16_t
uint32_t __REVSH(uint32_t value) R
EVSH
 Reverse byte order in the lower half word
and then signed extend the result to 32-bit
Note: early versions of CMSIS define input
value as uint16_t

APPENDIX D

NVIC, SCB, and SysTick
Registers Quick Reference

NVIC Register Summary

Address Name CMSIS Symbol Full Name
453
0xE000E100
 ISER
 NVIC->ISER
 Interrupt Set Enable Register

0xE000E180
 ICER
 NVIC->ICER
 Interrupt Clear Enable Register

0xE000E200
 ISPR
 NVIC->ISPR
 Interrupt Set Pending Register

0xE000E280
 ICPR
 NVIC->ICPR
 Interrupt Clear Pending Register

0xE000E400
 IPR0-7
 NVIC->IPR[0] to NVIC->IPR[7]
 Interrupt Priority Register
Interrupt Set Enable Register (NVIC -> ISER)

To enable an interrupt with a CMSIS-compliant device driver library, please use the

NVIC_EnableIRQ function:

Address Name Type Reset Value Descriptions
0xE000E100
 SETENA
 R/W
 0x00000000
 Set enable for Interrupts 0 to 31; write 1 to set
bit to 1, write 0 has no effect
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status
Interrupt Clear Enable Register (NVIC -> ICER)

To disable an interrupt with a CMSIS-compliant device driver library, please use the

NVIC_DisableIRQ function:

Address Name Type Reset Value Descriptions
0xE000E180
 CLRENA
 R/W
 0x00000000
 Clear enable for Interrupts 0 to 31;write 1 to clear bit
to 0, write 0 has no effect
Bit[0] for Interrupt #0 (exception #16)
.

(Continued)

454 Appendix D
Address Name Type Reset Value Descriptions
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status
Interrupt Set Pending Register (NVIC -> ISPR)

For setting pending status with a CMSIS-compliant device driver library, please use the

NVIC_SetPendingIRQ function:

Address Name Type Reset Value Descriptions
0xE000E200
 SETPEND
 R/W
 0x00000000
 Set pending for Interrupts 0 to 31; write 1 to set bit
to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status
Interrupt Clear Pending Register (NVIC -> ICPR)

For clearing pending status with CMSIS-compliant device driver library, please use the

NVIC_ClearPendingIRQ function:

Address Name Type Reset Value Descriptions
0xE000E280
 CLRPEND
 R/W
 0x00000000
 Clear pending for interrupt 0 to 31; write 1 to
clear bit to 0, write 0 has no effect
Bit[0] for Interrupt #0 (exception #16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status
Interrupt Priority Registers (NVIC -> IPR[0] to NVIC -> IPR[7])

For programming of Interrupt Priority with CMSIS-compliant device driver library, please use

the NVIC_SetPriority function:

Address Name Type Reset Value Descriptions
0xE000E400
 PRIORITY0
 R/W
 0x00000000
 Priority level for interrupt 0 to 3
[31:30] Interrupt priority 3
[23:22] Interrupt priority 2
[15:14] Interrupt priority 1
[7:6] Interrupt priority 0
(Continued)

NVIC, SCB, and SysTick Registers Quick Reference 455
Address Name Type Reset Value Descriptions
0xE000E404
 PRIORITY1
 R/W
 0x00000000
 Priority level for interrupt 4 to 7

0xE000E408
 PRIORITY2
 R/W
 0x00000000
 Priority level for interrupt 8 to 11

0xE000E40C
 PRIORITY3
 R/W
 0x00000000
 Priority level for interrupt 12 to 15

0xE000E410
 PRIORITY4
 R/W
 0x00000000
 Priority level for interrupt 16 to 19

0xE000E414
 PRIORITY5
 R/W
 0x00000000
 Priority level for interrupt 20 to 23

0xE000E418
 PRIORITY6
 R/W
 0x00000000
 Priority level for interrupt 24 to 27

0xE000E41C
 PRIORITY7
 R/W
 0x00000000
 Priority level for interrupt 28 to 31
SCB Register Summary

Address Name CMSIS Symbol Full Name
0xE000ED00
 CPUID
 SCB->CPUID
 CPU ID (Identity) Base register

0xE000ED04
 ICSR
 SCB->ICSR
 Interrupt Control State Register

0xE000ED0C
 AIRCR
 SCB->AIRCR
 Application Interrupt and Reset Control Register

0xE000ED10
 SCR
 SCB->SCR
 System Control Register

0xE000ED14
 CCR
 SCB->CCR
 Configuration Control Register

0xE000ED1C
 SHPR2
 SCB->SHP[0]
 System Handler Priority Register 2

0xE000ED20
 SHPR3
 SCB->SHP[1]
 System Handler Priority Register 3

0xE000ED24
 SHCSR
 SCB->SHCSR
 System Handler Control and State Register

(accessible from debugger only)
CPU ID Base Register (SCB -> CPUID)

This register’s value can be used to determine CPU type and revision:

Bits Field Type Reset Value Descriptions
31:0
 CPU ID
 RO
 0x410CC200
(r0p0)
CPU ID value; used by debugger as well as application
code to determine processor type and revision
[31:24] Implementer
[23:20] Variant (0x0)
[19:16] Constant (0xC)
[15:4] Part number (0xC20)
[3:0] Revision (0x0)
Interrupt Control State Register (SCB -> ICSR)

Bits Field Type Reset Value Descriptions

31 NMIPENDSET R/W 0 Write 1 to pend NMI, write 0 has no effect.

On reads return pending state of NMI.
30:29
 Reserved
 d
 d
 Reserved.
(Continued)

456 Appendix D
Bits Field Type Reset Value Descriptions
28
 PENDSVSET
 R/W
 0
 Write 1 to set PendSV, write 0 has no effect.
On reads return the pending state of PendSV.
27
 PENDSVCLR
 R/W
 0
 Write 1 to clear PendSV, write 0 has no effect. On reads return
the pending state of PendSV.
26
 PENDSTSET
 R/W
 0
 Write 1 to pend SysTick, write 0 has no effect.
On reads return the pending state of SysTick.
25
 PENDSTCLR
 R/W
 0
 Write 1 to clear SysTick pending, write 0 has no effect. On
reads return the pending state of SysTick.
24
 Reserved
 d
 d
 Reserved.

23
 ISRPREEMPT
 RO
 d
 During debugging, this bit indicates that an exception will be

served in the next running cycle, unless it is suppressed by
debugger by C_MASKINTS in Debug Control and Status
Register.
22
 ISRPENDING
 RO
 d
 During debugging, this bit indicates that an exception is
pended.
21:18
 Reserved
 d
 d
 Reserved.

17:12
 VECTPENDING
 RO
 d
 Indicates the exception number of the highest priority pending

exception. If it is read as 0, it means no exception is currently
pended.
11:6
 Reserved
 d
 d
 Reserved.

5:0
 VECTACTIVE
 RO
 d
 Current active exception number, same as IPSR. If the

processor is not serving an exception (Thread mode), this field
read as 0.
Application Interrupt and Control State Register (SCB -> AIRCR)

Bits Field Type Reset value Descriptions
31:16
 VECTKEY (during
write operation)
WO
 d
 Register access key. When writing to this
register, the VECTKEY field need to be set to
0x05FA, otherwise the write operation would
be ignored.
31:16
 VECTKEYSTAT
(during read
operation)
RO
 0xFA05
 Read as 0xFA05.
15
 ENDIANESS
 RO
 0 or 1
 1 indicates the system is big endian.
0 indicates the system is little endian.
14:3
 Reserved
 d
 d
 Reserved.

2
 SYSRESETREQ
 WO
 d
 Write 1 to this bit cause the external signal

SYSRESETREQ to be asserted.

1
 VECTCLRACTIVE
 WO
 d
 Write 1 to this bit causes:

Exception active status to be cleared
Processor return to Thread mode
IPSR to be cleared
This bit can be only be used by debugger.
0
 Reserved
 d
 d
 Reserved.

NVIC, SCB, and SysTick Registers Quick Reference 457
System Control Register (SCB -> SCR)

Bits Field Type Reset Value Descriptions

31:5 Reserved d d Reserved.

4
 SEVONPEND
 R/W
 0
 When set to 1, an event is generated for each new

pending of an interrupt. This can be used to wake up
the processor if Wait-for-Event sleep is used.
3
 Reserved
 d
 d
 Reserved.

2
 SLEEPDEEP
 R/W
 0
 When set to 1, deep sleep mode is selected when sleep

mode is entered. When this bit is zero, normal sleep
mode is selected when sleep mode is entered.
1
 SLEEPONEXIT
 R/W
 0
 When set to 1, enter sleep mode (Wait-for-Interrupt)
automatically when exiting an exception handler and
returning to thread level. When set to 0 this feature is
disabled.
0
 Reserved
 d
 d
 Reserved.
Configuration Control Register (SCB -> CCR)

This register is read only and has fixed value. It is implemented to maintain compatibility

between ARMv6-M and ARMv7-M architectures:

Bits Field Type Reset Value Descriptions
31:10
 Reserved
 d
 d
 Reserved.

9
 STKALIGN
 RO
 1
 Double word exception stacking alignment

behavior is always used.

8:4
 Reserved
 d
 d
 Reserved.

3
 UNALIGN_TRP
 RO
 1
 Instruction trying to carry out an unaligned

access always causes a fault exception.

2:0
 Reserved
 d
 d
 Reserved.
System Handler Priority Register 2 (SCB -> SHR[0])

For programming the Interrupt Priority with the CMSIS-compliant device driver library,

please use the NVIC_SetPriority function rather than directly accessing the CMSIS

register symbol. This ensures software compatibility between various Cortex-M processors:

Address Name Type Reset Value Descriptions
0xE000ED1C
 SHPR2
 R/W
 0x00000000
 System Handler Priority Register 2
[31:30] SVC priority

458 Appendix D
System Handler Priority Register 3 (SCB -> SHR[1])

For programming the Interrupt Priority with the CMSIS-compliant device driver library,

please use the NVIC_SetPriority function rather than directly access the CMSIS register

symbol. This ensures software compatibility between various Cortex-M processors:

Address Name Type Reset Value Descriptions
0xE000ED20
 SHPR3
 R/W
 0x00000000
 System Handler Priority Register 3
[31:30] SysTick priority
[23:22] PendSV priority
System Handler Control and State Register

This register is only accessible from a debugger. Application software cannot access this

register:

Bits Field Type Reset Value Descriptions
31:16
 Reserved
 d
 d
 Reserved.

15
 SVCALLPENDED
 RO
 0
 1 indicates SVC execution is pended.

Accessible from debugger only.

14:0
 Reserved
 d
 d
 Reserved.
SysTick Register Summary

Address Name CMSIS Symbol Full Name
0xE000E010
 SYST_CSR
 SysTick->CTRL
 SysTick Control and Status
Register
0xE000E014
 SYST_RVR
 SysTick->LOAD
 SysTick Reload Value Register

0xE000E018
 SYST_CVR
 SysTick->VAL
 SysTick Current Value Register

0xE000E01C
 SYST_CALIB
 SysTick->CALIB
 SysTick Calibration Register
SysTIck Control and Status Register (SysTick -> CTRL)

Bits Field Type Reset Value Descriptions

31:17 Reserved d d Reserved.

16
 COUNTFLAG
 RO
 0
 Set to 1 when the SysTick timer reach zero. Clear to

0 by reading of this register.

15:3
 Reserved
 d
 d
 Reserved.
(Continued)

NVIC, SCB, and SysTick Registers Quick Reference 459
Bits Field Type Reset Value Descriptions
2
 CLKSOURCE
 R/W
 0
 Value of 1 indicates that the core clock is used for the
SysTick timer. Otherwise a reference clock frequency
(depending on MCU design) is used.
1
 TICKINT
 R/W
 0
 SysTick interrupt enable. When this bit is set, the
SysTick exception is generated when the SysTick timer
count down to 0.
0
 ENABLE
 R/W
 0
 When set to 1 the SysTick timer is enabled. Otherwise
the counting is disabled.
SysTick Reload Value Register (SysTick -> LOAD)

Bits Field Type Reset Value Descriptions
31:24
 Reserved
 d
 d
 Reserved.

23:0
 RELOAD
 R/W
 Undefined
 Specify the reload value of the

SysTick Timer.
SysTick Current Value Register (SysTick -> VAL)

Bits Field Type Reset Value Descriptions
31:24
 Reserved
 d
 d
 Reserved.

23:0
 CURRENT
 R/W
 Undefined
 On read returns the current value of the

SysTick timer. Write to this register with
any value to clear the register and the
COUNTFLAG to 0. (This does not cause
SysTick exception.)
SysTick Calibration Value Register (SysTick -> CALIB)

Bits Field Type Reset Value Descriptions
31
 NOREF
 RO
 d
 If it is read as 1, it indicates SysTick always use core clock
for counting as no external reference clock is available. If
it is 0, then an external reference clock is available and
can be used. The value is MCU design dependent.
30
 SKEW
 RO
 d
 If set to 1, the TENMS bit field is not accurate. The value
is MCU design dependent.
29:24
 Reserved
 d
 d
 Reserved.

23:0
 TENMS
 RO
 d
 Ten millisecond calibration value. The value is MCU

design dependent.

APPENDIX E

Debug Registers Quick Reference

Overview

The Cortex-M0 debug system contains a number of programmable registers. These registers

can be accessed by an in-circuit debuggers only and cannot be accessed by the application

software. This quick reference is intended for tools developers, or if you are using a debugger

that supports debug scripts (e.g., RealView Debugger), you can use debug scripts to access to

these registers to carry out testing operations automatically.

The debug system in the Cortex-M0 is partitioned into the following segments:

• Debug support in the processor core

• Breakpoint unit

• Data watchpoint unit

• ROM table.

System-on-chip developers can add debug support components if required. If additional debug

components are added, another ROM table unit can also be added to the system so that

a debugger can identify available debug components included in the system.

The debug support is configurable; some Cortex-M0 based products might not have any debug

support.

Core Debug Registers

The processor core contains a number of registers for debug purpose.

Address Name Descriptions
461
0xE000ED24
 SHCSR
 System Handler Control and State
Registerdindicate system exception status
0xE000ED30
 DFSR
 Debug Fault Status Registerdallow debugger to
determine the cause of halting
0xE000EDF0
 DHCSR
 Debug Halting Control and Status
Registerdcontrol processor debug activities like
halting, single stepping, restart
0xE000EDF4
 DCRSR
 Debug Core Register Selector Registerdcontrol
read and write of core registers during halt
(Continued)

462 Appendix E
Address Name Descriptions
0xE000EDF8
 DCRDR
 Debug Core Register Data Registerddata transfer
register for reading or writing core registers during
halt
0xE000EDFC
 DEMCR
 Debug Exception Monitor Control Registerdfor
enabling of data watchpoint unit and vector catch
feature; vector catch allows the debugger to halt the
processor if the processor is reset or if a hard fault
exception is triggered
0xE000EFD0 to
0xE000EFFC
PIDs, CIDs
 ID registers
System Handler Control and State Register (0xE000ED24)

Bits Field Type Reset Value Descriptions
31:16
 Reserved
 d
 d
 Reserved

15
 SVCALLPENDED
 RO
 0
 1 indicates SVC execution is pended;

accessible from debugger only

14:0
 Reserved
 d
 d
 Reserved
Debug Fault Status Register (0xE000ED30)

Bits Field Type Reset Value Descriptions
31:5
 Reserved
 d
 d
 Reserved

4
 EXTERNAL
 RWc
 0
 EDBGRQ was asserted

3
 VCATCH
 RWc
 0
 Vector catch occurred

2
 DWTTRAP
 RWc
 0
 Data watchpoint occurred

1
 BKPT
 RWc
 0
 Breakpoint occurred

0
 HALTED
 RWc
 0
 Halted by debugger or single stepping
Debug Halting Control and Status Register (0xE000EDF0)

Bits Field Type Reset Value Descriptions
31:16
 DBGKEY (during write)
 WO
 d
 Debug Key. During write, the value of
0xA05F must be used on the top
16-bit. Otherwise the write is ignored.
25
 S_RESET_ST (during read)
 RO
 d
 Reset status flag (sticky). Core has
been reset or being reset; this bit is
clear on read.
24
 S_RETIRE_ST (during read)
 RO
 d
 Instruction is completed since last
read; this bit is clear on reset.
(Continued)

Debug Registers Quick Reference 463
Bits Field Type Reset Value Descriptions
19
 S_LOCKUP
 RO
 d
 When this bit is 1, the core is in lockup
state.
18
 S_SLEEP
 RO
 d
 When this bit is 1, the core is sleeping.

17
 S_HALT (during read)
 RO
 d
 When this bit is 1, the core is halted.

16
 S_REGRDY_ST
 RO
 d
 When this bit is 1, the core completed

a register read or register write
operation.
15:4
 Reserved
 d
 d
 Reserved.

3
 C_MASKINTS
 R/W
 0
 Mask exceptions while stepping (does

not affect NMI and hard fault); valid
only if C_DEBUGEN is set.
2
 C_STEP
 R/W
 0
 Single step control. Set this to 1 to
carry out single step operation; valid
only if C_DEBUGEN is set.
1
 C_HALT
 R/W
 0
 Halt control. This bit is only valid when
C_DEBUGEN is set.
0
 C_DEBUGEN
 R/W
 0
 Debug enable. Set this bit to 1 to
enable debug.
Debug Core Register Selector Register (0xE000EDF4)

Bits Field Type Reset Value Descriptions
31:17
 Reserved
 d
 d
 Reserved

16
 REGWnR
 WO
 d
 Set to 1 to write value to register

Set to 0 to read value from register

15:5
 Reserved
 d
 d
 Reserved

4:0
 REGSEL
 WO
 0
 Register select
Debug Core Register Data Register (0xE000EDF8)

Bits Field Type Reset Value Descriptions
31:0
 DBGTMP
 RW
 0
 Data value for the core register transfer
Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Field Type Reset Value Descriptions
31:25
 Reserved
 d
 d
 Reserved

24
 DWTENA
 RW
 0
 Data watchpoint unit enable

23:11
 Reserved
 d
 d
 Reserved
(Continued)

464 Appendix E
Bits Field Type Reset Value Descriptions
10
 VC_HARDERR
 RW
 0
 Debug trap at hard fault
exception
9:1
 Reserved
 d
 d
 Reserved

0
 VC_CORERESET
 RW
 0
 Halt processor after system

reset and before the first
instruction executed
Breakpoint Unit

The breakpoint unit contains up to four comparators for instruction breakpoints. Each

comparator can produce a breakpoint for up to two instructions (if the two instructions are

located in the same word address). Additional breakpoints can be implemented by

inserting breakpoint instructions in the program image if the program memory can be

modified.

The breakpoint unit design is configurable. Some microcontrollers might contain no breakpoint

unit or a breakpoint unit with fewer than four comparators.

Address Name Descriptions
0xE0002000
 BP_CTRL
 Breakpoint Control Registerdfor enabling the
breakpoint unit and provide information about
the breakpoint unit
0xE0002008
 BP_COMP0
 Breakpoint Comparator Register 0

0xE000200C
 BP_COMP1
 Breakpoint Comparator Register 1

0xE0002010
 BP_COMP2
 Breakpoint Comparator Register 2

0xE0002014
 BP_COMP3
 Breakpoint Comparator Register 3

0xE0002FD0 to
0xE0002FFC
PIDs, CIDs
 ID registers
Breakpoint Control Register (0xE0002000)

Bits Field Type Reset Value Descriptions
31:17
 Reserved
 d
 d
 Reserved

7:4
 NUM_CODE
 RO
 0 to 4
 Number of comparators

3:2
 Reserved
 d
 d
 Reserved

1
 KEY
 WO
 d
 Write Keydwhen there is a write

operation to this register, this bit
should be set to 1, otherwise the write
operation is ignored
0
 ENABLE
 RW
 0
 Enable control

Debug Registers Quick Reference 465
Breakpoint Comparator Registers (0xE0002008e0xE0002014)

Bits Field Type Reset Value Descriptions
31:30
 BP_MATCH
 RW
 d
 Breakpoint setting:
00: No breakpoint
01: Breakpoint at lower half word address
10: Breakpoint at upper half word address
11: Breakpoint at both lower and upper half word
29
 Reserved
 d
 d
 Reserved

28:2
 COMP
 RW
 d
 Compare instruction address

1
 Reserved
 d
 d
 Reserved

0
 ENABLE
 RW
 0
 Enable control for this comparator
Data Watchpoint Unit

The data watchpoint unit has two main functions:

• Setting data watchpoints

• Providing a PC sampling register for basic profiling

Before accessing the DWT, the TRCENA bit in Debug Exception and Monitor Control Register

(DEMCR, address 0xE000EDFC) must be set to 1 to enable the DWT. Unlike the Data Watch-

point and Trace unit in the Cortex-M3/M4, the DWT in the Cortex-M0 does not support trace. But

the programming models of its registers are mostly compatible to the DWT in ARMv7-M.

The DWT design is configurable. Some microcontrollers might contain no DWT or a DWT

with just 1 comparator.

Address Name Descriptions
0xE0001000
 DWT_CTRL
 DWT Control Registerdprovide information
about the data watchpoint unit
0xE000101C
 DWT_PCSR
 Program Counter Sample Registerdprovide
current program address
0xE0001020
 DWT_COMP0
 Comparator Register 0

0xE0001024
 DWT_MASK0
 Mask Register 0

0xE0001028
 DWT_FUNCTION0
 Function Register 0

0xE0001030
 DWT_COMP1
 Comparator Register 1

0xE0001034
 DWT_MASK1
 Mask Register 1

0xE0001038
 DWT_FUNCTION1
 Function Register 1

0xE0001FD0 to 0xE0001FFC
 PIDs, CIDs
 ID registers
DWT Control Register (0xE0001000)

Bits Field Type Reset Value Descriptions
31:28
 NUMCOMP
 RO
 0 to 2
 Number of comparator implemented

27:0
 Reserved
 d
 d
 Reserved

466 Appendix E
Program Counter Sample Register (0xE000101C)

Bits Field Type Reset Value Descriptions
31:0
 EIASAMPLE
 RO
 d
 Execution instruction address sample; read as
0xFFFFFFFF if core is halted or if DWTENA is 0
DWT COMP0 Register and DWT COMP1 Registers (0xE0001020, 0xE0001030)

Bits Field Type Reset Value Descriptions
31:0
 COMP
 RW
 d
 Address value to compare to;
the value must be aligned to the
compare address range defined
by the compare mask register
DWT MASK0 Register and DWT MASK1 Registers (0xE0001024, 0xE0001034)

Bits Field Type Reset Value Descriptions
31:4
 Reserved
 d
 d
 Reserved

3:0
 MASK
 RW
 d
 Mask pattern:

0000: compare mask ¼ 0xFFFFFFFF
0001: compare mask ¼ 0xFFFFFFFE
.
1110: compare mask ¼ 0xFFFFC000
1111: compare mask ¼ 0xFFFF8000
DWT FUNC0 Register and DWT FUNC1 Registers (0xE0001028, 0xE0001038)

Bits Field Type Reset Value Descriptions
31:4
 Reserved
 d
 d
 Reserved

3:0
 FUNC
 RW
 0
 Function:

0000: Disable
0100: Watchpoint on PC match
0101: Watchpoint on read address
0110: Watchpoint on write address
0111: Watchpoint on read or write address
Other values: Reserved
ROM Table Registers

The ROM table is used to allow a debugger to identify available components in the system.

The lowest two bits of each entry are used to indicate if the debug component is present

Debug Registers Quick Reference 467
and if there is another valid entry following in the next address in the ROM table. The rest of

the bits in the ROM table contain the address offset of the debug unit from the ROM table

base address:

Address Value Name Descriptions
0xE00FF000
 0xFFF0F003
 SCS
 Points to System Control Space base
address 0xE000E000
0xE00FF004
 0xFFF02003
 DWT
 Points to DW base address 0xE0001000

0xE00FF008
 0xFFF03003
 BPU
 Points to BPU base address 0xE0002000

0xE00FF00C
 0x00000000
 end
 End of table marker

0xE00FFFCC
 0x00000001
 MEMTYPE
 Indicates that systemmemory is accessible

on this memory map

0xE00FFFD0 to
0xE00FFFFC
0x000000–
 IDs
 Peripheral ID and component ID values
(values dependent on the design versions)
Using the ROM table, the debugger can identify the debug components available as shown in

Figure E.1.

The ROM table lookup can be divided into multiple stages if a system-on-chip design contains

additional debug components and an extra ROM table. In such cases, the ROM table

lookup can be cascaded so that the debugger can identify all the debug components available

(Figure E.2).

Debugger
connection

(JTAG /
Serial Wire)

Debug interface

base address

Debugger detects
connection of debug

interface and obtains the
ROM table address

ROM table

Debugger goes through
each entry in the ROM

table

SCS / NVIC

DWT unit

BP unit

The debug components are
identified by their ID values

SCS / NVIC

ID registers

DWT

ID registers

FPB

ID registers

Debugger can then
determine available

debug features by other
registers in the debug

Number of
WatchPoints

Number of
BreakPoints

ID registers

components

Figure E.1:
The debugger can use the ROM table to detect available debug components automatically.

4
6
8

A
ppendix

E

Debugger
connection

(JTAG /
Serial Wire)

Debug interface

base address

Debugger detects
connection of debug

interface and obtains the
ROM table address

Cortex-M0
ROM table

Debugger goes through
each entry in the ROM

table

SCS / NVIC

DWT unit

BP unit

The debug components are
identified by their ID values

SCS / NVIC

ID registers

DWT

ID registers

FPB

ID registers

Debugger can then
determine available

debug features by other
registers in the debug

compoents

Number of
WatchPoints

Number of
BreakPoints

ID registers

Primary
ROM table

Debug unit X

Debug unit Y

Cortex-M0
ROM table

Debug unit X

ID registers

Debug unit Y

ID registers

Figure E.2:
Multistage ROM table lookup when additional debug components are present.

D
ebug

R
egisters

Q
uick

R
eference

4
6
9

APPENDIX F

Debug Connector Arrangement

A number of standard debug connector configurations are defined to allow in-circuit debuggers

to connect to target boards easily. Most of the Cortex-M0 development boards use these

standard pin-out arrangements. If you are designing your own Cortex-M0 microcontroller

board, you should use one of these connector arrangements to make connection to the in-circuit

debugger easier.

The 10-Pin Cortex Debug Connector

For PCB design with small size, the 0.05” pitch Cortex debug connector is ideal (Figures F.1

and F.2). The board space required is approximately 10 mm � 3 mm (the PCB header size is

smaller, only 5 mm � 6 mm) and is based on the Samtec micro header.
Figure F.1:
The 10-pin Cortex debug connector.

1 2

9 10

TMS/SWIOVTref

TCK/SWCLK

TDO / SWO

TDI

nRESET

GND

GND

KEY

GNDDetect

Figure F.2:
The pin out in the 10-pin Cortex debug connector.

471

472 Appendix F
The 10-pin Cortex debug connector supports both JTAG and serial wire protocols. The VTref is

normally connected to VCC (e.g., 3.3 volt) and the nRESET signal can usually be ignored (the

debugger normally resets the microcontroller using the System Reset Request feature in the

AIRCR of System Control Block). The GNDDetect signal allows the in-circuit debugger to

detect that it is connected to a target board. This connector arrangement is also called the

CoreSight debug connector in some ARM documentation.

The 20-Pin Cortex Debug + ETM Connector

In some cases you might also find a 20-pin 0.05” pitch pin debug connector (Figures F.3 and

F4). It is used in some Cortex-M3/M4 board where instruction trace is required. The header

(Samtec FTSH-120) includes addition signals for trace information transfer. Although the

Cortex-M0 does not support trace, some in-circuit debuggers might use this connector

arrangement.

When using a Cortex-M0 microcontroller with this debug connection arrangement, you can

ignore the trace signals. Both JTAG and serial wire debug protocol can be used with this debug

connection arrangement.

The Legacy 20-Pin IDC Connector Arrangement

Many existing in-circuit debuggers and development boards still use the larger 20 pin IDC

connector arrangement (Figures F.5 and F.6). Using a 0.1” pitch, it is easy for hobbyists to use

(easy for soldering) and provides stronger mechanical support.
Figure F.3:
The 20 pin Cortex debug+ETM connector.

Figure F.5:
20-pin IDC connector.

1 2

19 20

TMS/SWIOVTref

TCK/SWCLK

TDO / SWO / TRACECTL / EXTa

TDI / EXTb / NC

nRESET

TRACECLK

TRACEDATA0

GND

GND

KEY

GNDDetect

GND/TgtPwr+Cap

TRACEDATA1

TRACEDATA2

TRACEDATA3

GND

GND

GND

GND/TgtPwr+Cap

Figure F.4:
Pin out assignment for the 20-pin Cortex debug + ETM connector.

1 2

19 20

3V33V3

GND

GND

GND

GND

GND

GND

GND

GND

nICEDETECT

nTRST

TDI

TMS/SWIO

TCK/SWCLK

RTCK

TDO/SWV

NC / nSRST

NC

NC

Figure F.6:
Pin out assignment of 20 pin IDC debug connector.

Debug Connector Arrangement 473

APPENDIX G

Linker Script for CodeSourcery G++ Lite
The following linker script is modified from a generic linker script included in Sourcery G++

Lite installation (original file is generic-m.ld). This linker script requires a CS3 startup

mechanism and therefore is tool chain specific. If you are using another GNU tool chain, you

will have to modify the linker script to fit the requirement of the tool chain you are using.

The memory map arrangement in this script is targeted to the NXP LPC1114 microcontroller.

This script is used in examples in chapter 20.
/* Linker script for generic-m
 *
 * Version:Sourcery G++ Lite 2009q1-161
 * BugURL:https://support.codesourcery.com/GNUToolchain/
 *
 * Copyright 2007, 2008 CodeSourcery, Inc.
 *
 * The authors hereby grant permission to use, copy, modify, distribute,
 * and license this software and its documentation for any purpose, provided
 * that existing copyright notices are retained in all copies and that this
 * notice is included verbatim in any distributions. No written agreement,
 * license, or royalty fee is required for any of the authorized uses.
 * Modifications to this software may be copyrighted by their authors
 * and need not follow the licensing terms described here, provided that
 * the new terms are clearly indicated on the first page of each file where
 * they apply.
 * */
OUTPUT_FORMAT ("elf32-littlearm", "elf32-bigarm", "elf32-littlearm")
ENTRY(_start)
SEARCH_DIR(.)
GROUP(-lgcc -lc -lcs3 -lcs3unhosted -lcs3micro)

MEMORY
{
 /* ROM is a readable (r), executable region (x) */
 rom (rx) : ORIGIN = 0, LENGTH = 32k

 /* RAM is a readable (r), writable (w) and */
 /* executable region (x) */
 ram (rwx) : ORIGIN = 0x10000000, LENGTH = 8k
}

/* These force the linker to search for particular symbols from
 * the start of the link process and thus ensure the user's

LPC1114.ld

(Continued)

475

 * overrides are picked up
 */
EXTERN(__cs3_reset_generic_m)
INCLUDE micro-names.inc
EXTERN(__cs3_interrupt_vector_micro)
EXTERN(__cs3_start_c main __cs3_stack __cs3_heap_end)

PROVIDE(__cs3_heap_start = _end);
PROVIDE(__cs3_heap_end = __cs3_region_start_ram + __cs3_region_size_ram);
PROVIDE(__cs3_region_num = (__cs3_regions_end - __cs3_regions) / 20);
PROVIDE(__cs3_stack = __cs3_region_start_ram + __cs3_region_size_ram);

SECTIONS
{

.text :
{
CREATE_OBJECT_SYMBOLS
__cs3_region_start_rom = .;
*(.cs3.region-head.rom)
ASSERT (. == __cs3_region_start_rom, ".cs3.region-head.rom not permitted");

/* Vector table */

__cs3_interrupt_vector = __cs3_interrupt_vector_micro;
(.cs3.interrupt_vector) / vector table */
/* Make sure we pulled in an interrupt vector. */
ASSERT (. != __cs3_interrupt_vector_micro, "No interrupt vector");

/* Map CS3 vector symbols to handler names in C */
_start = __cs3_start_c;
__cs3_reset = __cs3_start_c;

(.text .text. .gnu.linkonce.t.*)
*(.plt)
*(.gnu.warning)
*(.glue_7t) *(.glue_7) *(.vfp11_veneer)

(.ARM.extab .gnu.linkonce.armextab.*)
*(.gcc_except_table)

} >rom
 .eh_frame_hdr : ALIGN (4)
 {
 KEEP (*(.eh_frame_hdr))
 } >rom
 .eh_frame : ALIGN (4)
 {
 KEEP (*(.eh_frame))

 } >rom

 /* .ARM.exidx is sorted, so has to go in its own output section. */

LPC1114.ld—Cont’d

476 Appendix G

 . = ALIGN(4);
 __init_array_start = .;
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 __init_array_end = .;

 . = ALIGN(4);
 KEEP(*(.fini))

 . = ALIGN(4);
 __fini_array_start = .;
 KEEP (*(.fini_array))
 KEEP (*(SORT(.fini_array.*)))
 __fini_array_end = .;

 .ARM.exidx :
 {
 (.ARM.exidx .gnu.linkonce.armexidx.*)
 } >rom
 __exidx_end = .;
 .rodata : ALIGN (4)
 {

 (.rodata .rodata. .gnu.linkonce.r.*)

 . = ALIGN(4);
 KEEP(*(.init))

 . = ALIGN(4);
 __preinit_array_start = .;
 KEEP (*(.preinit_array))
 __preinit_array_end = .;

 __exidx_start = .;

 . = ALIGN(0x4);
 KEEP (*crtbegin.o(.ctors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
 KEEP (*(SORT(.ctors.*)))
 KEEP (*crtend.o(.ctors))

 . = ALIGN(0x4);
 KEEP (*crtbegin.o(.dtors))
 KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
 KEEP (*(SORT(.dtors.*)))
 KEEP (*crtend.o(.dtors))

 LONG (__cs3_heap_start)

 /* Add debug information
 . = ALIGN(4);
 __my_debug_regions = .;

(Continued)

Linker Script for CodeSourcery G++ Lite 477

 LONG (__cs3_heap_end)
 LONG (__cs3_stack) */

 . = ALIGN(4);
 __cs3_regions = .;
 LONG (0)
 LONG (__cs3_region_init_ram)
 LONG (__cs3_region_start_ram)
 LONG (__cs3_region_init_size_ram)
 LONG (__cs3_region_zero_size_ram)
 __cs3_regions_end = .;

 . = ALIGN (8);
 *(.rom)
 *(.rom.b)
 _etext = .;
 } >rom

 .data : ALIGN (8)
 {
 __cs3_region_start_ram = .;
 _data = .;
 *(.cs3.region-head.ram)
 KEEP(*(.jcr))
 *(.got.plt) *(.got)
 *(.shdata)
 (.data .data. .gnu.linkonce.d.*)
 . = ALIGN (8);
 *(.ram)
 _edata = .;
 } >ram AT>rom
 .bss :
 {
 _bss = .;
 *(.shbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 . = ALIGN (8);
 *(.ram.b)
 _ebss = .;
 _end = .;
 __end = .;

 } >ram AT>rom
 __cs3_region_init_ram = LOADADDR (.data);
 __cs3_region_init_size_ram = _edata - ADDR (.data);
 __cs3_region_zero_size_ram = _end - _edata;
 __cs3_region_size_ram = LENGTH(ram);

LPC1114.ld—Cont’d

 /* DWARF debug sections.
 * Symbols in the DWARF debugging sections are relative to the beginning

 .stab 0 (NOLOAD) : { *(.stab) }
 .stabstr 0 (NOLOAD) : { *(.stabstr) }

478 Appendix G

 * of the section so we begin them at 0. */
 /* DWARF 1 */
 .debug 0 : { *(.debug) }
 .line 0 : { *(.line) }
 /* GNU DWARF 1 extensions */
 .debug_srcinfo 0 : { *(.debug_srcinfo) }
 .debug_sfnames 0 : { *(.debug_sfnames) }
 /* DWARF 1.1 and DWARF 2 */
 .debug_aranges 0 : { *(.debug_aranges) }
 .debug_pubnames 0 : { *(.debug_pubnames) }
 /* DWARF 2 */
 .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
 .debug_abbrev 0 : { *(.debug_abbrev) }
 .debug_line 0 : { *(.debug_line) }
 .debug_frame 0 : { *(.debug_frame) }
 .debug_str 0 : { *(.debug_str) }
 .debug_loc 0 : { *(.debug_loc) }
 .debug_macinfo 0 : { *(.debug_macinfo) }
 /* DWARF 2.1 */
 .debug_ranges 0 : { *(.debug_ranges) }
 /* SGI/MIPS DWARF 2 extensions */
 .debug_weaknames 0 : { *(.debug_weaknames) }
 .debug_funcnames 0 : { *(.debug_funcnames) }
 .debug_typenames 0 : { *(.debug_typenames) }
 .debug_varnames 0 : { *(.debug_varnames) }

 .note.gnu.arm.ident 0 : { KEEP (*(.note.gnu.arm.ident)) }
 .ARM.attributes 0 : { KEEP (*(.ARM.attributes)) }
 /DISCARD/ : { *(.note.GNU-stack) }
}

Linker Script for CodeSourcery G++ Lite 479

APPENDIX H

Example Code Files
This appendix contains a number of source code files which are used in various projects in

this book:

• system_LPC11xx.c (NXP LPC11xx system initialization code for CMSIS)

• system_LPC11xx.h (NXP LPC11xx system initialization code header for CMSIS)

• LPC11xx.hs (assembly header file for the assembly projects in Chapter 16)

• uart_test.s (assembly code for the UART test example in Chapter 16)

• RTX-Config.c (RTX Kernel configuration file used in examples in Chapter 18)
Appendix H.1 system_LPC11xx.c

When including the system_LPC11xx.c, you might need to edit a number of parameters to fit

your design requirements. Typically these include CLOCK_SETUP, SYSCLK_SETUP,

SYSOSC_SETUP, SYSPLLCTRL_Val, __XTAL, and so on.
system_LPC11xx.c
/**//**
 * @file system_LPC11xx.c
 * @brief CMSIS Cortex-M0 Device Peripheral Access Layer Source File
 * for the NXP LPC11xx Device Series
 * @version V1.00
 * @date 17. November 2009
 *
 * @note
 * Copyright (C) 2009 ARM Limited. All rights reserved.
 *
 * @par
 * ARM Limited (ARM) is supplying this software for use with Cortex-M
 * processor based microcontrollers. This file can be freely distributed
 * within development tools that are supporting such ARM based processors.
 *
 * @par
 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
 * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 **/

(Continued)

481

//-------- <<< Use Configuration Wizard in Context Menu >>> ------------------
*/

/*--------------------- Clock Configuration ----------------------------------
//
// <e> Clock Configuration
// <e1> System Clock Setup
// <e2> System Oscillator Enable
// <o3.1> Select System Oscillator Frequency Range
// <0=> 1 - 20 MHz
// <1=> 15 - 25 MHz
// </e2>
// <e4> Watchdog Oscillator Enable
// <o5.0..4> Select Divider for Fclkana
// <0=> 2 <1=> 4 <2=> 6 <3=> 8
// <4=> 10 <5=> 12 <6=> 14 <7=> 16
// <8=> 18 <9=> 20 <10=> 22 <11=> 24
// <12=> 26 <13=> 28 <14=> 30 <15=> 32
// <16=> 34 <17=> 36 <18=> 38 <19=> 40
// <20=> 42 <21=> 44 <22=> 46 <23=> 48
// <24=> 50 <25=> 52 <26=> 54 <27=> 56
// <28=> 58 <29=> 60 <30=> 62 <31=> 64
// <o5.5..8> Select Watchdog Oscillator Analog Frequency (Fclkana)
// <0=> Disabled
// <1=> 0.5 MHz
// <2=> 0.8 MHz
// <3=> 1.1 MHz
// <4=> 1.4 MHz
// <5=> 1.6 MHz
// <6=> 1.8 MHz
// <7=> 2.0 MHz
// <8=> 2.2 MHz
// <9=> 2.4 MHz
// <10=> 2.6 MHz
// <11=> 2.7 MHz
// <12=> 2.9 MHz
// <13=> 3.1 MHz
// <14=> 3.2 MHz
// <15=> 3.4 MHz
// </e4>
// <o6> Select Input Clock for sys_pllclkin (Register: SYSPLLCLKSEL)
// <0=> IRC Oscillator
// <1=> System Oscillator
// <2=> WDT Oscillator
// <3=> Invalid

#include <stdint.h>
#include "LPC11xx.h"

/*

system_LPC11xx.c—Cont’d

482 Appendix H

// <i> F_pll = M * F_in
// <i> F_in must be in the range of 10 MHz to 25 MHz
// <o8.0..4> M: PLL Multiplier Selection
// <1-32><#-1>
// <o8.5..6> P: PLL Divider Selection
// <0=> 2
// <1=> 4
// <2=> 8
// <3=> 16
// <o8.7> DIRECT: Direct CCO Clock Output Enable
// <o8.8> BYPASS: PLL Bypass Enable
// </e7>
// <o9> Select Input Clock for Main clock (Register: MAINCLKSEL)
// <0=> IRC Oscillator
// <1=> Input Clock to System PLL
// <2=> WDT Oscillator
// <3=> System PLL Clock Out
// </e1>
// <o10.0..7> System AHB Divider <0-255>
// <i> 0 = is disabled
// <o11.0> SYS Clock Enable
// <o11.1> ROM Clock Enable
// <o11.2> RAM Clock Enable
// <o11.3> FLASHREG Flash Register Interface Clock Enable
// <o11.4> FLASHARRAY Flash Array Access Clock Enable
// <o11.5> I2C Clock Enable
// <o11.6> GPIO Clock Enable
// <o11.7> CT16B0 Clock Enable
// <o11.8> CT16B1 Clock Enable
// <o11.9> CT32B0 Clock Enable
// <o11.10> CT32B1 Clock Enable
// <o11.11> SSP0 Clock Enable
// <o11.12> UART Clock Enable
// <o11.13> ADC Clock Enable
// <o11.15> WDT Clock Enable
// <o11.16> IOCON Clock Enable
// <o11.18> SSP1 Clock Enable
//
// <o12.0..7> SSP0 Clock Divider <0-255>
// <i> 0 = is disabled
// <o13.0..7> UART Clock Divider <0-255>
// <i> 0 = is disabled
// <o14.0..7> SSP1 Clock Divider <0-255>
// <i> 0 = is disabled
// </e>
*/

// <e7> Use System PLL

(Continued)

Example Code Files 483

#define CLOCK_SETUP 1
#define SYSCLK_SETUP 1
#define SYSOSC_SETUP 1
#define SYSOSCCTRL_Val 0x00000000
#define WDTOSC_SETUP 0
#define WDTOSCCTRL_Val 0x000000A0
#define SYSPLLCLKSEL_Val 0x00000001
#define SYSPLL_SETUP 1
#define SYSPLLCTRL_Val 0x00000023
#define MAINCLKSEL_Val 0x00000003
#define SYSAHBCLKDIV_Val 0x00000001
#define AHBCLKCTRL_Val 0x0001005F
#define SSP0CLKDIV_Val 0x00000001
#define UARTCLKDIV_Val 0x00000001
#define SSP1CLKDIV_Val 0x00000001

/*--------------------- Memory Mapping Configuration -------------------------
//
// <e> Memory Mapping
// <o1.0..1> System Memory Remap (Register: SYSMEMREMAP)
// <0=> Bootloader mapped to address 0
// <1=> RAM mapped to address 0
// <2=> Flash mapped to address 0
// <3=> Flash mapped to address 0
// </e>
*/
#define MEMMAP_SETUP 0
#define SYSMEMREMAP_Val 0x00000001

/*
//-------- <<< end of configuration section >>> ------------------------------
*/

/*--
 Check the register settings
 --/
#define CHECK_RANGE(val, min, max) ((val < min) || (val > max))
#define CHECK_RSVD(val, mask) (val & mask)

/* Clock Configuration ---*/
#if (CHECK_RSVD((SYSOSCCTRL_Val), ~0x00000003))
 #error "SYSOSCCTRL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((WDTOSCCTRL_Val), ~0x000001FF))
 #error "WDTOSCCTRL: Invalid values of reserved bits!"
#endif

#if (CHECK_RANGE((SYSPLLCLKSEL_Val), 0, 2))
 #error "SYSPLLCLKSEL: Value out of range!"

system_LPC11xx.c—Cont’d

484 Appendix H

#if (CHECK_RSVD((SYSPLLCTRL_Val), ~0x000001FF))
 #error "SYSPLLCTRL: Invalid values of reserved bits!"
#endif

#if (CHECK_RSVD((MAINCLKSEL_Val), ~0x00000003))
 #error "MAINCLKSEL: Invalid values of reserved bits!"
#endif

#if (CHECK_RANGE((SYSAHBCLKDIV_Val), 0, 255))
 #error "SYSAHBCLKDIV: Value out of range!"
#endif

#if (CHECK_RSVD((AHBCLKCTRL_Val), ~0x0001FFFF))
 #error "AHBCLKCTRL: Invalid values of reserved bits!"
#endif

#if (CHECK_RANGE((SSP0CLKDIV_Val), 0, 255))
 #error "SSP0CLKDIV: Value out of range!"
#endif

#if (CHECK_RANGE((UARTCLKDIV_Val), 0, 255))
 #error "UARTCLKDIV: Value out of range!"
#endif

#if (CHECK_RANGE((SSP1CLKDIV_Val), 0, 255))
 #error "SSP1CLKDIV: Value out of range!"
#endif

#if (CHECK_RSVD((SYSMEMREMAP_Val), ~0x00000003))
 #error "SYSMEMREMAP: Invalid values of reserved bits!"
#endif

/*--
 DEFINES
 --/

/*--
 Define clocks
 --/
#define __XTAL (12000000UL) /* Oscillator frequency */
#define __SYS_OSC_CLK (__XTAL) /* Main oscillator frequency */
#define __IRC_OSC_CLK (12000000UL) /* Internal RC oscillator frequency */

#define __FREQSEL ((WDTOSCCTRL_Val >> 5) & 0x0F)
#define __DIVSEL (((WDTOSCCTRL_Val & 0x1F) << 1) + 2)

#if (CLOCK_SETUP) /* Clock Setup */
 #if (SYSCLK_SETUP) /* System Clock Setup */
 #if (WDTOSC_SETUP) /* Watchdog Oscillator Setup*/

#endif

(Continued)

Example Code Files 485

 #if (__FREQSEL == 0)
 #define __WDT_OSC_CLK (400000 / __DIVSEL)
 #elif (__FREQSEL == 1)
 #define __WDT_OSC_CLK (500000 / __DIVSEL)
 #elif (__FREQSEL == 2)
 #define __WDT_OSC_CLK (800000 / __DIVSEL)
 #elif (__FREQSEL == 3)
 #define __WDT_OSC_CLK (1100000 / __DIVSEL)
 #elif (__FREQSEL == 4)
 #define __WDT_OSC_CLK (1400000 / __DIVSEL)
 #elif (__FREQSEL == 5)
 #define __WDT_OSC_CLK (1600000 / __DIVSEL)
 #elif (__FREQSEL == 6)
 #define __WDT_OSC_CLK (1800000 / __DIVSEL)
 #elif (__FREQSEL == 7)
 #define __WDT_OSC_CLK (2000000 / __DIVSEL)
 #elif (__FREQSEL == 8)
 #define __WDT_OSC_CLK (2200000 / __DIVSEL)
 #elif (__FREQSEL == 9)
 #define __WDT_OSC_CLK (2400000 / __DIVSEL)
 #elif (__FREQSEL == 10)
 #define __WDT_OSC_CLK (2600000 / __DIVSEL)
 #elif (__FREQSEL == 11)
 #define __WDT_OSC_CLK (2700000 / __DIVSEL)
 #elif (__FREQSEL == 12)
 #define __WDT_OSC_CLK (2900000 / __DIVSEL)
 #elif (__FREQSEL == 13)
 #define __WDT_OSC_CLK (3100000 / __DIVSEL)
 #elif (__FREQSEL == 14)
 #define __WDT_OSC_CLK (3200000 / __DIVSEL)
 #else
 #define __WDT_OSC_CLK (3400000 / __DIVSEL)
 #endif
 #else
 #define __WDT_OSC_CLK (1600000 / 2)
 #endif // WDTOSC_SETUP

 /* sys_pllclkin calculation */
 #if ((SYSPLLCLKSEL_Val & 0x03) == 0)
 #define __SYS_PLLCLKIN (__IRC_OSC_CLK)
 #elif ((SYSPLLCLKSEL_Val & 0x03) == 1)
 #define __SYS_PLLCLKIN (__SYS_OSC_CLK)
 #elif ((SYSPLLCLKSEL_Val & 0x03) == 2)
 #define __SYS_PLLCLKIN (__WDT_OSC_CLK)
 #else
 #define __SYS_PLLCLKIN (0)
 #endif

 #if (SYSPLL_SETUP) /* System PLL Setup */
#define __SYS_PLLCLKOUT (__SYS_PLLCLKIN * ((SYSPLLCTRL_Val & 0x01F)

system_LPC11xx.c—Cont’d

486 Appendix H

 #else
 #define __SYS_PLLCLKOUT (__SYS_PLLCLKIN * (1))
 #endif // SYSPLL_SETUP

 /* main clock calculation */
 #if ((MAINCLKSEL_Val & 0x03) == 0)
 #define __MAIN_CLOCK (__IRC_OSC_CLK)
 #elif ((MAINCLKSEL_Val & 0x03) == 1)
 #define __MAIN_CLOCK (__SYS_PLLCLKIN)
 #elif ((MAINCLKSEL_Val & 0x03) == 2)
 #define __MAIN_CLOCK (__WDT_OSC_CLK)
 #elif ((MAINCLKSEL_Val & 0x03) == 3)
 #define __MAIN_CLOCK (__SYS_PLLCLKOUT)
 #else
 #define __MAIN_CLOCK (0)
 #endif

 #define __SYSTEM_CLOCK (__MAIN_CLOCK / SYSAHBCLKDIV_Val)

 #else // SYSCLK_SETUP
 #if (SYSAHBCLKDIV_Val == 0)

 #define __SYSTEM_CLOCK (0)
 #else

 #define __SYSTEM_CLOCK (__XTAL / SYSAHBCLKDIV_Val)
 #endif
 #endif // SYSCLK_SETUP

#else
#define __SYSTEM_CLOCK (__XTAL)

#endif // CLOCK_SETUP

/*--
 Clock Variable definitions
 --/
uint32_t SystemCoreClock = __SYSTEM_CLOCK;/*!< System Clock Frequency (Core
Clock)*/

/*--
 Clock functions
 --/
void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */
{
 uint32_t wdt_osc = 0;

 /* Determine clock frequency according to clock register values */
 switch ((LPC_SYSCON->WDTOSCCTRL >> 5) & 0x0F) {
 case 0: wdt_osc = 400000; break;
 case 1: wdt_osc = 500000; break;
 case 2: wdt_osc = 800000; break;
 case 3: wdt_osc = 1100000; break;

+ 1))

(Continued)

Example Code Files 487

 case 4: wdt_osc = 1400000; break;
 case 5: wdt_osc = 1600000; break;
 case 6: wdt_osc = 1800000; break;
 case 7: wdt_osc = 2000000; break;
 case 8: wdt_osc = 2200000; break;
 case 9: wdt_osc = 2400000; break;
 case 10: wdt_osc = 2600000; break;
 case 11: wdt_osc = 2700000; break;
 case 12: wdt_osc = 2900000; break;
 case 13: wdt_osc = 3100000; break;
 case 14: wdt_osc = 3200000; break;
 case 15: wdt_osc = 3400000; break;
 }
 wdt_osc /= ((LPC_SYSCON->WDTOSCCTRL & 0x1F) << 1) + 2;

 switch (LPC_SYSCON->MAINCLKSEL & 0x03) {
 case 0: /* Internal RC oscillator */
 SystemCoreClock = __IRC_OSC_CLK;
 break;
 case 1: /* Input Clock to System PLL */
 switch (LPC_SYSCON->SYSPLLCLKSEL & 0x03) {
 case 0: /* Internal RC oscillator */
 SystemCoreClock = __IRC_OSC_CLK;
 break;
 case 1: /* System oscillator */
 SystemCoreClock = __SYS_OSC_CLK;
 break;
 case 2: /* WDT Oscillator */
 SystemCoreClock = wdt_osc;
 break;
 case 3: /* Reserved */
 SystemCoreClock = 0;
 break;
 }
 break;
 case 2: /* WDT Oscillator */
 SystemCoreClock = wdt_osc;
 break;
 case 3: /* System PLL Clock Out */
 switch (LPC_SYSCON->SYSPLLCLKSEL & 0x03) {
 case 0: /* Internal RC oscillator */
 if (LPC_SYSCON->SYSPLLCTRL & 0x180) {
 SystemCoreClock = __IRC_OSC_CLK;
 } else {
 SystemCoreClock = __IRC_OSC_CLK * ((LPC_SYSCON->SYSPLLCTRL & 0x01F) +

1);
 }
 break;
 case 1: /* System oscillator */
 if (LPC_SYSCON->SYSPLLCTRL & 0x180) {
 SystemCoreClock = __SYS_OSC_CLK;

system_LPC11xx.c—Cont’d

488 Appendix H

 } else {
 SystemCoreClock = __SYS_OSC_CLK * ((LPC_SYSCON->SYSPLLCTRL & 0x01F) +
1);
 }
 break;
 case 2: /* WDT Oscillator */
 if (LPC_SYSCON->SYSPLLCTRL & 0x180) {
 SystemCoreClock = wdt_osc;
 } else {
 SystemCoreClock = wdt_osc * ((LPC_SYSCON->SYSPLLCTRL & 0x01F) + 1);
 }
 break;
 case 3: /* Reserved */
 SystemCoreClock = 0;
 break;
 }
 break;
 }

 SystemCoreClock /= LPC_SYSCON->SYSAHBCLKDIV;

}

/**
 * Initialize the system
 *
 * @param none
 * @return none
 *
 * @brief Setup the microcontroller system.
 * Initialize the System.
 */
void SystemInit (void)
{

#if (CLOCK_SETUP) /* Clock Setup */
#if (SYSCLK_SETUP) /* System Clock Setup */
#if (SYSOSC_SETUP) /* System Oscillator Setup */
 uint32_t i;

 LPC_SYSCON->PDRUNCFG &= ~(1 << 5); /* Power-up System Osc */
 LPC_SYSCON->SYSOSCCTRL = SYSOSCCTRL_Val;
 for (i = 0; i < 200; i++) __NOP();
 LPC_SYSCON->SYSPLLCLKSEL = SYSPLLCLKSEL_Val; /* Select PLL Input */
 LPC_SYSCON->SYSPLLCLKUEN = 0x01; /* Update Clock Source */
 LPC_SYSCON->SYSPLLCLKUEN = 0x00; /* Toggle Update Register */
 LPC_SYSCON->SYSPLLCLKUEN = 0x01;
 while (!(LPC_SYSCON->SYSPLLCLKUEN & 0x01)); /* Wait Until Updated */
#if (SYSPLL_SETUP) /* System PLL Setup */
 LPC_SYSCON->SYSPLLCTRL = SYSPLLCTRL_Val;
 LPC_SYSCON->PDRUNCFG &= ~(1 << 7); /* Power-up SYSPLL */

 SystemCoreClock = __SYS_OSC_CLK;

(Continued)

Example Code Files 489

while (!(LPC_SYSCON->SYSPLLSTAT & 0x01)); /* Wait Until PLL Locked */
#endif
#endif
#if (WDTOSC_SETUP) /* Watchdog Oscillator Setup*/
LPC_SYSCON->WDTOSCCTRL = WDTOSCCTRL_Val;
LPC_SYSCON->PDRUNCFG &= ~(1 << 6); /* Power-up WDT Clock */

#endif
LPC_SYSCON->MAINCLKSEL = MAINCLKSEL_Val; /* Select PLL Clock Output */
LPC_SYSCON->MAINCLKUEN = 0x01; /* Update MCLK Clock Source */
LPC_SYSCON->MAINCLKUEN = 0x00; /* Toggle Update Register */
LPC_SYSCON->MAINCLKUEN = 0x01;
while (!(LPC_SYSCON->MAINCLKUEN & 0x01)); /* Wait Until Updated */

#endif

LPC_SYSCON->SYSAHBCLKDIV = SYSAHBCLKDIV_Val;
LPC_SYSCON->SYSAHBCLKCTRL = AHBCLKCTRL_Val;
LPC_SYSCON->SSP0CLKDIV = SSP0CLKDIV_Val;
LPC_SYSCON->UARTCLKDIV = UARTCLKDIV_Val;
LPC_SYSCON->SSP1CLKDIV = SSP1CLKDIV_Val;

#endif

#if (MEMMAP_SETUP || MEMMAP_INIT) /* Memory Mapping Setup */
LPC_SYSCON->SYSMEMREMAP = SYSMEMREMAP_Val;

#endif
}

system_LPC11xx.c—Cont’d

490 Appendix H
Appendix H.2 system_LPC11xx.h

This file is required for declaration of the system initialization function. It is normally

included in the Keil MDK-ARM installation.
system_LPC11xx.h
/**//**
 * @file system_LPC11xx.h
 * @brief CMSIS Cortex-M0 Device Peripheral Access Layer Header File
 * for the NXP LPC11xx Device Series
 * @version V1.00
 * @date 17. November 2009
 *
 * @note
 * Copyright (C) 2009 ARM Limited. All rights reserved.
 *
 * @par
 * ARM Limited (ARM) is supplying this software for use with Cortex-M
 * processor based microcontrollers. This file can be freely distributed

 * @par
 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
 * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 **/

#ifndef __SYSTEM_LPC11xx_H
#define __SYSTEM_LPC11xx_H

#ifdef __cplusplus
extern "C" {
#endif

#include <stdint.h>

extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */

/**
 * Initialize the system
 *
 * @param none
 * @return none
 *
 * @brief Setup the microcontroller system.
 * Initialize the System and update the SystemCoreClock variable.
 */
extern void SystemInit (void);

/**
 * Update SystemCoreClock variable
 *
 * @param none
 * @return none
 *
 * @brief Updates the SystemCoreClock with current core Clock
 * retrieved from cpu registers.
 */

#ifdef __cplusplus
}
#endif

#endif /* __SYSTEM_LPC11x_H */

extern void SystemCoreClockUpdate (void);

 * within development tools that are supporting such ARM based processors.
 *

Example Code Files 491

492 Appendix H
Appendix H.3 LPC11xx.hs

This file is for the assembly programming example in Chapter 16. It provides register

name definitions for the processor peripherals as well as LPC11xx peripherals.

(The syntax of this assembly header file is for the KEIL MDK-ARM or the ARM RealView

Development Suite.)
LPC11xx.hs
; Base Address Constant and register offset definition
; Cortex-M0
SCS_BASE EQU 0xE000E000
SysTick_BASE EQU 0xE000E010
NVIC_BASE EQU 0xE000E100
SCB_BASE EQU 0xE000ED00

; Core peripheral address offset
; 1) SysTick (use SysTick_BASE)
SysTick_CTRL EQU 0x000
SysTick_LOAD EQU 0x004
SysTick_VAL EQU 0x008
SysTick_CALIB EQU 0x00C

; 2) NVIC (use NVIC_BASE)
NVIC_ISER EQU 0x000 ; 0xE000E100
NVIC_ICER EQU 0x080 ; 0xE000E180
NVIC_ISPR EQU 0x100 ; 0xE000E200
NVIC_ICPR EQU 0x180 ; 0xE000E280
NVIC_IPR0 EQU 0x300 ; 0xE000E400

; 3) SCB (use SCB_BASE)
SCB_CPUID EQU 0x000
SCB_ICSR EQU 0x004
SCB_AIRCR EQU 0x00C
SCB_SCR EQU 0x010
SCB_CCR EQU 0x014
SCB_SHP0 EQU 0x01C
SCB_SHP1 EQU 0x020
SCB_SHCSR EQU 0x024
SCB_DFSR EQU 0x030

; LPC111x specific peripheral base address
; APB0 peripherals
LPC_I2C_BASE EQU 0x40000000
LPC_WDT_BASE EQU 0x40004000
LPC_UART_BASE EQU 0x40008000
LPC_CT16B0_BASE EQU 0x4000C000
LPC_CT16B1_BASE EQU 0x40010000
LPC_CT32B0_BASE EQU 0x40014000
LPC_CT32B1_BASE EQU 0x40018000
LPC_ADC_BASE EQU 0x4001C000

LPC_IOCON_BASE EQU 0x40044000
LPC_SYSCON_BASE EQU 0x40048000
LPC_SSP1_BASE EQU 0x40058000

; AHB peripherals
LPC_GPIO_BASE EQU 0x50000000
LPC_GPIO0_BASE EQU 0x50000000

LPC_GPIO1_BASE EQU 0x50010000
LPC_GPIO2_BASE EQU 0x50020000
LPC_GPIO3_BASE EQU 0x50030000

; Register offset
; 1) SYSCON
SYSMEMREMAP EQU 0x000
PRESETCTRL EQU 0x004
SYSPLLCTRL EQU 0x008
SYSPLLSTAT EQU 0x00C
SYSOSCCTRL EQU 0x020
WDTOSCCTRL EQU 0x024
IRCCTRL EQU 0x028
SYSRESSTAT EQU 0x030
SYSPLLCLKSEL EQU 0x040
SYSPLLCLKUEN EQU 0x044
MAINCLKSEL EQU 0x070
MAINCLKUEN EQU 0x074
SYSAHBCLKDIV EQU 0x078
SYSAHBCLKCTRL EQU 0x080
SSP0CLKDIV EQU 0x094
UARTCLKDIV EQU 0x098
SSP1CLKDIV EQU 0x09C
SYSTICKCLKDIV EQU 0x0B0
WDTCLKSEL EQU 0x0D0
WDTCLKUEN EQU 0x0D4
WDTCLKDIV EQU 0x0D8
CLKOUTCLKSEL EQU 0x0E0
CLKOUTUEN EQU 0x0E4
CLKOUTDIV EQU 0x0E8
PIOPORCAP0 EQU 0x100
PIOPORCAP1 EQU 0x104
BODCTRL EQU 0x150
SYSTCKCAL EQU 0x158
STARTAPRP0 EQU 0x200
STARTERP0 EQU 0x204
STARTRSRP0CLR EQU 0x208
STARTSRP0 EQU 0x20C

PDSLEEPCFG EQU 0x230
PDAWAKECFG EQU 0x234
PDRUNCFG EQU 0x238

DEVICE_ID EQU 0x3F4

LPC_PMU_BASE EQU 0x40038000
LPC_SSP0_BASE EQU 0x40040000

(Continued)

Example Code Files 493

; 2) IOCON register offset
PIO2_6 EQU 0x000
PIO2_0 EQU 0x008
PIO0_1 EQU 0x010
PIO1_8 EQU 0x014
PIO0_2 EQU 0x01C

PIO2_7 EQU 0x020
PIO2_8 EQU 0x024
PIO2_1 EQU 0x028
PIO0_3 EQU 0x02C
PIO0_4 EQU 0x030
PIO0_5 EQU 0x034
PIO1_9 EQU 0x038
PIO3_4 EQU 0x03C

PIO2_4 EQU 0x040
PIO2_5 EQU 0x044
PIO3_5 EQU 0x048
PIO0_6 EQU 0x04C
PIO0_7 EQU 0x050
PIO2_9 EQU 0x054
PIO2_10 EQU 0x058
PIO2_2 EQU 0x05C

PIO0_8 EQU 0x060
PIO0_9 EQU 0x064
JTAG_TCK_PIO0_10 EQU 0x068
PIO1_10 EQU 0x06C
PIO2_11 EQU 0x070
JTAG_TDI_PIO0_11 EQU 0x074
JTAG_TMS_PIO1_0 EQU 0x078
JTAG_TDO_PIO1_1 EQU 0x07C
JTAG_nTRST_PIO1_2 EQU 0x080
PIO3_0 EQU 0x084
PIO3_1 EQU 0x08C
PIO2_3 EQU 0x08C
ARM_SWDIO_PIO1_3 EQU 0x090
PIO1_4 EQU 0x094
PIO1_11 EQU 0x098
PIO3_2 EQU 0x09C

PIO1_5 EQU 0x0A0
PIO1_6 EQU 0x0A4
PIO1_7 EQU 0x0A8
PIO3_3 EQU 0x0AC

LPC11xx.hs—Cont’d

SCK_LOC EQU 0x0B0
DSR_LOC EQU 0x0B4
DCD_LOC EQU 0x0B8
RI_LOC EQU 0x0BC

494 Appendix H

; 5) Timer register offset
TIMER_IR EQU 0x000
TIMER_TCR EQU 0x004
TIMER_TC EQU 0x008
TIMER_PR EQU 0x00C
TIMER_PC EQU 0x010
TIMER_MCR EQU 0x014
TIMER_MR0 EQU 0x018
TIMER_MR1 EQU 0x01C
TIMER_MR2 EQU 0x020
TIMER_MR3 EQU 0x024
TIMER_CCR EQU 0x028
TIMER_CR0 EQU 0x02C
TIMER_EMR EQU 0x03C
TIMER_CTCR EQU 0x070
TIMER_PWMC EQU 0x074

; 3) PMU
PMU_PCON EQU 0x000
PMU_GPREG0 EQU 0x004
PMU_GPREG1 EQU 0x008
PMU_GPREG2 EQU 0x00C
PMU_GPREG3 EQU 0x010
PMU_GPREG4 EQU 0x014

; 4) GPIO
; Most control registers are start from offset 0x8000
LPC_GPIO0_REGBASE EQU LPC_GPIO0_BASE + 0x8000
LPC_GPIO1_REGBASE EQU LPC_GPIO1_BASE + 0x8000
LPC_GPIO2_REGBASE EQU LPC_GPIO2_BASE + 0x8000
LPC_GPIO3_REGBASE EQU LPC_GPIO3_BASE + 0x8000

; Since data register offset is large, use fixed constant
; instead.
LPC_GPIO0_DATA EQU 0x50000000 + 0x3FFC
LPC_GPIO1_DATA EQU 0x50010000 + 0x3FFC
LPC_GPIO2_DATA EQU 0x50020000 + 0x3FFC
LPC_GPIO3_DATA EQU 0x50030000 + 0x3FFC

; Masked access use LPC_GPIO0/1/2/3_BASE
GPIO_MASKED_ACCESS_BASE EQU 0x000

; Following are control register offset
; (Use LPC_GPIO0/1/2/3_REGBASE)
GPIO_DIR EQU 0x000 ; 0x8000
GPIO_IS EQU 0x004 ; 0x8004
GPIO_IBE EQU 0x008 ; 0x8008
GPIO_IEV EQU 0x00C ; 0x800C
GPIO_IE EQU 0x010 ; 0x8010
GPIO_RIS EQU 0x014 ; 0x8014
GPIO_MIS EQU 0x018 ; 0x8018
GPIO_IC EQU 0x01C ; 0x801C

(Continued)

Example Code Files 495

; 6) UART register offset
UART_RBR EQU 0x000
UART_THR EQU 0x000
UART_DLL EQU 0x000
UART_DLM EQU 0x004
UART_IER EQU 0x004
UART_IIR EQU 0x008
UART_FCR EQU 0x008
UART_LCR EQU 0x00C
UART_MCR EQU 0x010
UART_LSR EQU 0x014
UART_MSR EQU 0x018
UART_SCR EQU 0x01C
UART_ACR EQU 0x020
UART_FDR EQU 0x028
UART_TER EQU 0x030
UART_RS485CTRL EQU 0x04C
UART_ADRMATCH EQU 0x050
UART_RS485DLY EQU 0x054
UART_FIFOLVL EQU 0x058

; 7) SSP register offset
SSP_CR0 EQU 0x000
SSP_CR1 EQU 0x004
SSP_DR EQU 0x008
SSP_SR EQU 0x00C
SSP_CPSR EQU 0x010
SSP_IMSC EQU 0x014
SSP_RIS EQU 0x018
SSP_MIS EQU 0x01C
SSP_ICR EQU 0x020

; 8) I2C register offset
I2C_CONSET EQU 0x000
I2C_STAT EQU 0x004
I2C_DAT EQU 0x008
I2C_ADR0 EQU 0x00C
I2C_SCLH EQU 0x010
I2C_SCLL EQU 0x014
I2C_CONCLR EQU 0x018
I2C_MMCTRL EQU 0x01C
I2C_ADR1 EQU 0x020
I2C_ADR2 EQU 0x024
I2C_ADR3 EQU 0x028
I2C_DATA_BUFFER EQU 0x02C
I2C_MASK0 EQU 0x030
I2C_MASK1 EQU 0x034
I2C_MASK2 EQU 0x038
I2C_MASK3 EQU 0x03C

LPC11xx.hs—Cont’d

496 Appendix H

; 9) Watchdog
WDT_MOD EQU 0x000
WDT_TC EQU 0x004
WDT_FEED EQU 0x008
WDT_TV EQU 0x00C

; 10) ADC register offset
ADC_CR EQU 0x000
ADC_GDR EQU 0x004
ADC_INTEN EQU 0x00C
ADC_DR0 EQU 0x010
ADC_DR1 EQU 0x014
ADC_DR2 EQU 0x018
ADC_DR3 EQU 0x01C
ADC_DR4 EQU 0x020
ADC_DR5 EQU 0x024
ADC_DR6 EQU 0x028
ADC_DR7 EQU 0x02C
ADC_STAT EQU 0x030
 END

Example Code Files 497
Appendix H.4 uart_test.s

The code that follows is a full assembly listing for the UART project in Chapter 16.

uart_test.s

 PRESERVE8 ; Indicate the code here preserve
 ; 8 byte stack alignment
 THUMB ; Indicate THUMB code is used
 AREA |.text|, CODE, READONLY ; Start of CODE area

 INCLUDE LPC11xx.hs
 EXPORT UartTest
UartTest FUNCTION
 BL Set48MHzClock ; Switch Clock to 48MHz
 BL UartConfig ; Initialize UART

 ; UartPuts ("Hello\n");
 LDR R0,=Hello_message ; start address of hello message
 BL UartPuts ; print message
UartTest_loop
 BL UartGetRxDataAvail ; check if data is received
 CMP R0, #0
 BEQ UartTest_loop ; Return value =0 (no data), try again
 BL UartGetRxData ; Get receive data in R0
 BL UartPutc ; output receive data

(Continued)

 LDR R0, [R0, #UART_RBR]
 BX LR
 ENDFUNC
; --
UartPutc FUNCTION
 ; Print a character to UART
 ; Input R0 - value of character to be printed
 LDR R1,=LPC_UART_BASE
 MOVS R3, #0x20 ; LSR.transmit holding register empty
 CMP R0,#10 ; new line character
 BNE UartPutc_wait_2

 ; while ((LPC_UART->LSR & (1<<5))==0);
UartPutc_wait_1
 LDR R2, [R1,#UART_LSR]
 TST R2, R3 ; Check transmit empty
 BEQ UartPutc_wait_1
 ; LPC_UART->THR = 13 (for correct display on Hyperterminal)
 MOVS R2, #13 ; carriage return

 STR R2, [R1, #UART_THR]

UartPutc_wait_2
 LDR R2, [R1,#UART_LSR]
 TST R2, R3 ; Check transmit empty
 BEQ UartPutc_wait_2
 ; LPC_UART->THR = data
 STR R0, [R1, #UART_THR]

 CMP R0,#13 ; new line character
 BNE UartPutc_end
 ; while ((LPC_UART->LSR & (1<<5))==0);
UartPutc_wait_3

 B UartTest_loop
Hello_message
 DCB "Hello\n", 0
 ALIGN
 ENDFUNC
; --
UartGetRxDataAvail FUNCTION
 ; Return 1 if data is received
 LDR R0,=LPC_UART_BASE
 LDR R0, [R0, #UART_LSR]
 MOVS R1, #1
 ANDS R0, R0, R1
 BX LR
 ENDFUNC
; --
UartGetRxData FUNCTION
 ; Return received data in R0
 LDR R0,=LPC_UART_BASE

uart_test.s—Cont’d

498 Appendix H

 BL UartPutc
 ADDS R4, R4, #1
 B UartPuts_loop
UartPuts_end
 POP {R4, PC}
 ENDFUNC
; --
UartConfig FUNCTION
 ; UART interface are : PIO1_7 (TXD) and PIC1_6 (RXD)
 ; Other UART signals (DTR, DSR, CTS, RTS, RI) are not used

 ; Enable clock to IO configuration block
 ; (bit[16] of AHBCLOCK Control register)
 ; LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<16);
 LDR R0,=(LPC_SYSCON_BASE+SYSAHBCLKCTRL)
 LDR R2,=0x10000 ; (1<<16)
 LDR R1,[R0]
 ORRS R1, R1, R2
 STR R1,[R0]

 ; PIO1_7 IO output config
 ; bit[5] - Hysteresis (0=disable, 1 =enable)
 ; bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
 ; bit[2:0] - Function (0 = IO, 1=TXD, 2=CT32B0_MAT1)
 ; LPC_IOCON->PIO1_7 = (0x1) + (0<<3) + (0<<5);
 LDR R0,=LPC_IOCON_BASE

 BEQ UartPuts_end

 MOVS R1,#PIO1_7
 MOVS R2,#0x01
 STR R2,[R0, R1]

 ; PIO1_6 IO output config
 ; bit[5] - Hysteresis (0=disable, 1 =enable)
 ; bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)

 TST R2, R3 ; Check transmit empty
 BEQ UartPutc_wait_3
 ; LPC_UART->THR = 10 (for correct display on Hyperterminal)
 MOVS R2, #10 ; new line
 STR R2, [R1, #UART_THR]

UartPutc_end
 BX LR
 ENDFUNC
; --

UartPuts FUNCTION
 ; Print a text string to UART
 ; Input R0 - starting address of string
 PUSH {R4, LR}
 MOV R4, R0
UartPuts_loop
 LDRB R0, [R4] ; Read one character
 CMP R0, #0

 LDR R2, [R1,#UART_LSR]

(Continued)

Example Code Files 499

 ; UART_PCLK = 48MHz, Baudrate = 38400, divide ratio = 1250
 ; Line Control Register
 ; LPC_UART->LCR = (1<<7) | // Enable access to Divisor Latches
 ; (0<<6) | // Disable Break Control
 ; (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 ; (0<<3) | // parity disabled
 ; (0<<2) | // 1 stop bit
 ; (3<<0); // 8-bit data
 LDR R0,=LPC_UART_BASE
 MOVS R1,#0x83
 STR R1,[R0,#UART_LCR]

 ; LPC_UART->DLL = 78; // Divisor Latch Least Significant Byte
 ; // 48MHz/38400/16 = 78.125
 MOVS R1,#78
 STR R1,[R0,#UART_DLL]

 ; LPC_UART->DLM = 0; // Divisor Latch Most Significant Byte : 0
 MOVS R1,#0
 STR R1,[R0,#UART_DLM]

 ; LPC_UART->LCR = (0<<7) | // Disable access to Divisor Latches
 ; (0<<6) | // Disable Break Control
 ; (0<<4) | // Bit[5:4] parity select (odd, even, sticky-1, sticky-0)
 ; (0<<3) | // parity disabled
 ; (0<<2) | // 1 stop bit
 ; (3<<0); // 8-bit data
 MOVS R1,#0x3
 STR R1,[R0,#UART_LCR]

 ; LPC_UART->FCR = 1; // Enable FIFO

 MOVS R1,#1
 STR R1,[R0]

 ; bit[2:0] - Function (0 = IO, 1=RXD, 2=CT32B0_MAT0)
 ; LPC_IOCON->PIO1_6 = (0x1) + (2<<3) + (1<<5);
 MOVS R1,#PIO1_6
 MOVS R2,#0x31
 STR R2,[R0, R1]

 ; Enable clock to UART (bit[12] of AHBCLOCK Control register
 ; LPC_SYSCON->SYSAHBCLKCTRL = LPC_SYSCON->SYSAHBCLKCTRL | (1<<12);
 LDR R0,=(LPC_SYSCON_BASE+SYSAHBCLKCTRL)
 LDR R2,=0x1000 ; (1<<12)
 LDR R1,[R0]
 ORRS R1, R1, R2
 STR R1,[R0]

 ; UART_PCLK divide ratio = 1
 ; LPC_SYSCON->UARTCLKDIV = 1;
 LDR R0,=(LPC_SYSCON_BASE+UARTCLKDIV)

uart_test.s—Cont’d

500 Appendix H

 ; Select PLL source as crystal oscillator
 ; 0 - IRC oscillator
 ; 1 - System oscillator
 ; 2 - WDT oscillator
 ; LPC_SYSCON->SYSPLLCLKSEL = 1;
 MOVS R1, #0x1
 STR R1,[R0, #SYSPLLCLKSEL]

 ; Update SYSPLL setting (0->1 sequence)
 ; LPC_SYSCON->SYSPLLCLKUEN = 0;
 MOVS R1, #0x0
 STR R1,[R0, #SYSPLLCLKUEN]

 ; LPC_SYSCON->SYSPLLCLKUEN = 1;
 MOVS R1, #0x1
 STR R1,[R0, #SYSPLLCLKUEN]

 ; Set PLL to 48MHz generate from 12MHz
 ; M = 48/12 = 4 (MSEL = 3)
 ; FCCO (must be between 156 to 320MHz, and is 2x, 4x, 8x or 16x of Clock)
 ; Clock freq out selected as 192MHz
 ; P = 192MHz/48MHz/2 = 2 (PSEL = 1)
 ; bit[8] - BYPASS
 ; bit[7] - DIRECT
 ; bit[6:5] - PSEL (1,2,4,8)
 ; bit[4:0] - MSEL (1-32)
 ; LPC_SYSCON->SYSPLLCTRL = (3 + (1<<5)); // M = 4, P = 2
 MOVS R1, #0x23
 STR R1,[R0, #SYSPLLCTRL]

 ; wait until PLL is locked
 ; while(LPC_SYSCON->SYSPLLSTAT == 0);
Set48MHzClock_waitloop1
 LDR R1,[R0,#SYSPLLSTAT]

 STR R1,[R0,#UART_FCR]

 BX LR
 ENDFUNC
; --
Set48MHzClock FUNCTION
 LDR R0,=LPC_SYSCON_BASE

 ; Power up the PLL and System oscillator
 ; (clear the powerdown bits for PLL and System oscillator)
 ; LPC_SYSCON->PDRUNCFG = LPC_SYSCON->PDRUNCFG & 0xFFFFFF5F;
 LDR R3, =PDRUNCFG
 LDR R1,[R0, R3]
 MOVS R2, #0xA0
 BICS R1, R1, R2
 STR R1,[R0, R3]

 MOVS R1,#1

(Continued)

Example Code Files 501

 ; LPC_SYSCON->MAINCLKUEN = 1;
 MOVS R1, #0x1
 STR R1,[R0, #MAINCLKUEN]
 BX LR
 ENDFUNC

; --
 END

; --

 CMP R1, #0
 BEQ Set48MHzClock_waitloop1

 ; Switch main clock to PLL clock
 ; 0 - IRC
 ; 1 - Input clock to system PLL
 ; 2 - WDT clock
 ; 3 - System PLL output
 ; LPC_SYSCON->MAINCLKSEL = 3;
 MOVS R1, #0x3
 STR R1,[R0, #MAINCLKSEL]

 ; Update Main Clock Select setting (0->1 sequence)
 ; LPC_SYSCON->MAINCLKUEN = 0;
 MOVS R1, #0x0
 STR R1,[R0, #MAINCLKUEN]

uart_test.s—Cont’d

502 Appendix H
Appendix H.5 RTX_config.c

The following file is a configuration file for the Keil RTX Kernel for examples in Chapter 18.

This file might need modifying depending on your project requirements. Please refer to

Chapter 18 for details.
RTX_config.c
/*--
 * RL-ARM - RTX
 *--
 * Name: RTX_CONFIG.C
 * Purpose: Configuration of RTX Kernel for Cortex-M
 * Rev.: V4.10
 *--
 * This code is part of the RealView Run-Time Library.
 * Copyright (c) 2004-2010 KEIL - An ARM Company. All rights reserved.
 ---/

// <q>Run in privileged mode
// =========================
// <i> Run all Tasks in privileged mode.
// <i> Default: Unprivileged
#ifndef OS_RUNPRIV
 #define OS_RUNPRIV 0

#endif

#include <RTL.h>

/*--
 * RTX User configuration part BEGIN
 ---/

//-------- <<< Use Configuration Wizard in Context Menu >>> -----------------
//
// <h>Task Configuration
// =====================
//
// <o>Number of concurrent running tasks <0-250>
// <i> Define max. number of tasks that will run at the same time.
// <i> Default: 6
#ifndef OS_TASKCNT
 #define OS_TASKCNT 6
#endif

// <o>Number of tasks with user-provided stack <0-250>
// <i> Define the number of tasks that will use a bigger stack.
// <i> The memory space for the stack is provided by the user.
// <i> Default: 0
#ifndef OS_PRIVCNT
 #define OS_PRIVCNT 0
#endif

// <o>Task stack size [bytes] <20-4096:8><#/4>
// <i> Set the stack size for tasks which is assigned by the system.
// <i> Default: 200
#ifndef OS_STKSIZE
 #define OS_STKSIZE 100
#endif

// <q>Check for the stack overflow
// ===============================
// <i> Include the stack checking code for a stack overflow.
// <i> Note that additional code reduces the Kernel performance.
#ifndef OS_STKCHECK
 #define OS_STKCHECK 1
#endif

(Continued)

Example Code Files 503

// <o>ISR FIFO Queue size<4=> 4 entries <8=> 8 entries
// <12=> 12 entries <16=> 16 entries
// <24=> 24 entries <32=> 32 entries
// <48=> 48 entries <64=> 64 entries
// <96=> 96 entries

// </h>
// <h>SysTick Timer Configuration
// =============================
// <o>Timer clock value [Hz] <1-1000000000>
// <i> Set the timer clock value for selected timer.
// <i> Default: 6000000 (6MHz)
#ifndef OS_CLOCK
 #define OS_CLOCK 48000000
#endif

// <o>Timer tick value [us] <1-1000000>
// <i> Set the timer tick value for selected timer.
// <i> Default: 10000 (10ms)
#ifndef OS_TICK
 #define OS_TICK 10000
#endif

// </h>

// <h>System Configuration
// =======================
// <e>Round-Robin Task switching
// =============================
// <i> Enable Round-Robin Task switching.
#ifndef OS_ROBIN
 #define OS_ROBIN 1
#endif

// <o>Round-Robin Timeout [ticks] <1-1000>
// <i> Define how long a task will execute before a task switch.
// <i> Default: 5
#ifndef OS_ROBINTOUT
 #define OS_ROBINTOUT 5
#endif

// </e>

// <o>Number of user timers <0-250>
// <i> Define max. number of user timers that will run at the same time.
// <i> Default: 0 (User timers disabled)
#ifndef OS_TIMERCNT
 #define OS_TIMERCNT 0
#endif

RTX_config.c—Cont’d

504 Appendix H

/*--------------------------- os_error --------------------------------------*/

 /* HERE: include optional user code to be executed on timeout. */
}

// <i> when they are called from the iterrupt handler.
// <i> Default: 16 entries
#ifndef OS_FIFOSZ
 #define OS_FIFOSZ 16
#endif

// </h>

//------------- <<< end of configuration section >>> -----------------------

// Standard library system mutexes
// ===============================
// Define max. number system mutexes that are used to protect
// the arm standard runtime library. For microlib they are not used.
#ifndef OS_MUTEXCNT
 #define OS_MUTEXCNT 8
#endif

/*--
 * RTX User configuration part END
 ---/

#define OS_TRV ((U32)(((double)OS_CLOCK*(double)OS_TICK)/1E6)-1)

/*--
 * Global Functions
 ---/

/*--------------------------- os_idle_demon ---------------------------------*/

__task void os_idle_demon (void) {
 /* The idle demon is a system task, running when no other task is ready */
 /* to run. The 'os_xxx' function calls are not allowed from this task. */

 for (;;) {
 /* HERE: include optional user code to be executed when no task runs.*/
 }
}

/*--------------------------- os_tmr_call -----------------------------------*/

void os_tmr_call (U16 info) {
 /* This function is called when the user timer has expired. Parameter */
 /* 'info' holds the value, defined when the timer was created. */

// <i> ISR functions store requests to this buffer,

(Continued)

Example Code Files 505

void os_error (U32 err_code) {
 /* This function is called when a runtime error is detected. Parameter */
 /* 'err_code' holds the runtime error code (defined in RTL.H). */

 /* HERE: include optional code to be executed on runtime error. */
 for (;;);
}

/*--
 * RTX Configuration Functions
 ---/

#include <RTX_lib.c>

/*--
 * end of file
 ---/

RTX_config.c—Cont’d

506 Appendix H

APPENDIX I

Troubleshooting

Chapter 12 of this book covered various techniques for locating problems in program code. In

this section, we will summarize the most common mistakes and problems that software

developers might find when preparing software for the Cortex-M0.

I.1. Program Does Not Run/Start

There can be many possible reasons.

I.1.1. Vector Table Missing or in Wrong Place

Depending in the tool chain, you might need to create a vector table. If you do have a

vector table in the project, make sure it is suitable for the Cortex-M0 (e.g., vector table code for

the ARM7TDMI cannot be used). It is also possible for the vector table to be removed during

the link stage or to be placed into the wrong address location.

You should generate a disassembled listing of the compiled image or a linker report to see if the

vector table is present and if it is correctly placed at the start of the memory.

I.1.2. Incorrect C Startup Code Being Used

In addition to reviewing compiler options, make sure you are specifying the correct linker

options as well. Otherwise a linker might pull in incorrect C startup code. For example, it might

end up using startup code for another ARM processor, which contains instructions not

supported by the Cortex-M0, or it could use startup code for a debug environment with

semihosting, which might contain a breakpoint instruction (BKPT) or supervisor call (SVC).

This can cause an unexpected hard fault or software exception.

I.1.3. Incorrect Value in Reset Vector

Make sure the reset vector is really pointing to the intended reset handler. Also, you should check

that the exception vectors in the vector table have the LSB set to 1 to indicate Thumb code.

I.1.4. Program Image not Programmed in Flash Correctly

Most flash programming tools automatically verify the flash memory after programming. If

not, after the program image is programmed into the flash, you might need to double-check to
507

508 Appendix I
ensure that the flash memory has been updated correctly. In some cases, you might need to

erase the flash first, and then program the program image.

I.1.5. Incorrect Tool Chain Configurations

Some other tool chain configurations can also cause problems with the startup sequencedfor

example, memory map settings, CPU options, endianness settings, and the like.

I.1.6. Incorrect Stack Pointer Initialization Value

This involves two parts. First, the initial stack pointer value (the first word on the vector table)

needs to point to a valid memory address. Second, the C startup code might have a separate

stack setup step. Try getting the processor to halt at the startup sequence, and single step

through it to make sure the stack pointer is not changed to point to an invalid address value.

I.1.7. Incorrect Endian Setting

Most ARMmicrocontrollers are using little endian, but there is a chance that someday you may

use an ARM Cortex-M0 microcontroller in big endian. If this is the case, make sure the C

compiler options, assembler options, and linker options are set up correctly to support big

endian mode.

I.2. Program Started, but Entered a Hard Fault

I.2.1. Invalid Memory Access

One of the most common problems is accidentally accessing an invalid memory region.

Usually you can trace the faulting memory access instruction following the instructions in

Chapter 12. Using the method described there, you can locate the program code that caused the

fault.

I.2.2. Unaligned Data Access

If you directly manipulate a pointer, or if you have assembly code, you can generate code that

attempts to carry out an unaligned access. If the faulting instruction is a memory access

instruction, determine if the address value used for the transfer is aligned or not.

I.2.3. Bus Slave Return Error

Some peripherals might return an error response if it has not been initialized or if the clock to

the peripheral is disabled. In some less common cases, a peripheral might only be able to

accept 32-bit transfers and return error responses for byte or half-word transfers.

Troubleshooting 509
I.2.4. Stack Corruption in Exception Handler

If the program crashes after an interrupt handler execution, it might be a stack frame corruption

problem. Because local variables can be stored on the stack memory, if a data array is defined

inside an exception handler and the array index being used exceeds the array size, the stack

frame of the exception could become corrupted. As a result, the program could crash after

exiting the exception.

I.2.5. Program Crash at Some C Functions

Please check if you have reserved sufficient stack space and heap space. By default, the

heap space defined in the default startup code for NXP LPC111x in Keil MDK-ARM is

zero bytes. You will need to modify this if you are using C functions like malloc, printf, and

so on.

Another possible reason for this problem is an incorrect C library function being pulled in by

the linker. The linker can normally output verbosely to show the user what library functions

were pulled in, which is something a user should check under such circumstances.

I.2.6. Accidentally Trying to Switch to ARM State

After a hard fault is entered, if the T bit in the stacked xPSR is 0, the fault was triggered by

switching to ARM state. This can be caused by, for example, an invalid function pointer value,

the LSB of a vector in vector table not being set to 1, corruption of the stack frame during

exception, or even an incorrect linker setting that ends up causing an incorrect C library being

used.

I.2.7. SVC Executed at Incorrect Priority Level

If the SVC instruction is executed inside an SVC handler, or any other exception handlers that

have same or higher priority than the SVC exception, it will trigger a fault. If an SVC is used in

an NMI handler or the hard fault handler, it will result in a lockup.
I.3. Sleep Problems

I.3.1. Execute of WFE Does not Enter Sleep

Execution of aWFE instruction does not always result in entering of sleep mode. If a past event

has occurred, the internal event latch inside the Cortex-M0 processor will be set. In this

situation, execution of a WFE instruction will clear the event latch and continue to the next

instruction. Therefore, a WFE instruction is usually used in a conditional idle loop so that it can

be executed again if sleep did not occur in the first WFE execution.

510 Appendix I
I.3.2. Sleep-on-Exit Triggers Sleep Too Early

If you enable the Sleep-on-Exit feature too early during the initialization stage of

a program, the processor will enter sleep mode as soon as the first exception handler is

completed.

I.3.3. SEVONPEND does not Work for Interrupt that is Already in a Pending State

The Send Event on Pending (SEVONPEND) feature generates an event when an idle interrupt

changes into the pending state if the feature is enabled. The event can be used to wake up the

Cortex-M0 if it has been entering sleep mode by WFE instruction. However, if the pending

status of the interrupt was already set before entering sleep, a new interrupt request that arrives

during sleep will not trigger an event. In this case, the Cortex-M0 processor will not be

awakened.

I.3.4. Processor Cannot Wake up Because Sleep Mode Might Disable Some Clocks

Depending on the microcontroller you are using and the chosen sleep mode, the peripherals or

the processor clock might be stopped and you might not be able to wake up the processor

unless some special wakeup signal is used. Please refer to documentation from your micro-

controller vendors for details.

I.3.5. Race Condition

Sometimes we need to pass software flags from interrupt handlers to thread level codes.

However, the following code has a race condition:

volatile int irq_flag¼0;

while (1){
if (irq_flag¼¼0) {

__WFI(); // enter sleep
}

else {
process_a(); // Execute if IRQ_Handler had executed
}

}

void IRQ_Handler(void){
irq_flag¼1;
return;
}

If the IRQ takes place after the “irq_flag” checking and before the WFI, the process will enter

sleep mode and will not execute “process_a().” To solve this problem, the WFE instruction

should be used. The execution of IRQ_Handler causes the internal event latch to set. As

Troubleshooting 511
a result, the next execution of WFE will only cause the event latch to be cleared and will not

enter sleep.

If a microcontroller with Cortex-M3 r2p0 or earlier versions is used for the same operation, an

__SEV() instruction needs to be included inside the “IRQ_Handler.” This is because of errata

in the processor design that prevent the event latch from being set correctly in an interrupt

event. Therefore, the code should be changed to the following:

volatile int irq_flag¼0;

while (1){
if (irq_flag¼¼0) {
__WFE(); // enter sleep if event latch is 0
}

else {
process_a(); // Execute if IRQ_Handler had executed
}

}

void IRQ_Handler(void){
irq_flag¼1;
__SEV(); // required for Cortex-M3 r2p0 or earlier versions
return;
}

I.4. Interrupt Problem

I.4.1. Extra Interrupt Handler Executed

In some microcontrollers, the peripherals are connected to a peripheral bus running at

a different speed from the processor system bus, and the data transfer through the bus bridge

might have a delay (depending on the design of the bus bridge). If the interrupt request of the

peripheral is cleared at the end of an interrupt service routine and the exception is exited

immediately, the interrupt signal connected to the processor might still be high when the

exception exit takes place. This results in another execution of the same exception handler. To

solve the problem, you can clear the interrupt request earlier in the interrupt service routine, or

add an extra access to the peripheral after clearing the interrupt request. In most cases, these

arrangements can solve this problem.

I.4.2. Additional SysTick Handler Execution

If you set up the SysTick timer for a single shot arrangement with a short delay, a second

SysTick interrupt event could be generated during the SysTick handler execution. In such

cases, in addition to disabling the SysTick interrupt generation, you should also clear the

SysTick interrupt pending status before exiting the SysTick handler. Otherwise the SysTick

handler will be entered again.

512 Appendix I
I.4.3. Disabling of Interrupt Within the Interrupt Handler

If you are porting application code from an ARM7TDMI microcontroller, you might need to

update some interrupt handlers if they disable the interrupts during interrupt handling to ensure

that the interrupts are reenabled before the exception exit. In the ARM7TDMI, interrupts can

be reenabled at the same time as the exception return because the I-bit in CPSR is restored

during the process. In the Cortex-M0, reenabling of the interrupt (clearing of PRIMASK) has

to be done separately.

I.4.4. Incorrect Interrupt Return Instructions

If you are porting software from the ARM7TDMI, make sure that all interrupt handlers are

updated to remove wrapper code for nested interrupt support, and make sure the correct

instruction is used for exception return. In the Cortex-M0, exception return must be carried out

using BX or POP instructions.

I.4.5. Exception Priority Setup Values

Although the Exception/Interrupt Priority Level Registers contain 8 bits for the priority level of

each exception or interrupt, only the top 2 bits are implemented. As a result, the priority leve

values can only be 0x00, 0x40, 0x80, and 0xC0. If you are using NVIC functions from CMSIS-

compliant device driver libraries, the priority setup function “NVIC_SetPriority()”
automatically shift the values 0 to 3 to the implemented bits.
I.5. Other Issues

I.5.1. Incorrect SVC Parameter Passing Method

Unlike traditional ARM processors, the parameters pass on to the SVC exception and the return

value from SVC handler must be transferred using exception stack frame. Otherwise the

parameter could become corrupted. Please refer to Chapter 18 for details.

I.5.2. Debug Connection Affected by I/O Setting or Low-power Modes

If you change the I/O settings of pins that are used for a debug connection, you might be unable

to debug your application or update the flash because the debug connection is affected by the

I/O usage configuration changes. Similarly, low-power features might also disable debugger

connections. In some microcontroller products, there is a special boot mode to allow you to

disable the execution of your program during bootup. Chapter 17 covered the recovery method

you can use on NXP LPC111x.

Troubleshooting 513
I.5.3. Debug Protocol Selection

Some Cortex-M0 microcontrollers use serial wire debug protocol and some other use JTAG

debug protocol. If incorrect debug protocol is selected in the configuration of a debug envi-

ronment, the debugger will not be able to connect to the microcontrollers.

I.5.4. Using Event Output as Pulse I/O

Some Cortex-M0 microcontrollers allow an I/O pin to be configured as an event output. When

the SEV instruction is executed, a single cycle pulse is generated from the processor and this

can be useful for external latch control.

When a sequence of multiple pulses is required, additional instructions need to be placed

between the SEV instructions. Otherwise the pulses could be merged. For example, the

following sequence might result in one pulse (of two clock cycles) or two pulses (of one cycle)

depending on the wait state of the memory system:
By
__SEV(); // First pulse

__SEV(); // Second pulse, could be merged with first pulse

changing the code to

__SEV(); // First pulse

__NOP(); // Produce timing gap between the two pulses.

__SEV(); // Second pulse
If the C compiler you use can optimize away NOPs, an__ISB() could be used instead.

Index
8-bit microcontrollers

ARM Cortex-M0 software porting,

419e26

limitations, 1e3, 6, 17e21, 32e3, 49, 60,

73, 84e6, 104, 145, 199, 211, 301,

406, 419e26

10-pin Cortex debug connector, 471

16-bit microcontrollers

ARM Cortex-M0 software porting,

419e26

limitations, 1e3, 6, 13, 16, 17e21, 32e3,

60, 73, 84e6, 145, 199e201, 211, 301,

406, 419e26

20-pin Cortex debug + ETM connector,

472

20-pin IDC debug connector, 380e82, 472

32-bit processors

see also ARM Cortex-M0

concepts, 13e24, 32e3, 34e5, 55, 65, 73,

104e5, 125, 188, 199e200, 404e24

64-bit additions/subtractions, 118e19

AAPCS, 55, 152e4, 288e9, 304, 331

see also EABI

definition, 55

abort, 407e10

ADC (add with carry), 75, 89, 321,

427e9, 430

ADCS, 118, 441

ADD, 75, 79e80, 87e9, 107e13, 115e6,

291, 441

see also arithmetic operations

instruction set summary, 441

ADDS, 79e81, 88, 107e15, 118, 120e2,

167e8, 289, 302e4, 306e7, 372,

441

see also arithmetic operations

instruction set summary, 441

ADR, 75, 89, 441

see also arithmetic operations

instruction set summary, 441

Advanced RISC Machine Ltd, 3e4

see also ARM

AHB LITE bus interface unit, 14, 65,

125e39, 321
see also memory.; peripherals;

system bus

AIRCR see application interrupt and reset

control register

ALIGN, 77e8, 112e3, 165e8, 294e8,

303e4

ALU flags, 13e24, 28e31, 78e9

see also APSR register

concepts, 28e31, 78e9

example results, 30e1

AMBA, 14e24, 125

analog circuits, 197, 429

analog sensors, 1, 3, 200e10, 429

see also accelerometers; touch sensors

AND, 75, 91, 441

see also logic operations

ANDS, 91, 167e8, 302e4, 441

instruction set summary, 441

APB protocol, 65, 125e6

see also peripheral bus

API, 101e2, 182e3, 193e5, 329

application interrupt and reset control

register (AIRCR)

concepts, 177e80, 214, 455e8, 472

definition, 177e9

quick reference, 456

application programming, CMSIS,

259e86

application-specific standard products

(ASSPs), concepts, 3, 427e31

applications

see also programming

assembly language, 287e309

C, 387e403

CMSIS, 259e86

concepts, 2e3, 27, 28e30, 39e41,

43e72, 75, 78e9, 81e2, 90e1,

93e105, 122e4, 177e80, 214e20,

259e86, 319e29, 411e2, 418,

427e31, 456

dial control interface example, 276e86,

356e9

GNU, 386e403

low-power features, 319e29

RVDS, 361e84
515
simple application programming, 259e86,

291e8, 361e73, 387e91

APSR register (application PSR)

see also ALU flags

behaviors, 29e30

concepts, 27, 28e30, 78e9, 81e2, 90e1,

93e105, 122e4, 411e2

architecture, 5e9, 13, 23, 25e41, 74e5,

101, 116, 125e39, 175, 180, 411e2,

413e9, 457

see also memory maps

ARM, 5e9, 13, 23, 25e41, 125e39,

457

concepts, 5e9, 25e41, 125e39

overview, 6e9, 25, 125e6

AREA (Assembly directive), 291e300,

371e3

arithmetic operations

see also AD.; CM.; MUL.;

RSB.; SBC.; SUB

concepts, 80, 87e91, 110, 118e24,

164e8

list, 87e91

ARM

see also Keil.; RealView Development

Suite

background, 3e5

Connected Community, 11e2

ecosystem, 9e11

historical background, 3e9, 73e5

intellectual property licensing, 4,

21, 23

licensing business models, 3e4

ARM CoreSight debug connection, 7, 9,

16e24, 222e3, 224, 225, 361, 472

ARM Cortex-A5, Cortex-A8, Cortex-A9,

Cortex-A15 processors, 4e9, 361

ARM Cortex-M family, concepts, 5e12,

65, 222e3, 405e6

ARM Cortex-M0, 1e12, 13e24, 25e6,

39e41, 43e72, 75, 183, 197e210,

221e9, 232e58, 285e6, 405e13,

465, 472

8-bit/16-bit microcontrollers software

porting, 419e22

516 Index
ARM Cortex-M0 (Continued)

8051 migration example, 425e6, 431

ARM Cortex-M1 contrasts, 412e3

ARM Cortex-M3 contrasts, 412e3

ARM Cortex-M4 contrasts, 417e38

ARM7TDMI contrasts, 405e12

benefits, 1e3, 9e12, 13e24, 197e210,

221e2, 405

CMSIS versions, 285e6, 413, 421e5

concepts, 1e12, 13e24, 39e41, 43e72,

75, 183, 197e210, 221e9, 232e58,

405e9

debug system, 4, 6, 7e9, 14e24, 25e6,

221e9, 415e24, 459e65, 469e71

development board, 232

features, 15e17

general information, 13e14

getting started, 11, 39e41

historical background, 1, 3e9,

73e5

implementation features, 16

lockup problems, 217e20

logic gates, 1e2, 16e24, 199e210, 430

products, 430

program image, 39e41

programming concepts, 43e72

simplified block diagram, 13e14

software porting, 15e24, 32e3, 66e72,

144e5, 405, 407, 411e3, 510

specification, 5e6, 25, 55

startup sequence, 39e41, 43e5, 182e3,

409e10, 413, 423e4

system features, 15

technical overview, 13e24

Thumb instructions supported, 74e5,

405e6, 410e11, 413e6

ARM Cortex-M1, 5e9, 16, 23e4, 102e3,

183, 405, 412e3

see also FPGA

ARM Cortex-M0 contrasts, 410e11

CMSIS, 411

compatibility factors, 23e4, 412e3

concepts, 406, 412e3

software porting, 413

ARM Cortex-M3, 1, 4e9, 16, 23, 32, 66,

71, 73e5, 139, 144e5, 147, 159,

165, 175, 180, 183, 212, 242e3, 315,

341, 381, 406, 413e9, 436

ARM Cortex-M0 contrasts, 413e9

compatibility factors, 1, 16, 23e4, 406,

413e9

concepts, 406, 413e9, 436

debug system, 417

exceptions, 414e6

exclusive access support, 417

instruction sets, 407, 416

interrupts, 412e7

NVIC, 414e16, 418e9
performance benefits, 413

programming, 413e4

software porting, 418e9

system-level features, 416e7

ARM Cortex-M4, 5e9, 16, 66, 71, 147,

165, 286, 315e6, 406, 419e20

ARM Cortex-M0 contrasts, 419e20

concepts, 406, 419e20

software porting, 419e20

ARM Cortex-R4, 4e9, 408

ARM Workbench IDE, 361, 373e4

see also RealView Development Suite

arm-none-eabi.., 386e402

ARM6 processor family, 3e4

ARM7, 4e9, 338, 431, 437

ARM7TDMI, 4e9, 11, 13, 15, 16, 21,

39e41, 55, 73e5, 79, 132e3, 145,

169, 193, 214, 284e6, 406e12, 433,

507, 512

see also; ARMv4T architecture

ARM Cortex-M0 contrasts, 405e12

interrupts, 406e12

operation modes, 405e7

optimizations, 412

registers, 405e12

software porting, 409e12

ARM9 processors, 4e9, 338, 406,

433, 437

ARM10, 5

ARM11 processors, 4e9, 176

ARM7100, 5

ARM7500, 5

armasm

see also assembly.

concepts, 75e6, 362e8, 371

armcc, concepts, 362e4, 371

armlink, concepts, 362e4, 369, 371

ARMv4T architecture

see also ARM7TDMI; ARM9.

concepts, 6e9, 74e5, 406

ARMv5TE architecture

see also ARM9.

concepts, 6e9

ARMv6-M architecture, 6e9, 13, 23,

25e41, 74e5, 101, 116, 137, 180,

217e8, 390, 405, 410, 411e3, 416,

457

see also ARM Cortex-M0; ARM7TDMI

ARMv7-M architecture, 6e9, 23, 175, 180,

411e2, 457

see also ARM Cortex-M3

as generic command name, 386e7

ASICs, 16, 23e4, 374, 429, 430

asm, 306e7

ASR (arithmetic shift right), 75, 92e3,

441

see also shift.

ASRS, 92e3, 441
assembly language, 2, 11, 15, 26, 30,

51e65, 68e72, 75e105, 107e24,

165e8, 214e20, 240, 287e308,

332e5, 360e3, 386e7, 390e92,

431e3, 441e4

see also instruction sets

ARM7TDMI, 409e10

basics, 54e65, 75e105

C comparisons, 54e5, 287

C function calls, 304e6

complex branch handling, 304e5

concepts, 51e65, 68e72, 75e105,

107e24, 214e20, 289e306, 333,

362e4, 430e2

critique, 288

data variables space allocations,

298e9

divide operations, 58, 119e21

embedded assembly, 54e5, 81e2, 306e8,

331e3

function structure, 289e91

HardFault exception, 214e7, 219,

292e9, 371e2

inline assembler, 54e5, 81e2, 307,

396, 399, 421

instruction set summary, 441e2

interrupt control, 165e8

introduction, 54e65

mixed-language projects, 304e8, 397

programming examples, 287e90

project examples, 287e92

recommended practice, 288e9

RVDS, 370

SEVONPEND, 314

simple project example, 291e8,

371e3

Sleep-on-Exit triggers, 314

square root operations, 121e2

startup code, 56e65, 291e8, 365e70,

409e12

structure of an assembly function,

289e91

suffixes, 78e9, 98, 109e10

syntax guidelines, 54, 75e9

text outputting routines, 216e7, 300e4

UAL, 79e82, 87e105, 364e5, 411e2,

441e44

UARTs, 300e4

vector tables example, 56e7, 366, 371e3,

409e12

vendor contrasts, 75e6

assembly wrapper, 217, 219e20, 308,

332e4, 402, 409

ASSPs see application-specific standard

products

atomic access, concepts, 411e2

audio/video processing, 430

automotive control systems, 7, 142, 413

Index 517
B (branch), 75, 97e8, 107e13, 372e3, 441

see also program flow.

instruction set summary, 441

B register, 20e1

banks, registers, 13e24, 26e32, 407e10

bare metal targets, definition, 43

BASEPRI register, 414e20

batteries, 200e10

see also low-power features

BE8, 132e9

see also endianness.

BE32, 132e9

see also endianness.

BIC (logical bitwise clear), 75, 92,

123e4, 441

see also logic operations

BICS, 92, 123e4, 164e8, 296e9, 441

instruction set summary, 441

binary files, 363e5

bit and bit field computations, concepts,

119e21, 122e4

bit-band regions, ARM Cortex-M3, 406,

417

BKPT, 75, 104, 212e20, 222e9, 441, 507

see also breakpoint instructions

instruction set summary, 441

BL (branch and link)

see also program flow.

concepts, 74e5, 98e9, 107e13, 289,

295e9, 301e4, 305e7, 441

instruction set summary, 441

Blinky project, 232e58, 259e86,

291e308, 322e9, 342e59, 361e84,

387e403

BLX, 28, 75, 108e13, 289, 309, 441

instruction set summary, 441

bool data type, 61

boot loader, concepts, 43e5, 129e39

BPU see breakpoint unit

branch concepts, 74e5, 98e9, 107e13, 441

see also program flow control.

branch table, concepts, 112e3

breakpoint instructions, 14e24, 38, 78,

103e4, 211e20, 221e9, 245e7,

378, 417, 441, 507

see also BKPT; debug.

Keil MDK, 245e7, 431

types of breakpoint, 222e3, 419e21

breakpoint unit (BPU)

see also debug.

concepts, 38, 103e4, 127e39, 211e20,

221e9, 379e80, 412e5, 460, 463, 468

quick reference, 461, 463, 468

bufferable memory attributes, concepts,

137e9

bus bridge, 126e39

bus faults, 211e20, 391

bus slave return error, 211e20, 508
BX (branch and exchange), 28, 75, 81e2,

98e9, 107e13, 115e6, 121e2,

148e57, 165e8, 216e7, 290, 304,

315, 333, 399, 409, 441

see also program flow.

instruction set summary, 441

byte

concepts, 61, 78, 82e6, 132e9, 159

definition, 61, 78

C, 2, 11e6, 21e4, 25, 43e72, 75, 107, 117,

159e80, 216e17, 234, 235e9, 240,

272e5, 278e86, 287, 305e6,

312e5, 330e6, 363, 420e22,

430e1, 436

assembly comparisons, 54e5, 287

assembly function calls, 304e6

concepts, 51e72, 75, 216e17, 288, 305,

420e2, 432, 436

data types, 60e5, 117, 134e9

global data variables, 58

HardFault exception, 216e7, 367e72,

389e401

idiom recognitions, 308

inline assembler, 54e5, 81e2, 307,

396e402, 421

intrinsic functions, 55e6, 308e9, 313

introduction, 54e65

Keil MDK program code, 234, 235e9,

431

mixed-language projects, 305e9,

397e411

peripherals, 61e5, 421

SEVONPEND, 314

Sleep-on-Exit triggers, 314

variables, 58

vector tables example, 55e6, 366e73,

387e90

C compilers, 4, 10, 13, 17, 43e5, 51e65,

66, 136e9, 217, 231e2, 240, 288e9,

308, 320, 331, 361, 364, 385e401,

421, 431, 436, 510e3

see also GNU.

C library functions

see also Microlib

concepts, 58e9, 119, 214, 250e1, 272e5,

370e1, 419, 421e6, 431e2, 509

‘program started, but entered a hard fault’

problems, 509

C startup code

concepts, 43e5, 56e65, 387e91, 410e2,

507

cacheable memory attributes, concepts,

137e9

CALIB (SysTick), 458e9

CCR, 179e80, 455e8

change processor state (CPS), 30e1

char data type, 61, 117, 134e6
clock control, concepts, 43e5, 49e51, 67,

70, 125e39, 159e80, 181e2,

183e95, 197e210, 219e20, 224e9,

235e8, 240e4, 259e62, 298e9,

311e29, 395e403

CLRENA, 160e1

CLRPEND, 161e2, 166e8, 170e4

CMN (compare negative), 75, 91, 110,

441

see also arithmetic operations

instruction set summary, 441

CMP (compare), 75, 78e9, 90e1, 107e13,

120e2, 296e9, 301e4, 441

see also arithmetic operations

instruction set summary, 441

CMSIS, 55, 65e72, 161e80, 184e95,

202e10, 238, 259e86, 308,

311e27, 335, 389e403, 409e12,

413, 415e26, 441e4, 447e51

see also device driver libraries

benefits, 69e72, 259e86

Blinky project, 259e86, 361e84

concepts, 55, 65e72, 161e80, 259e86,

309e10, 311e27, 335, 409e12, 413,

415e9, 421e6

core registers, 66e72, 285e6, 450

data types quick reference, 447

definition, 65e6, 161

example code, 70, 259e86

exception handler, 66e72, 413e7, 445

interrupt programming, 276e86, 311e27,

409e12

introduction, 65e6

low-power programming, 311e27

MSP/PSP access functions, 190e1

NVIC interrupt controller, 66e72,

448e9

organization, 67e8

quick reference, 66, 445e51

simple application programming,

259e86

special instructions, 55, 67e72, 307e8,

425e6, 451

standardized areas, 66e7

system controls, 66e72, 202e10, 282e6,

418e9, 451

system initialization, 67e75, 238,

259e62, 479e88

SysTick access functions, 66e72, 450

usage guidelines, 68e9

versions, 285e6

code density

see also Thumb-2-based instruction set

concepts, 1e2, 4e5, 6e9, 13e24,

73e105, 199e210, 231e2,

422e6

Cortex-M0 benefits, 1e2, 4e5, 199e210,

422e6

518 Index
code files

examples, 362e5, 491e504

Keil MDK, 233e58, 431

Code Red Technologies, 432e3, 434e6

code region of the memory map, concepts,

126e39

Code-Sourcery G++, versions, 385e6

Code-Sourcery G++ Lite, 10e11, 17, 52,

66, 385e403, 475e9

concepts, 385e6, 475e9

linker scripts, 52, 390, 475e9

CODE16 directives, 80, 411e2

compilers, 4, 9e11, 13, 17, 43e5, 51e65,

66, 75e105, 136e9, 214, 217,

231e2, 240, 244e5, 248e51,

288e9, 310, 320e21, 332e5, 362,

365e70, 418e9, 431e4, 513

see also C.; Code-Sourcery G. Lite

Keil MDK, 244e5, 248e51, 431

products’ overview, 431e3

complex branch handling, UARTs, 304e6

complex numbers, 121

concurrent processes

see also RTOS

concepts, 47e9, 338e40, 356e9

conditional branch, 79, 98, 107e13

configuration control register (CCR)

concepts, 179e80, 341e59, 455e8

definition, 179e80

quick reference, 457

connectivity, 1, 49e51, 67e72, 126e39,

222, 264e76

see also Ethernet.; SPI;

UARTs; USB.

constants, 76e105

context switching

see also operating systems

concepts, 181e95, 336e8

definition, 181e2

CONTROL registers, 26, 27, 31e2, 33e5,

41, 81e2, 100e1, 151e7, 174e6,

189e95, 213e20, 408e26, 445e6,

455e6

exception types, 151e7, 174e6, 282e6,

445e6

system exceptions, 174e6

conversions, data types, 116e7,

421e6

core debug registers

see also debug.

quick reference, 461e4

core peripheral access CMSIS layer,

concepts, 67e72

core registers, CMSIS, 66e72, 285e6, 450

core_cm0.h, 69e72, 286

Cortex

see also ARM Cortex.

definition, 7e9
COUNTFLAG, 185e8

CPP, 305e7, 334e5

CPS (change processor state), 75, 102,

169e80, 441, 451

see also exception-related instructions

CPSID I, 102, 169, 179, 307e8, 441, 451

instruction set summary, 441

CPSIE I, 102, 169, 309e10, 441, 451

instruction set summary, 441

CPU ID base register

concepts, 177e80, 455e8

definition, 177

quick reference, 455

CPU options, 504

CPUID, 177e80, 455e8

cross-module optimization, Keil MDK,

251, 431

CrossWorks for ARM, 432

CS suffix, 79, 98

CS3 startup mechanism, 387e403, 475

see also Code-Sourcery.

CTRL (SysTick), 187e8, 236e8, 458e9

customized startup code, Keil MDK, 256,

291e9, 431

data accesses, instruction usage examples,

113e6

data alignment, 61, 135e9, 179e80,

288e9, 416e7, 508

data memory

see also heap.; stack.

concepts, 131e9

data path, 13e24

data processing

assembly language, 304e5

instruction usage examples, 118e24

data in RAM, 59e60

data structures, peripheral register set, 63e5

data types

C, 60e5, 117, 134e9, 421e6

CMSIS, 447

conversions, 116e7, 421e6

list of data types, 60e1, 117

data variables space allocations, assembly

language, 305

data watchpoint unit (DWT)

see also debug.

concepts, 14e24, 38, 127e39, 221e9,

379, 416, 462, 464, 468

quick reference, 459, 463, 467

DCB, 77, 304

DCD, 56e65, 77e8, 105, 113, 168,

292e302, 369, 408, 422

DCW, 78

debug connector arrangements

see also JTAG.; serial wire.

concepts, 14e24, 25e6, 38, 221e9,

379, 472
definition, 223e5

I/O settings or low-power mode problems,

508e9

pin-out arrangements, 38, 221e9, 235e8,

372e82, 469

troubleshooting guidelines, 503e7

debug core register data register, 227e9,

245e7, 460, 461

debug core register selector register,

227e9, 245e7, 459, 461

debug exception and monitor control

register, 226e9, 245e7, 460, 461e2

debug fault status register, concepts,

227e9, 459, 460

debug halting control and status register,

concepts, 38, 221e9, 245e7,

378e83, 459, 460e1

debug interface see debug connector

arrangements

debug protocol selections, troubleshooting

guidelines, 509

debug registers quick reference, 459e65

debug state, concepts, 25e6

debug system, 4, 7e9, 14e24, 25e6, 32e3,

37e8, 50e4, 68, 75, 102e4,

127e39, 177e80, 203e10, 221e9,

231, 240, 267e74, 326e7, 359, 404,

411, 415, 459e65, 469e71

see also breakpoint.; data

watchpoint.; simulators

ARM Cortex-M0, 4, 6, 7e9, 14e24,

25e6, 221e9, 415, 455e63,

470e7

ARM Cortex-M3, 343, 344

common features, 221e3, 245e7

definition, 38, 221e3

events, 226e9, 343, 344

fault handling, 211, 212e20

HardFault exception, 211, 226e9

in-circuit debuggers, 52e4, 222e9,

231e58, 415, 429e30

Keil MDK, 231e2, 240e4, 245e7,

251e2, 255e6, 429

lockup problems, 218e20

low-power features, 322, 329

overview, 221e3, 245e7

RVDS, 361, 373

segments, 228e9, 461

software development tools, 221e9

decimal displays, UARTs, 273e4

deep power down mode, 321

deep sleep, 200e10, 321

see also sleep.

delays, NOP uses, 103e4

designing embedded programs, concepts,

45e9

development boards, products’ overview,

432e7

Index 519
device driver libraries, 50e4, 61e2,

65e72, 161e80, 181e95, 214,

276e86, 308, 311e4, 426e8, 430

see also CMSIS

device memory types, concepts, 138e9

device peripheral access CMSIS layer,

concepts, 67e72

device region of the memory map,

concepts, 126e39

device.h, 69e72

Dhrystone 2.1, 17e8, 73, 197

dial control interface example, application

programming, 276e86, 356

disabling of interrupts during interrupt

handling, interrupt problems, 511

disassembly listings, 212e20, 400

distributors, ecosystem concepts, 9e11

divide operations, 58, 119e21

DMA, 318, 405, 427e8

DMB (data memory barrier), 75, 100e1,

309, 442, 451

see also memory barrier.

instruction set summary, 442

double data type, 61, 421e2

double word, definition, 61, 288

Doxygen tags, 283

DSB (data synchronization barrier), 75,

100e1, 178e9, 308e9, 442, 451

see also memory barrier.

instruction set summary, 442

DWARF debug table, 362, 406

EABI, 55, 288, 385e7, 432

see also AAPCS

EAPSR, 82

ease-of-use benefits, Cortex-M0 benefits, 2,

11, 21

ecosystem, ARM, 9e11

EEMBC, 17e9

electromagnetic interference, 1, 200, 219

electronic toys, 3

ElfDwt signature creator, 243e4, 374

embedded assembly, concepts, 54e5,

81e2, 306e8, 331e3

embedded developers, 11e2, 13e24,

43e72, 226e9, 287, 308, 374

embedded development packages

concepts, 11e2, 51e4, 308e9, 361

list, 11e2

embedded ICE module, 7e9

embedded operating systems, 2, 7e9, 11,

17, 34, 43, 59e60, 65e72, 131e9,

181e95, 197e210, 337e8

see also open source projects;

operating systems

concepts, 181e95, 332

definition, 181e2, 332

disadvantages, 183
prioritized tasks, 182e3, 332

roles, 181e3, 337

embedded system programming, 43e72

embOS from SEGGER, 11, 183

emulators, 221, 222

ENABLE (SysTick), 185e8

enablement

interrupts, 70e2, 143e57, 159e62,

165e80, 276e86, 311e5, 336e9,

356e7, 423e4, 450e1

SysTick timer, 184e8

ENDFUNC (Assembly directive)

concepts, 165e6, 308e9

definition, 165e6, 332

endian conversions, concepts, 117

ENDIANNESS, 177e80

endianness settings, 16e24, 117, 132e9,

177e80, 507

see also BE8; BE32

definition, 117

‘program does not run/start’ problems, 507

ENDP (Assembly directive)

concepts, 308e9, 371e2

definition, 332

energy efficiency

see also low-power features

concepts, 197e210, 308e9

Cortex-M0 benefits, 1, 17e23, 73e5,

197e210

requirements, 197e210

entry sequence, exceptions, 151e5

enum data type, 61, 117, 134e6

EOR (logical exclusive OR), 75, 91, 442

see also logic operations

EORS, 91, 442

EPSR register (execution PSR), concepts,

27e9, 82, 212e20

EQ suffix, 79, 98

error handling in real applications, 214e20

see also fault handling

event output as I/O, troubleshooting

guidelines, 509

events

see also exceptions; interrupts;

SEV; WFE

communication interfaces, 315e7,

343e57

concepts, 102e3, 141e57, 200e10,

226e9, 309e27, 415e7, 509

debug system, 226e9, 415e7

definition, 102e3, 141e3

registers, 102e3

types, 102, 141e3

exception handler, 30e1, 35e7, 141e57,

160e80, 183e4, 189e90, 211e20,

254e7, 276e86, 293, 329e33, 370,

387e9, 405, 408e17

see also fault.; interrupt.; ISRs
CMSIS, 66e72, 413e6, 419, 445e6

definition, 35, 141

priorities, 141e57, 174e6, 194e5,

211e20, 276e86, 330, 508

‘program started, but entered a hard fault’

problems, 509

exception mechanisms, ARM Cortex-M0

specification, 6

exception priority setup values

concepts, 141e57, 174e6, 194e5,

276e86, 335e7, 509e10

interrupt problems, 508

exception stacking sequence, stack

contents, 147e57, 445e9

exception types

see also HardFault.; NMI.;

PendSV.; reset.; SVC.;

System Tick

concepts, 35e6, 141e57, 174e6,

190e4, 211e20, 282e6, 329e31, 445

control registers, 151e7, 174e6, 282e6,

445

quick reference, 445

exception-related instructions

see also CPS; SVC

concepts, 80, 101e2, 143e57, 159e80

list, 101e2

exceptions, 6, 15e24, 25e6, 39e41,

101e2, 141e57, 211e20, 314e5,

329, 331e2, 335e7, 369e73,

389e91, 406e7, 410e7, 445,

461e2, 509

concepts, 35e7, 101e2, 141e57,

211e20

control registers for system exceptions,

174e6

definition, 35, 141

entry sequence, 151e5

EXC_RETURN, 147e57, 189e90,

212e20

exit sequence, 155e7

fetch and execute from return address,

157, 170e4

late arrivals, 149e50, 174e80

numbers, 35e6, 142e57, 183e4, 283e6

PRIMASK register (interrupt mask

special register), 27, 30e1, 37, 81e2,

102, 145e57, 168e80, 205e10,

276e86, 312, 335, 407e8, 410e11,

512

programmable priorities, 141e57, 174e6,

276e86, 335

sequence overview, 147e50

stack memory, 147e57, 170e80,

445e6

tail chaining, 149e50, 174e80

unstacking actions, 147e57, 170e80,

191e4, 217e20

520 Index
exceptions (Continued)

vector tables, 145e57, 214e20

exclusive access support, ARM Cortex-M3,

417

EXC_RETURN

concepts, 147e57, 189e90, 212e20

definition, 150e1

executable image, concepts, 51e4, 362e5,

387

executable memory attributes, concepts,

137e9

eXecute Never memory attribute (XN),

concepts, 137e9

execution profiling, simulators, 252e3

exit sequence, exceptions, 155e7

EXPORT (Assembly directive), 293e302,

306e7, 371e2

Express Logic, 11, 183

extend and reverse ordering operations

see also REV.; SXT.; UXT.

concepts, 80, 95e7, 116e7, 309e10

list, 95e7

external memory, 33, 126e39, 219

extra interrupt handler executions, interrupt

problems, 511e2

fault handling, 15e24, 35e7, 211e20, 415e9

see also exception.; HardFault.;

troubleshooting.

analysis, 211, 212e4

causes of faults, 211e2, 217e8

concepts, 211e20

debub system, 211, 212e20

lockup problems, 217e20

real applications, 214e20

FAULTMASK (Cortex-M3, Cortex-M4),

414e20

fgetc retarget function, 268e72

FIQ, 407e12

flash memory, 43e5, 52e4, 62e5,

103e4, 126e39, 199e210, 219e20,

223e9, 231, 239e45, 252e6,

320e1, 326e9, 339e40, 362e5,

373e4, 387, 423e6, 427e31, 438,

507e8

ARM Cortex-M0 benefits, 199e200

GNU, 389, 403

‘program does not run/start’ problems,

507e8

RVDS, 373e4

flexible interrupt management, NVIC

support features, 36e7

float data type, 61, 421e6

floating point capabilities, 5e7, 58, 406,

419e20, 421e6, 431e2

for loops, concepts, 108

FPGA

see also ARM Cortex-M1
concepts, 7e9, 16, 23e4, 102e3,

374e84, 406, 412e3

fputc retarget function, 268e72

fromelf, concepts, 365, 370e71, 372e3

FUNCTION (Assembly directive),

concepts, 165e6, 289e309

function calls/returns

see also BL.; LDR.

concepts, 110e12, 288e309

function structure, assembly language,

289e91

gcc generic command name, 386e402

see also GNU.

GE suffix, 79, 98

generic parallel bus interface, debug

system, 223e5

getting started

ARM Cortex-M0, 11, 39e41

GNU C compiler, 383e403

RVDS, 361e84

global data variables, concepts, 58e65

GNU, 10e11, 17, 51e4, 58, 66, 75e8, 107,

214, 287e8, 385e403, 411, 432,

436, 475e9

concepts, 51e4, 58, 75e8, 107, 385e403,

411, 432, 436, 475e9

debug system, 387e403

flash programming, 387e403

getting started, 385e403

HardFault exception, 400e403

inline assembler, 396e7

program development flow, 386e7

tool chains, 11, 75, 287, 385e403, 475e9

GPIOs, 50e1, 282, 284e6, 322e9,

342e59, 388e403, 427e30

see also inputs; outputs

GT suffix, 79, 98

half word

concepts, 61, 78, 82e6, 95e6, 133e9, 159

definition, 61, 78

halt mode debug feature

activities, 226e7

concepts, 38, 221e9, 245e7, 379e84,

461, 462e3

handler mode, 15e24, 25e6, 31e2, 35e6,

170e80, 191e5, 405e26

handlers

CMSIS, 66e72, 447e51

concepts, 15e24, 25e6, 30e1,

398e403

HardFault exception, 30e1, 36, 37, 39e41,

102, 142e57, 168e9, 175e6, 193,

211e20, 226e9, 283e6, 292e300,

367e70, 372e3, 391e403, 410e2,

424e6, 445, 447, 507

see also fault handling
assembly language, 214e7, 219,

292e300, 372e3

C, 216e7, 367e70, 391e403

concepts, 211e20, 283e6, 372e3,

400e403

debug system, 211, 226e9

definition, 211e2

GNU, 400e403

reporting stacked register values, 216e7,

400e403

Harvard bus architecture, 418e9

header files, 68e72, 238, 479,

488e9

heap memory

concepts, 58, 59e60, 131e9, 189e90,

256, 392e403

definition, 60, 131e2

hex files, 362e5, 387e403

hexadecimal displays, UARTs, 273

HI suffix, 79, 98

high efficiency, ARM Cortex-M0 benefits,

21e2, 199e210

I/O, 49e51, 126e39, 143e57, 169e70,

225e9, 235e8, 264e75, 324e9,

346, 381e84, 388e403, 428e39,

512e13

see also inputs; outputs

settings or low-power mode problems,

235e8, 512e3

I2C, 49, 129e39, 427e30

IAPSR, 82

IAR Kickstart Kit for LPC1114,

432, 437

IAR Systems, 10, 17, 66, 432, 437

IBRD, 63e4

ICE, concepts, 52e4

ICER, 453e5

ICSR see interrupt control state register

IDE, 52e4, 231e58, 259e62, 361e84,

386, 431e6

idiom recognitions, C, 309

if-then-else program control operation,

concepts, 107, 109e10

implementation features, ARM Cortex-M0,

16

IMPORT (Assembly directive), 293e300,

306e8, 410e2

in-circuit debuggers, concepts, 52e4,

222e9, 231e58, 324, 373e4

inactive task state, Keil RTX, 339e40

incorrect interrupt return instructions,

interrupt problems, 512

init, 340e59

inline assembler

concepts, 54e5, 81e2, 308e10,

396e403, 421e6

GNU, 396e7

Index 521
inputs, 49e72, 143e57, 264e75, 276e86,

381e4, 388e403

see also I/O; UARTS

concepts, 49e51, 264e75, 276e86

dial control interface example, 276e86,

356e9

interrupts, 169e74, 226e9, 276e86

inserted data, programming, 77e8

instruction decoders, concepts, 73e105

instruction list, concepts, 80e105

instruction set simulation (ISS), 361e5

instruction sets, 1e2, 4e9, 11, 13e24,

25e41, 55, 59e60, 73e105,

107e24, 135e9, 361e84, 407e26,

441e4

see also assembly.; Thumb.

ARM Cortex-M0 specification, 5e6

ARM Cortex-M3, 405, 416e9

ARM7TDMI, 73e5, 79, 214, 407e12

concepts, 4e9, 13e24, 25e6,

73e105, 135e9, 361e5, 407e26,

441e4

data alignment, 61, 135e9, 179e80,

288e9, 416e7, 508

examples of usage, 107e24

historical background, 73e5

list of instructions, 80e105

pseudo instructions, 104e5

summary, 441e4

int data type, 117, 134e6, 423e6

int8_t data type, 61

int16_t data type, 61, 421e2

int32_t data type, 61, 423e6

integer divides, concepts, 58, 119e21

intellectual property (IP) licensing, ARM,

4, 21, 23

internal bus system, 14e24, 125e39

internal exceptions

see also exceptions

concepts, 141e57

internal private peripheral bus

see also PPB

concepts, 127e39

interrupt clear enable register

concepts, 159e61, 165e8, 173e4, 276,

284e5, 425e6, 453

quick reference, 453

interrupt clear pending register

concepts, 161e2, 166e74, 282e6,

358e9, 415e19, 454

quick reference, 454

interrupt control

see also NVIC.; WIC

concepts, 155e7, 159e80, 315e7,

414e9, 421e6, 455e6

generic assembly code, 165e8

interrupt control state register (ICSR),

155e7, 175e80, 421e6, 455e8
quick reference, 455e6

interrupt masking, 36e7, 168e80, 210,

414e19

interrupt priority registers, 15, 30e1, 46e9,

162e80, 205e10, 276e86, 454e5

definition, 162e4

quick reference, 454e5

interrupt set enable register

concepts, 159e61, 165e8, 173e4, 453

quick reference, 453

interrupt set pending register

concepts, 161e2, 166e8, 413e7, 452

quick reference, 452

interrupts, 1e2, 13e24, 29, 30e1, 35e7,

39e41, 44e5, 50, 66e72, 102e3,

141e57, 159e80, 198e210, 260e4,

276e86, 308e9, 311e38, 391e403,

405e26, 453e6, 511e2

see also events; exception.; IRQ.;

NMI; NVIC; sleep.; WFI; WIC

ARM Cortex-M3, 414e19

ARM7TDMI, 406e12

CMSIS, 276e86, 409e12

concepts, 15, 30e1, 35e7, 39e41, 44e5,

46e9, 50, 102e3, 141e57, 159e80,

198e210, 260e4, 276e86, 308e9,

313e29, 405e26

Cortex-M0 benefits, 1, 46

definition, 35, 46

enablement, 70e2, 143e57, 159e62,

165e80, 276e86, 312e29, 336e8,

358e9, 425e6, 453

generic assembly code, 165e8

inputs and pending behaviour, 169e74,

226e9, 276e86

latency, 2, 15e24, 46e9, 131e9, 174e80,

405e26

pending and clear pending status, 161e2,

166e74, 226e9, 276, 282e6, 358e9,

415e9, 454

polling, 45e9, 110, 184, 204e10, 276,

305e6

priorities, 15, 30e1, 46e9, 162e80,

205e10, 276e86, 331e8, 414e9,

454e5

programming, 276e86

troubleshooting guidelines, 507e8

intertask communications, operating

systems, 346e59

intrinsic functions, concepts, 55e6, 310,

313e29

invalid addresses, memory accesses, 136,

211e20

IPR, 453e5

IPSR register (interrupt PSR), concepts, 27,

28e9, 35e7, 82, 151e7, 176e80,

212e20

IRQLATENCY, 174
IRQn, 36, 145e57, 161e80, 282e6,

322e9, 447e11

IRQs

see also interrupt.

concepts, 35e7, 39e41, 141e57,

161e80, 194e5, 206e10, 278e86,

312e29, 336e8, 407e12, 447e51,

510e11

definition, 35

ISB (instruction synchronization barrier),

75, 100e1, 309e10, 441, 451

see also memory barrier.

instruction set summary, 442

ISER, 453e5

ISO C libraries, 250e1

ISPR, 453e5

isr_evt_set, 356e9

ISRPENDING, 176e9

ISRPREEMPT, 176e9

ISRs

see also exception handler

concepts, 35e7, 153e7, 160e80,

276e86, 312e29, 425e6

ITM, 417e9

Jazelle Java acceleration support, 4e5,

7e9

JLink from SEGGER, 38, 386, 431e2

JMP instructions, 424e6

JTAG debug connection

concepts, 7e9, 14e24, 38, 52e4, 222e9,

231e58, 372e82, 384, 411, 429e30,

467, 470, 509

definition, 38, 223e5

performance issues, 224e5

signals connection, 224

Keil Cortex-M0 development boards,

437e9

Keil MDK, 2, 10e2, 17, 38, 43, 52e4,

55e8, 66, 76, 80, 81e2, 166, 183,

193, 215e7, 231e58, 259e86,

287e8, 291, 304, 306, 309, 313e29,

332e5, 361e5, 410, 423e6, 431,

489, 491, 500, 507

adding the program file to the project,

238e9

Blinky project, 232e58, 259, 322e9,

340e57, 361e82

breakpoint instructions, 245e7, 431

code-generation options, 248e51, 431

compiling/building the program, 244e5,

248e51, 431

components, 231e2, 363e5, 431

concepts, 231e58, 287e8, 304, 306, 308,

359e63, 409, 421e4, 429

creating the project, 233e45, 431

cross-module optimization, 251, 431

522 Index
Keil MDK (Continued)

customized startup code, 256, 293e301,

305, 363e5, 423, 431

debug system, 231e2, 240e4, 245e7,

251e2, 255e6, 431

definition, 231e2

evaluation version, 231e2, 431

first step of usage, 232e47

HardFault exception, 215e7

link-time code generation, 251

memory configuration, 252e6

mixed-language projects, 305

optimization levels, 248e51

program code, 234, 235e9, 248e51,

269e72, 431

project option tabs, 239e40, 247e56

project settings, 238e44

RAM program execution, 252e6

requirements, 232e4

scatter-loading files, 256e8, 362e70

setups, 232e58

simulators, 251e2

target/source groups, 247e9

Keil RL-ARM, 338e59

Keil RTX, 11, 17, 59, 181, 183, 231e2,

240, 331, 338e59, 431, 498e502

concepts, 336e57, 429

event communications, 345e59

intertask communications, 344e59

mailbox messages, 350e54

parameters, 341e42

programming uses, 338e59, 431

startup sequence, 340e55, 423

task states, 339e59

Keil ULINK2, 38, 52e4, 223, 231e58,

373e4, 386, 417e9, 431

KEIL_MCB1000_BOARD, 237e8,

322e9, 342e59, 387e42

LabView C Code Controller, 435e5

late arrivals, exceptions, 149e50, 174e80

latency, interrupts, 2, 15e24, 46e9, 131e9,

174e80, 406e26

LCD, 49e51, 272

ld generic command name, 386e402

LDM (load multiple), 75, 85e6, 113e4,

442

see also memory access.

instruction set summary, 442

performance efficiency, 136e7

LDMFD, 85e6

LDMIA (load multiple increment after),

85e6, 115e6, 168, 442

LDR (load), 75e8, 81, 82e6, 104e5,

109e16, 118e9, 134e7, 160e8,

179, 216e7, 297e311, 304e6,

307e9, 335e5, 399e403,

410e2, 442
see also memory access.;

pseudo instructions

instruction set summary, 442

LDRB, 75, 82e6, 114e5, 117, 134e7, 306,

442

LDRH, 75, 82e6, 117, 134e7, 442

LDRSB, 75, 82e6, 134e7, 442

LDRSH, 75, 82e6, 134e7, 442

LE suffix, 79, 98

LEDs, 50e1, 186e8, 235e8, 245, 261e4,

293e311, 322e9, 340e59,

388e403

licensing business models, ARM, 3e4

LIN, 426e7

linear memory address space, 6, 32e5, 81e2

link-time code generation, Keil MDK, 251

linker

see also memory system

concepts, 51e4, 56e65, 240, 362e5,

386e403, 431e3, 475e9

linker scripts

see also scatter-loading files

Code-Sourcery G++ Lite, 52, 390,

475e9

concepts, 51e4, 57, 214, 362e70,

386e403, 431e2

Linux, 181, 361, 365, 385

LOAD, 187e8, 236e8, 255e8, 458e9

load-store architecture

see also memory.; registers

definition, 26

local data variables, concepts, 58e65,

84e6, 115e16

LOCKUP, 217e20

lockup problems

see also NMI.

causes, 217e8

concepts, 217e20

debug system, 218e20

definition, 217

prevention techniques, 219e20

logic cell enhancement, ARM Cortex-M0

benefits, 23

logic gates, ARM Cortex-M0, 1e2, 16e24,

199e210, 406e26

logic operations

see also AND.; BIC.; EOR.;

MVN.; OR.; TST.

concepts, 91e2, 123e4, 164e80, 215e7

list, 91e2

long data type, 61, 117, 134e6

long double data type, 61

loop program control operation, concepts,

108, 113e6, 119e21, 178e9,

216e7, 235e8, 313, 318e9, 423e6

low-power features, 1e3, 9, 13e24, 46,

181e95, 197e210, 309e27,

404e24, 425e37, 508e9
see also energy efficiency;

power.; sleep.

concepts, 1e3, 13e4, 17e23, 197e210,

311e29, 412

Cortex-M0 benefits, 1e3, 17e23,

199e210, 311

debug connector arrangements, 512e4

debug system, 324, 328e9

developing applications, 319e29

NXP LPC11xx, 321e9, 427e8

overview, 200e1

programming, 311e29

requirements, 197e210

uses, 311e29, 412

low-power wireless connectivity, 1, 49e51,

222

LPC-LINK, 436

LPC11xx.hs (assembly header file)

see also NXP.

example code file, 238, 259e62, 282e6,

296e302, 387e411, 395, 481,

491e6

LPC1114 Cortex-M0 Stamp module from

Steinert Technologies, 435e6

LPCXpresso, 434e6

LR see R14 register (link register)

LS suffix, 79, 98

LSB, 28, 122e4, 144e57, 214

LSL (logical shift left), 75, 93e4, 442

see also shift.

LSLS, 93e4, 120e4, 164e8, 299e311,

442

LSR (logical shift right), 75, 94, 442

see also shift.

LSRS, 94, 120e4, 304, 442

LT suffix, 79, 98

LuminaryMicro’s Evaluation Board, 231

LVDS probe v2, 380e84

mailbox messages

concepts, 345, 350e9

definition, 350e1

program code, 351e4

malloc, 58, 60

MCUs see microcontroller units

Melfas MCS-7000 Series Touch Screen

Controllers, 430e1

memory access functions, 80, 82e6,

110e2, 113e6, 127e8, 134e9,

160e80, 191e5, 211e20, 504

see also LDM.; LDR.;

STM.; STR.

invalid addresses, 136, 211e20

list, 82e6

memory attributes, 127e8, 137e9

performance efficiency, 136e7

‘program started, but entered a hard fault’

problems, 507

Index 523
memory attributes, concepts, 127e8,

137e9

memory barrier instructions

see also DMB; DSB; ISB

concepts, 80, 99e101, 178e80, 309e10

list, 99e101

memory copying functions, concepts,

114e16

memory management, operating systems,

182e3, 391

memory management unit (MMU), 183,

406

memory maps, 9, 15e24, 25, 32e5, 49e51,

61e5, 125e39, 145e57, 239e44,

507

concepts, 125e39, 239e44

definition, 125e9

memory attributes, 127e8, 137e9

NVIC registers, 159e80

schematic diagrams, 125e9

sections, 125e9

memory models, 6, 14e24, 26e35,

125e39

memory paging, 6

memory remapping, concepts, 129e39,

256, 417e9

memory system, 32e5, 43e5, 51e4, 63e5,

125e39, 142e3, 181e95, 199e210,

211e20, 226e9, 239e44, 245e7,

253e6, 362e5, 422e6

see also heap.; linker; RAM.;

ROM.; stack.

8-bit/16-bit microcontrollers software

porting, 422e6

data types, 134e9, 421e6

overview, 32e3, 125e6

statistics, 32e3, 125e39, 181e2

MI suffix, 79, 98, 109e10

Micrium, 11, 183

microcontroller units (MCUs)

see also software porting

concepts, 1e12, 197e210, 319e29,

405e26

vital features, 2

microcontroller vendors, 4e11, 16e24,

50e65, 75e6, 198e9, 319e29,

427e39

Microlib

see also C library functions

concepts, 58e9, 250e1, 370e3, 423

middleware, 9e11, 16, 67e72

CMSIS, 67e72

ecosystem concepts, 9e11

middleware access CMSIS layer, concepts,

67e72

MISRA C, 71, 432

mistakes, troubleshooting guidelines, 507e14

mixed assembly, 55, 198e9, 429e39
mixed-language projects

concepts, 306e10, 397e403

Keil MDK, 306

mobile computing, 3

mobile Internet devices, 5

mobile phones, 3e5, 73

Mocha-1 ARM Cortex-M0 Configurable

Array, 429e30

MOV, 26, 75, 76e9, 80e2, 99, 107e14,

120e2, 299, 303e6, 334e5, 410e2,

442

MOVS, 78e9, 81e2, 97e8, 107e14,

120e2, 160e8, 215e7, 290e1,

295e9, 303e9, 333e5, 372e3,

397e403, 442

MPS, 374e84

MPU feature, 416e9

MRS, 30e1, 74e5, 82, 215e7, 333e4,

402, 442

instruction set summary, 442

MSBs, 144e57, 162e3

MSP, 26e7, 30e1, 34e5, 39e41, 43e72,

82, 129e39, 156e7, 188e91,

213e20, 403, 405e26

see also stack pointer

MSR, 30e1, 74e5, 82, 100e1, 169,

410e2, 443

instruction set summary, 443

MUL, 30, 75, 90, 112e3, 443

see also arithmetic operations

MULS, 30, 112e3, 122, 397e403, 443

multiple_latency¼32 option, 250

multitasking

see also operating systems

concepts, 181e95, 337e8

MUTEX

see also semaphore

concepts, 345e59

definition, 347e8

program code, 348e9

MVN (logical bitwise NOT), 75,

92, 443

see also logic operations

MVNS, 92, 295e9, 443

NE suffix, 79, 98

NEC, 3

nested interrupt support

see also NVIC.

concepts, 36e7, 141e57, 159e80, 412

NVIC support features, 36e7, 159e80,

412

NMI exception, 14e24, 30e1, 35e7,

39e41, 141e57, 159e80, 193, 210,

211e20, 284e5, 292e9, 316e29,

367e70, 371e3, 393e403, 410,

424e6, 445, 447, 509

see also interrupt.; lockup.
C, 219e20, 367e70

definition, 141, 142

NMIPENDSET, 176e9

noise, 200e10

nonvolatile memory, wait states, 130e1

NOP (no operation), 75, 102, 104, 309e11,

412e3, 443, 451, 513

instruction set summary, 443

NOREF, 186e8

normal memory types, concepts, 138e9

normal sleep, 200e10, 311e29

see also sleep.

nTRST, 224

NUC140VE3AN device, 438

NuMicro microcontroller family, 428e9

NVIC, 9, 13e24, 32e3, 36e7, 50, 66e72,

75e7, 127e39, 143e57, 159e80,

194e5, 228e9, 315e7, 324e9,

406e26, 448e9, 453e5

see also interrupt control; PendSV

ARM Cortex-M3, 414e6, 418e9

definition, 36e7, 159

features supported, 36e7, 159e80, 412

memory maps, 159e80

PRIMASK, 37, 145e57, 168e80

quick reference, 448e9, 453e5

NVIC_ClearPendingIRQ function, 162,

282e6, 358e9, 454

NVIC_DisableIRQ function, 161e2, 285,

453

NVIC_EnableIRQ function, 70e2, 161e2,

276, 282e6, 322e9, 336e8, 358e9,

453

NVIC_GetPendingIRQ function, 162, 285

NVIC_GetPriority function, 164e5, 285

NVIC_SetPendingIRQ function, 162,

166e8, 285, 415e19, 454

NVIC_SetPriority function, 70e2, 164e5,

282e6, 335e8, 358e9, 454e5

NVIC_SystemReset, 178e9

NXP Cortex-M0 microcontrollers,

overview, 427e9, 434e6

NXP LPC11xx, 232e58, 259e62, 265e77,

282e6, 294e9, 311, 319e29,

362e5, 367e70, 373e4, 392e403,

427e8, 436, 448

low-power features, 321e29, 427e8

overview, 427e8

peripheral exceptions, 448

power modes, 321e29

NXPCortex-Mmicrocontrollers, 3, 232e58,

427e8, 436, 448, 481e90

objcopy generic command name, 386e402

objdump generic command name, 386e402

object files, concepts, 51e4, 362e5

on-the-fly memory access, debug features,

222e3

524 Index
OnARM web site, 68, 286

open source projects, 2, 10e11,

183

see also compressors/decompressors

(codecs); embedded operating

systems

Cortex-M0 benefits, 2, 10e11, 183

operating systems

see also context switching;

multitasking; PendSV.; process

stack pointer; SVC.; SysTick timer

concepts, 27, 35, 43, 59e60, 174e6,

181e95, 231, 338e40, 361

definition, 181e2

ecosystem concepts, 9e11

event communications, 345e6

intertask communications, 343e50

kernel, 27, 35, 182e95, 231, 337e45,

431

mailbox messages, 345, 351e4

memory management, 182e3, 391

MUTEX, 345e59

overview, 181e3

periodic time intervals, 354e5

prioritized tasks, 182e3

resource management, 182e3

roles, 181e3

semaphore, 345e49, 417

startup sequence, 342e59

support features, 181e95

operation modes, 15e24, 25e6,

406e11

see also handler.; thread.

concepts, 25e6, 406e11

optimization levels

8-bit/16-bit microcontrollers software

porting, 421e4

ARM7TDMI/Core-M0 software porting,

410

Keil MDK, 248e51

ORR, 75, 91, 299, 443

see also arithmetic operations

ORRS, 91, 164e8, 443

OS kernel, 27, 35, 182e95, 231, 339e45,

433

see also operating systems

oscillators, 320e7

os_sys_init, 340e58

outputs, 49e72, 143e57, 216e7, 264e75,

302, 322e9, 381e4, 388e96

see also I/O

concepts, 49e51, 264e75

overview of the book, 11e2

parameters and return result passing

AAPCS guidelines, 288e9

assembly projects, 289e298

PC see R15
pending and clear pending status,

interrupts, 161e2, 166e74,

226e9, 276, 282e6, 358e9,

425e6, 454

PENDSTCLR, 176e9

PENDSTSET, 176e9

PendSVexception, 15e24, 36, 39e41, 102,

142e57, 175e6, 181, 194e5,

283e6, 293e9, 331, 335e8,

367e70, 371e73, 391e403, 410e2,

424e6, 445, 447, 456

see also operating systems

concepts, 194e5, 283e6, 331, 335e8,

367e70, 410e2

definition, 194

programming uses, 331, 335e8

PENDSVCLR, 176e9

PENDSVSET, 176e9

performance efficiency, 1, 15e24, 73e105,

136e9, 231e2, 250e1, 413e9

see also low-power features

periodic time intervals, wakeup signals,

354e5

peripheral bus

see also APB protocol

concepts, 65, 125e39, 211e20

schematic diagram, 125e9

peripheral region of the memory map,

concepts, 126e39

peripherals, 2e3, 33e5, 45e72, 125e39,

159e80, 182e95, 226e9, 319e29,

418e9, 421e6, 433

see also I/O; inputs; outputs

C access, 61e5

data structures, 63e5

registers, 61e5

pin-out arrangements, debug connector

arrangements, 38, 221e9, 235e8,

374e84, 471e3

PL suffix, 79, 98, 109e10

PLL, 43e5, 131e9, 235e8, 260e86,

296e9, 305e6, 321e9

PMU, 209e10, 316e7

see also power management.

pointers data type, 61e5

polling

concepts, 45e9, 110, 184, 186e8,

204e10, 276, 305e6

interrupts, 45e9, 110, 184, 204e10, 276,

305e6

POP, 26e7, 33e5, 59e60, 75, 86e7,

110e3, 121e2, 148e57, 166e80,

291, 299, 303e6, 423e6, 443

see also stack.

definition, 33e4, 86e7

instruction set summary, 443

power consumption

see also low-power features
concepts, 197e210, 319e29

power management interface, 14e24,

182e3, 197e210, 311e29, 412

see also low-power features; WIC

PPB, 33, 127e39

see also internal private peripheral bus

pragma statements, 421

PRESERVE8 directive, 288e90, 371e3

PRIMASK register (interrupt mask special

register), 27, 30e1, 37, 81e2, 102,

145e57, 168e80, 205e10, 276e86,

308e9, 312e29, 335e8, 408e26,

512

see also CPS

NVIC, 37, 145e57, 168e80

sleep, 205e10

printf, 50e1, 216e7, 268e72, 333e8,

348e9, 381e4, 395e403

problems in the program code,

troubleshooting guidelines,

507e13

PROC (Assembly directive)

concepts, 290e310, 372e3

definition, 290

process stack pointer (PSP)

see also operating systems

concepts, 27, 34e5, 41, 82, 150e7, 181,

188e95, 213e20, 408e26

definition, 181, 188

processing part of application, 43e5

processor bus, 65, 125e39, 417

products, 2e3, 427e39

ARM Cortex-M0 products, 427e39

ASSPs, 3, 427e31

compilers, 431e34

CrossWorks for ARM, 432

development boards, 434e9

IAR Kickstart Kit for LPC1114, 432,

437

IAR Systems, 10, 17, 66, 432, 437

Keil Cortex-M0 development boards,

437e9

Keil MCB1000 board for NXP LPC1114,

438

Keil MCBNUC1xx evaluation board,

437e9

LabView C Code Controller, 433e5

LPC1114 Cortex-M0 Stamp module from

Steinert Technologies, 437e8

LPCXpresso, 434e6

Melfas MCS-7000 Series Touch Screen

Controllers, 430e41

microcontroller products, 427e31

Mocha-1 ARM Cortex-M0 Configurable

Array, 429e30

NuMicro microcontroller family, 428e9

NXP Cortex-M0 microcontrollers,

427e9

Index 525
Red Suite from Code Red Technologies,

432e3

software development tools, 431e3

system-on-chip products, 3, 5, 14e24,

32e3, 35e6, 43e5, 129e39, 142e57,

219e20, 223e9, 384

TASKING VX-Toolset for ARM, 10, 66,

431e32

types, 2e3

profiling statistics, debug system, 222e9

program code, Keil MDK, 234, 235e9,

248e51, 269e72, 431

program counter, 27, 28, 81e2, 86e7,

111e2, 147e57, 192e4, 213e20,

256

see also R15.

program crash at some C functions,

‘program started, but entered a hard

fault’ problems, 509

‘program does not run/start’ problems,

troubleshooting guidelines, 507e8

program flow control instructions, 80,

97e9, 107e13, 148e57, 178e80,

216e17, 235e8, 277e86, 287e308

see also B; BL; BX

instruction usage examples, 107e13

list, 97e9

program image

see also C.; vector tables

ARM Cortex-M0, 39e41

concepts, 39e41, 55e65, 212e20,

362e5

definition, 55e6

program memory, concepts, 129e39

‘program started, but entered a hard fault’

problems, troubleshooting

guidelines, 508e9

program-generation flow, concepts, 51e4,

361e70, 385e6

programmer’s model

ARM Cortex-M0 specification, 5e6, 24,

25e41

concepts, 5e6, 25e41

programming, 5e6, 24, 25e41, 43e72,

75e105, 142e57, 212e20, 221e9,

259e86

see also applications; assembly.; C.

assembly language, 287e309

CMSIS, 259e86, 409e12

concepts, 39e41, 43e72, 142e57,

212e20, 259e86

debug system, 221e9

designing embedded programs, 45e9

dial control interface example, 276e86,

356e9

exception priorities, 141e57, 174e6

fault handling, 212e20

GNU, 386e403
hardware behaviour effects, 135

insert data in assembly code, 77e8

interrupts, 276e86

introduction, 43e72

Keil RTX, 338e59, 431

low-power features, 311e29

mixed-language projects, 304e9,

397e403

PendSV uses, 331, 335e8

RVDS, 361e84

simple application programming,

259e86, 291e300, 369e73,

387e91

special instructions, CMSIS, 55, 67e72,

308, 451

SVC uses, 331e35, 397e400

WFE (wait-for-event), 313e29

WFI (wait-for-interrupt), 313e29

project settings, Keil MDK, 238e44

pseudo instructions

see also LDR

concepts, 104e5

PSP

see also stack pointer

concepts, 27, 34e5, 41, 82, 150e7, 181,

188e95, 213e20, 408e26

PSRs, concepts, 28e9, 78e9, 192e4,

212e20

PUSH, 26e7, 33e5, 59e60, 75, 86e7,

111e2, 115e6, 120e2, 165e8,

218e20, 290, 302e4, 423e6

see also stack.

definition, 33e4, 86e7

instruction set summary, 443

quick reference

CMSIS, 66, 447e51

debug registers, 461e67

exception types, 445e7

NVIC register summary quick reference,

453e5

SCB register summary quick reference,

453, 455e8

SysTick register summary quick

reference, 453, 458e9

R0eR12 registers, concepts, 26e7, 78e9,

82e105, 107e24, 147e57, 189e95,

213e20, 288e9, 331e59, 408e26

R13 register (stack pointer), concepts, 26e7,

33e5, 39e41, 188e90, 408e26

R14 register (link register), concepts, 27,

28, 86e7, 99, 110e2, 121, 147e57,

213e20, 289e309, 408e26

R15 register (program counter), concepts,

27, 28, 81e2, 86e7, 111e2,

147e57, 192e4, 213e20, 256,

408e26
race conditions, 99e100, 510e1

sleep problems, 510e1

RAM, 19e20, 33, 52e4, 59e60, 126e39,

188e90, 197, 252e6, 258,

298e300, 364e5, 369e70, 422

see also data.; heap.; stack.

data in RAM, 59e60

program execution in Keil MDK,

252e6

retention power, 197

usage divisions, 59e60, 253e4

ram_debug.ini, 255e6

READONLY (Assembly directive), 290,

291e300, 371e3

READWRITE (Assembly directive),

291e300

ready task state, Keil RTX,

339e40

RealView Debugger, 417, 461

RealView Development Suite (RVDS),

11, 17, 54, 55, 56e8, 66, 76, 80,

81e2, 193, 231e2, 258, 268e72,

287, 306, 309, 313e29, 361e84,

411, 423, 490

assembly language, 371e3

concepts, 361e84, 411

debug system, 361e5, 373e85

features, 361

flash memory, 373e4

getting started, 361e84

programming, 361e84

retargeting, 381e4, 395e403

serial wire debug connection,

380e84

simple application example,

361e70

software generation flow, 361e73

RealView-ICE, 374e84

receive event (RXEV), 317e29

Red Suite from Code Red Technologies,

432e3

reduced instruction set computing (RISC),

3e4, 13e4

register usage in function calls, AAPCS

guidelines, 288e9

registers, 26e32, 61e5, 76e105, 147e57,

212e20, 288e309, 405e12, 433

see also R.

banks, 13e24, 26e32, 405e12

events, 102e3

exceptions, 147e57

overview, 26e7

peripherals, 61e5

REQUIRE8 directive, 288e9

reserved memory space, concepts,

127e39

Reset exception, 36, 39e41, 142e57,

217e20, 424e6, 445, 447

526 Index
reset handler, 39e41, 43e72, 217e20,

226e9, 292e300, 363e5, 371e3,

424e6

reset vectors

concepts, 39e41, 43e5, 56e65, 129e39,

217e20, 391e403, 424e6, 507

‘program does not run/start’ problems,

507

resource management, operating systems,

182e3

retargeting

concepts, 50e1, 268e72, 379e82,

395e403

RVDS, 381e4, 395e403

UARTs, 268e72, 384

returning values, assembly projects,

288e309

reusable software, CMSIS, 65e72

REV, 75, 95e6, 117, 308e9, 443, 451

see also extend.

instruction set summary, 443

REV16, 75, 95e6, 117, 308e9, 443, 451

REVSH, 75, 96, 117, 308e9, 443, 451

RISC see reduced instruction set computing

ROM, 43e5, 224e9, 254, 365, 417e9,

466e9

ROM table registers, 229, 466e9

see also debug.

quick reference, 466e9

ROR (rotate right), 75, 94e5, 123e4,

309e10, 443

see also shift.

RORS, 75, 94e5, 123e4, 302e3, 443

Rowley Associates, 10, 432

RS-232 connection, 50, 264e76

RSB (reverse subtract), 75, 90, 443

see also arithmetic operations

RSBS, instruction set summary, 443

RTOS

see also concurrent processes

concepts, 47e9, 59e60, 68e72, 338e40,

361

definition, 48

RTX_config.c, example code file, 500e4

OS_CLOCK, 341

OS_MUT, 348e9

OS_PRIVCNT, 341

OS_ROBIN, 341

OS_ROBINTOUT, 341

OS_SEM, 349e50

OS_STKCHECK, 341

OS_STKSIZE, 354

OS_TASKCNT, 341

OS_TICK, 341

OS_TID, 341e8

OS_TIMERCNT, 341

‘run to main’ debug option, Keil MDK,

247e8
running task state, Keil RTX, 339e40

runtime libraries, 44e5, 431e2

RVConfig window, 377e8

RXEV see receive event

S suffix, 78e9, 411e2

safety critical systems, 142

Samtec FTSH-120, 472

Samtec micro header, 471e2

saturated maths, 406

SBC (subtract with carry), 75, 90, 119, 443

see also arithmetic operations

SBCS, 118e9, 443

scanf, 272e5, 381e4

scatter-loading files

see also linker scripts

concepts, 51, 52e4, 256e8, 362e70

Keil MDK, 256e8, 362e70

SCB

see also system controls

concepts, 37e8, 66e72, 159e80,

202e10, 227e9, 312e29, 418e9,

453, 455e8

debug fault status register, 227e9, 461,

462

definition, 37, 159

summary quick reference, 453, 455e8

SCR, 26, 27, 31e2, 33e5, 41, 81e2,

100e1, 151e7, 174e80, 202e10,

312e29, 445e6, 455e8

SCS

see also system controls

concepts, 33, 36e7, 127e39, 159e80

definition, 159

SEGGER, 11, 38, 183, 386, 431e2

self-modifying code, memory barrier

instructions, 101

semaphore

see also MUTEX

concepts, 345e59, 417

definition, 349e50

program code, 349e50

semiconductor foundry, 4e9

serial wire debug connection (SWD), 9,

14e24, 38, 221e9, 240e4, 380e4,

413, 469, 472

definition, 38, 223e5

enablement, 380e2

performance issues, 224e5

RVDS, 380e84

signal connection, 224e5

SETENA address, 160e1, 206e10

SETPEND, 161e2, 166e8

SEV (send event to all processors), 75,

102e3, 203e10, 309e10, 319e29,

412e3, 443, 451, 513

see also events; sleep mode feature.

instruction set summary, 443
SEVONPEND, 202e10, 313e29, 510

assembly language, 314

C, 314

programming uses, 313e4

sleep problems, 510

shareable memory attributes, concepts,

137e9

SHCSR, 455e8

shift and rotate operations

see also AS.; LS.; ROR.

concepts, 92e5, 120e4, 304e5

list, 92e5

short data type, 117, 134e6, 421e4

SHP, 455e8

SHPR. see system handler priority

register.

SHR, 455e8

sign-extend operations, data type

conversions, 116e7

signature creators, 243e4, 373

signed data instructions, 82e6, 116e7

Signum Jtag/JtagJet-Trace, 231

simple application programming, 259e86,

291e9, 361e5, 387e9

simulators, 53e4, 231, 251e2, 361e5,

386e406

see also debug.; testing

concepts, 53e4, 251e2, 360e2

execution profiling, 252e3

Keil MDK, 251e2

single shot timer, SysTick timer, 262e4

SKEW (SysTick), 186e8

sleep mode featureerelated instructions

see also WFE; WFI

concepts, 80, 102e3, 200e10, 226e9,

311e24, 412, 425

list, 102e3, 322

sleep problems, troubleshooting guidelines,

509e11

sleep states, 1, 15e24, 37e8, 46e9,

102e3, 197e210, 226e9, 308e9,

311e25, 397e412, 426, 509e11

see also interrupts; wakeup.

PRIMASK register (interrupt mask special

register), 205e10

Sleep-on-Exit triggers

assembly language, 314

C, 313

concepts, 22e3, 200e10, 311e28,

508

definition, 205e6, 207e8

programming uses, 312e3

sleep problems, 509e11

SLEEPDEEP, 202e10, 311e2, 321

SLEEPONEXIT, 202, 208e10, 312e5

small gate count, ARM Cortex-M0 benefits,

21e2, 199e210, 405e28

smart phones, 4e5

Index 527
SO see strongly-ordered.

SoC see system-on-chip products

software development tools, 4e5, 9e11,

17, 27, 41, 51e4, 221e9, 231e58,

288e309, 318e28, 361e84,

385e405, 431e4

see also Keil.

debug system, 221e9

ecosystem concepts, 9e11

products’ overview, 429e31

software porting, 15e24, 32e3, 66e72,

144e5, 405e26, 510

8-bit/16-bit microcontrollers to Cortex-

M0, 419e24

8051 example, 424e6

ARM7TDMI/Cortex-M0, 409e12

concepts, 23e4, 32e3, 69e72, 144e5,

405e26

Cortex-M1/Cortex-M0, 412e3

Cortex-M3/Cortex-M0, 418e9

Cortex-M4/Cortex-M0, 419e20

interrupt problems, 144e5, 510

SP, 26e7, 30e1, 32, 33e5, 39e41, 56e65,

84e6, 115e6, 150e7, 181, 188e95,

212e20, 290e1, 292e3, 306e10,

331e2, 405e12, 506

see also stack pointer

special instructions, CMSIS, 55, 67e72,

309e10, 425e6, 451

special registers

see also CONTROL.;

PRIMASK.; xPSR.

concepts, 26e32, 74e5, 78e9,

168e9

overview, 26e7

specification, ARM Cortex-M0, 5e6, 25,

55

SPI, 49, 51, 67e72, 427e30

square root operations, concepts, 121e2

SRAM, 33, 40e1, 53e4, 126e39, 181e3,

199e200, 224e9, 255e6, 301,

366e70, 374e84, 415e9, 427e31,

438

see also stack.

memory maps, 126e39

SRPG, 209e10, 317e29

stack alignment, AAPCS guidelines,

290e91

stack contents, 16e24, 33e5, 59e60,

84e6, 115e6, 126e39, 147e57,

212e20, 245e7, 293e301, 331e5,

420e6, 445e6

concepts, 59e60, 331e5

exception stacking sequence, 147e57,

445e6

stack corruption in exception handler,

‘program started, but entered a hard

fault’ problems, 507
stack memory, 26e7, 30e1, 32, 33e5,

39e41, 43e72, 84e6, 110e2,

115e6, 126e39, 147e57, 181,

188e90, 212e20, 292e301, 331e5,

420e6, 506e7

see also POP; PUSH; SRAM

access instructions, 80, 86e7

definition, 33, 59e60, 131e2, 188

exceptions, 147e57, 170e80, 445e6

stack pointer, 26e7, 30e1, 32, 33e5,

39e41, 56e65, 84e6, 115e6,

150e7, 181, 188e95, 212e20,

290e1, 292e3, 306e10, 391e403,

405e26, 506

see also MSP; PSP; R13.

‘program does not run/start’ problems, 506

standby power, 3, 197e210

see also low-power features

startup code, concepts, 43e5, 56e65,

182e3, 231e2, 260e4, 293e301,

306, 365e70, 387e91, 409e12,

420e6

startup sequence

ARM Cortex-M0, 39e41, 43e5, 182e3,

409e26

CS3, 387e403, 475

Keil RTX, 338e53, 362e5, 423

operating systems, 340e59

states, concepts, 25e6, 47e9, 356e9

stdint.h, 61, 421e2, 447

Steinert Technologies, 437e8

stepping debug feature, 38

STKALIGN, 179e80

STM, 75, 86, 136e9, 443

STMIA (store multiple increment after), 86,

115e6, 168, 443

instruction set summary, 443

STR (store), 75, 77, 82e6, 113e4, 134e7,

160e8, 179, 297e301, 308, 443

see also memory access.

instruction set summary, 443

performance efficiency, 136e7

STRB, 75, 82e6, 114e5, 134e7, 443

STRH, 75, 82e6, 134e7, 301, 443

string data type, 78

strongly-ordered memory types (SO),

concepts, 138e9

SUB, 75, 89e90, 110, 292e3, 301, 443

see also arithmetic operations

SUB SP, instruction set summary, 443

subroutine calls/returns

see also BL.; LDR.

concepts, 110e2, 290e310

SUBS, 75, 89e90, 110, 113e5, 119, 120e1,

297e301, 303e6, 372e3, 443

suffixes

concepts, 78e9, 98, 109e10

features, 6e7
supervisor calls, 15e24, 101e2, 142e57,

175e6, 190e5, 212e20, 285e8,

294e301, 331e5, 391e403,

407e26, 443, 445, 447, 505

see also SVC

SVC, 15e24, 36, 39e41, 75, 101e2,

142e57, 175e6, 181, 190e5,

212e20, 283e6, 294e301,

331e5, 367e70, 371e3,

391e403, 407e26, 443, 445,

447, 505, 507

see also exception-related instructions;

operating systems; supervisor calls

definition, 190e3, 331e2

gcc example, 397e400

instruction set summary, 443

programming uses, 331e5, 397e400

SVC execution at incorrect priority level,

‘program started, but entered a hard

fault’ problems, 212, 505

SVC parameter passing methods,

troubleshooting guidelines, 513

swap instructions (ARM7TDMI), 411

SWCLK, 225e9

SWD see serial wire debug connection

SWDIO, 225e9

SWI, 193, 410e2

switching to ARM state

see also HardFault exception

concepts, 142e3, 212e20, 416, 507

‘program started, but entered a hard fault’

problems, 214, 507

SXTB (signed extended byte), 75, 96e7,

117, 443

see also extend.

instruction set summary, 441

SXTH (signed extended half word), 75,

96e7, 117, 443

syntax guidelines, assembly language, 54,

75e9

SYSRESETREQ, 177e80, 379e84

system bus

see also AHB LITE bus interface unit

concepts, 14e24, 65, 125e39, 211e20

schematic diagram, 125e9

system control registers (SCR), 26, 27,

31e2, 33e5, 41, 81e2, 100e1,

151e7, 174e80, 202e10, 312e29,

445e6, 455e6

quick reference, 457

sleep, 202e10, 312e29

system controls, 66e72, 127e39, 159e80,

200e10, 418e9, 450, 457

see also SCB; SCS

CMSIS, 66e72, 202e10, 282e6, 418e9,

450

concepts, 159e80, 200e10, 418e9

register quick reference, 457

528 Index
system exceptions, control registers,

174e6

system handler control and state register,

quick reference, 458, 461, 462

system handler priority register 2 (SHPR2),

concepts, 175e6, 457

system handler priority register 3 (SHPR3),

concepts, 175e6, 458

system initialization, concepts, 43e9,

67e75, 238, 259e62, 481e89

System Tick, 15e24, 36, 39e41, 127e39,

142e57, 159e80, 181e95, 260e4,

283e6, 391e403, 445, 447, 453,

458e9, 511e2

system-on-chip products (SoC), concepts,

3, 5, 14e24, 32e3, 35e6, 43e5,

129e39, 142e57, 219e20, 223e9,

384

SystemCoreClock software variable, 67,

70, 187, 285e6

system_device.h, 69e72

SystemFreq software variable, 67, 187,

285e6

SystemInit, 259e64, 278e86, 322e9,

336e8, 362e5, 383e4, 389e91,

394e403

system_LPC11xx.c (NXP LPC11xx system

initialization code for CMSIS),

example code file, 259e64, 277,

363e5, 481e9

system_LPC11xx.h (NXP LPC11xx system

initialization code header for

CMSIS), example code file, 238,

259e62, 282e6, 363e5, 387e91,

395, 481, 489e90

SYSTICK, 127e39, 445, 447

SysTick access functions, CMSIS, 66e72,

450

SysTick calibration value register

concepts, 184e8, 459

quick reference, 459

SysTick control and status register

concepts, 184e8, 458e9

quick reference, 458e9

SysTick current value register

concepts, 184e8, 459

quick reference, 459

SysTick handler execution, 70e2,

194e5, 260e4, 292e9, 367e70,

371e3, 387e403, 410e2, 424e6,

511e2

SysTick registers

concepts, 184e8, 453, 458e9

names, 184e8

summary quick reference, 453,

458e9

SysTick reload value register, concepts,

184e8, 459
SysTick timer, 142e57, 159e80, 183e95,

210, 226e9, 235e8, 260e4,

317e29, 338e40, 410e26

see also operating systems

definition, 183e4

enablement, 184e8

setup sequence, 184e7, 235e8, 260e4

single shot timer, 262e4

timing-measurement uses, 187e8, 210

SysTick_Config, 184, 260e4

T-bit, 29, 74, 212e20

see also Thumb state

tail chaining, exceptions, 149e50, 174e80

target/source groups, Keil MDK, 247e9

TASKING VX-Toolset for ARM, 10, 66,

431e2

TCM see tightly coupled memory

technical overview, ARM Cortex-M0,

13e24

TENMS, 184e8

testing

see also simulators

CMSIS, 71e2, 264e76

concepts, 51e4, 223e9, 233e45, 251e2,

264e76, 362e5

Texas Instruments, 3

text messages, 50e1

text outputting routines, assembly

language, 216e7, 302e6

text string displays, UARTs, 272e5, 302e6

third party tools, 2, 65e72

thread mode, 15e24, 25e7, 30e1, 35e6,

170e80, 191e5, 405e26

ThreadX from Express Logic, 11, 183

THUMB, 290e9, 364e5, 371e3,

390e403

Thumb instruction set, 1e2, 4e9, 11,

13e24, 25e41, 55, 59e60, 73e105,

135e9, 290e9, 364e5, 390e403,

406e27

ARM Cortex-M0 supported instructions,

74e5, 406e26

concepts, 73e105, 135e9, 406e26

list of instructions, 75

Thumb state

see also handler mode; thread mode

concepts, 25e9, 32, 74e5

Thumb-2-based instruction set, 1e2, 4e9,

11, 13e24, 25e41, 55, 73e105

see also code density

concepts, 73e105

list of instructions, 75

TICKINT (SysTick), 185e8

tightly coupled memory (TCM), 406, 413

TIMER.., 126, 142e57, 283e6, 292e301,

336e8, 367e9, 395e403, 424e6,

448
timing-measurement uses, SysTick timer,

187e8, 210

tool chain configurations

concepts, 11, 58, 75, 287, 385e403,

421e6, 475e9, 509

‘program does not run/start’ problems,

509

trace, 68, 406, 417e19, 433

training and design services companies,

ecosystem concepts, 9e11

transmit event (TXEV), 317e29

Triad Semiconductor, 429e30

troubleshooting guidelines, 507e13

see also fault handling

debug connector arrangements,

512e3

debug protocol selections, 513

event output as I/O, 513

interrupt problems, 511e2

‘program does not run/start’ problems,

507e8

‘program started, but entered a hard fault’

problems, 508e10

sleep problems, 509e11

SVC parameter passing methods, 512

TrustZone, 4e5

TST, 75, 78e9, 92, 110, 215e7, 295e9,

333e5, 402, 443

see also logic operations

instruction set summary, 443

TXEV see transmit event

TXT, 78

UAL see Unified Assembler Language

UARTs, 49e51, 62e5, 67e72, 126e39,

221, 264e86, 292e9, 302e6, 335,

347e8, 356e9, 367e70, 395e403,

427e9, 448

assembly language, 302e6

complex branch handling, 304e6

concepts, 264e86, 302e6, 335, 347e8,

367e70, 427e9

decimal displays, 273e4

definition, 264

developing your own input/output

functions, 272e5, 302e6

hexadecimal displays, 273

interface test, 267e8

retargeting, 268e72, 384

simple input/output, 264e7, 276e86

string user inputs, 274e5

text string displays, 272e5, 302e6

uart_test.s (assembly code for the UART

test example in chapter 16), example

code file, 481, 496e500

uCLinux, 11, 59, 183, 385e6

uint8_t data type, 61, 447

uint16_t data type, 61, 447

Index 529
uint32_t data type, 61, 184, 309e10,

423e6, 447, 449e50

uint64_t data type, 61

ULINK2 from Keil, 38, 52e4, 223,

231e58, 373e4, 386, 417e9, 431

ULINKPro, 231, 431

ULL cell library, concepts, 23

unaligned data access

concepts, 416e7, 419, 421e6,

508

‘program started, but entered a hard fault’

problems, 508

UNALIGN_TRP, 179e80

undef, 407e12

Unified Assembler Language (UAL)

concepts, 79e82, 87e105, 364e5,

411e2, 441e4

instruction set summary, 441e4

Unix, 361, 365

unsigned char data type, 134e6

unsigned data instructions, 82e6, 117,

423e6

unsigned int data type, 117, 134e6, 216e7,

423e6

unsigned integer square root operations,

concepts, 121e2

unsigned long data type, 117, 134e6,

162e4, 216e7

unsigned short data type, 117, 134e6

unstacking actions, exceptions, 147e57,

170e80, 191e4, 217e20

USB connectivity, 1, 49e54, 222, 231e58,

264e76, 326e9, 338e40, 374e84,

428e30

USB-JTAG adaptor, 52e4, 231e58

user operation mode, 407e12

user-defined vector tables, 391e95

uVision IDE, 231e58, 259e62, 431

UXTB (unsigned extended byte), 75, 96e7,

117, 423e6, 443

see also extend.

instruction set summary, 443

UXTH (unsigned extended half word), 75,

96e7, 117, 443

VAL (SysTick), 187e8, 236e8,

458e9
variables, 58e65, 67, 70, 84e6, 115e6,

131e9

VC suffix, 79, 98

VECTACTIVE, 176e9

VECTCLRACTIVE, 178e9

VECTKEY, 177e9

VECTKEYSTAT, 178e9

vector tables, 37, 39e41, 43e5, 55e65,

129e39, 214e20, 256, 261e4,

276e86, 332e5, 366e73, 387e95,

409e11, 415e24, 507

see also program image

assembly example, 56e7, 366, 369e71,

397e412

C example, 55e6, 397, 402

creation, 56e8

CS3, 385e401

definition, 55e7, 146e7

exceptions, 145e57, 214e20

‘program does not run/start’ problems,

507

user-defined vector tables,

391e5

vectored exception entry, NVIC support

features, 36e7

VECTPENDING, 176e9

void.., 448e51

volatile keyword, 63e5, 135, 160e4,

178e9

voltage reductions, 201e10, 219, 311e20,

422-30

von Neumann architecture, 13, 418

VS suffix, 79, 98

waiting task state, Keil RTX,

339e44

wakeup latency, 197e210

wakeup signals, 13e24, 197e210, 283e6,

292e4, 311e29, 352e7, 367e8,

393e5, 413e24, 448, 510

see also sleep.; WIC

periodic time intervals, 354e5

sleep problems, 509e11

Watchdog timer, 126, 211, 283, 324e7,

427e30

WBWT see write back write allocate.

wchar_t data type, 61
WFE (wait-for-event), 22e3, 75, 102e3,

200e10, 308e9, 311e27, 397e412,

426, 444, 451, 510

see also sleep mode feature.

concepts, 102e3, 200e10, 311e29,

412e3, 507

definition, 201e2, 203e4

instruction set summary, 442

programming, 311e29

sleep problems, 509e11

WFI (wait-for-interrupt), 22e3, 75, 102e3,

200e10, 308e9, 311e27, 397e412,

426, 444, 451

see also sleep mode feature.

definition, 201e2, 203e4

instruction set summary, 442

programming, 311e29

while loops, concepts, 178e9, 216e7, 313,

316e22

WIC, 13e24, 200e10, 315e23, 413

see also interrupt control.; power

management interface; wakeup.

definition, 200, 209e10, 314

programming uses, 313e5

Windows, 181, 361, 365, 385

Window’s Hyper Terminal, 264e5

word

concepts, 61, 78, 82e6, 95e6, 132e9,

159, 288e9

definition, 61, 78

write back write allocate cache behaviour

(WBWT), concepts, 138e9

write through cache behaviour (WT),

concepts, 138e9

XN see eXecute Never memory attribute

xPSR register (combined program status

register)

see also APSR.; EPSR.; IPSR.

concepts, 27, 28e9, 81e2, 147e57,

212e20, 400e02, 408e26

YIELD (stalled tasks indicator), 75, 104, 444

zero jitter benefits, Cortex-M0, 2

zero-extend operations, data type

conversions, 116e7

	The Definitive Guide to the ARM Cortex-M0
	Copright
	Foreword
	Preface
	Acknowledgments
	Conventions
	Terms and Abbreviations
	Reference

	CHAPTER 1-Introduction
	Why Cortex-M0?
	Energy Efficiency
	Code Density
	Ease of Use

	Application of the Cortex-M0 Processors
	Background of ARM and ARM processors
	Cortex-M0 Processor Specification and ARM Architecture
	ARM Processors and the ARM Ecosystem
	Getting Started with the Cortex-M0 Processor
	Organization of This Book and Resources

	Chapter 2 - Cortex-M0 Technical Overview
	General Information on the Cortex-M0 Processor
	The ARM Cortex-M0 Processor Features
	System Features
	Implementation Features
	Debug Features
	Others

	Advantages of the Cortex-M0 Processor
	Energy Efficiency
	Limitations in 8-Bit and 16-Bit Architectures
	Easy to Use, Software Portability
	Wide Range of Choices

	Low-Power Applications
	Small Gate Count
	High Efficiency
	Low-Power Features
	Logic Cell Enhancement

	Cortex-M0 Software Portability

	CHAPTER 3-Architecture
	Overview
	Programmertnqh_x2019s Model
	Operation Modes and States
	Registers and Special Registers
	R0–R12
	R13, Stack Pointer (SP)
	R14, Link Register (LR)
	R15, Program Counter (PC)
	xPSR, combined Program Status Register
	Behaviors of the Application Program Status Register (APSR)
	PRIMASK: Interrupt Mask Special Register
	CONTROL: Special Register

	Memory System Overview
	Stack Memory Operations
	Exceptions and Interrupts
	Nested Vectored Interrupt Controller (NVIC)
	System Control Block (SCB)
	Debug System

	Program Image and Startup Sequence

	CHAPTER 4-Introduction to Cortex-M0 Programming
	Introduction to Embedded System Programming
	What Happens When a Microcontroller Starts?
	Designing Embedded Programs
	Polling
	Interrupt Driven
	Combination of Polling and Interrupt Driven
	Handling Concurrent Processes

	Inputs and Outputs
	Development Flow
	C Programming and Assembly Programming
	What Is in a Program Image?
	Vector Table
	C Startup Code
	Program Code
	C Library Code
	Data in RAM

	C Programming: Data Types
	Accessing Peripherals in C
	Cortex Microcontroller Software Interface Standard (CMSIS)
	Introduction of CMSIS
	What Is Standardized in CMSIS
	Organization of the CMSIS
	Using CMSIS

	Benefits of CMSIS

	CHAPTER 5-Instruction Set
	Background of ARM and Thumb Instruction Set
	Assembly Basics
	Quick Glance at Assembly Syntax
	Use of a Suffix
	Thumb Code and Unified Assembler Language (UAL)
	Instruction List
	Moving Data within the Processor
	Memory Accesses
	Stack Memory Accesses
	Arithmetic Operations
	Logic Operations
	Shift and Rotate Operations
	Extend and Reverse Ordering Operations
	Program Flow Control
	Memory Barrier Instructions
	Exception-Related Instructions
	Sleep Mode Feature–Related Instructions

	Other Instructions

	Pseudo Instructions

	CHAPTER 6-Instruction Usage Examples
	Overview
	Program Control
	If-Then-Else
	Loop
	More on the Branch Instructions
	Typical Usages of Branch Conditions
	Function Calls and Function Returns
	Branch Table

	Data Accesses
	Simple Data Accesses
	Example of Using Memory Access Instruction

	Data Type Conversion
	Conversion of Data Size
	Endian Conversion

	Data Processing
	64-Bit/128-Bit Add
	64-Bit/128-Bit Sub
	Integer Divide
	Unsigned Integer Square Root
	Bit and Bit Field Computations

	CHAPTER 7-Memory System
	Overview
	Memory Map
	Program Memory, Boot Loader, and Memory Remapping
	Data Memory
	Little Endian and Big Endian Support
	Data Type
	Effect of Hardware Behavior to Programming
	Data Alignment
	Access to Invalid Addresses
	Use of Multiple Load and Store Instructions

	Memory Attributes

	CHAPTER 8-Exceptions and Interrupts
	What Are Exceptions and Interrupts?
	Exception Types on the Cortex-M0 Processor
	Nonmaskable Interrupt (NMI)
	Hard Fault
	SVCall (SuperVisor Call)
	PendSV (Pendable Service Call)
	SysTick
	Interrupts

	Exception Priority Definition
	Vector Table
	Exception Sequence Overview
	Acceptance of Exception Request
	Stacking and Unstacking
	Exception Return Instruction
	Tail Chaining
	Late Arrival

	EXC_RETURN
	Details of Exception Entry Sequence
	Stacking
	Vector Fetch and Update PC
	Registers Update

	Details of Exception Exit Sequence
	Unstacking of Registers
	Fetch and Execute from Return Address

	CHAPTER 9-Interrupt Control and System Control
	Overview of the NVIC and System Control Block Features
	Interrupt Enable and Clear Enable
	Interrupt Pending and Clear Pending
	Interrupt Priority Level
	Generic Assembly Code for Interrupt Control
	Enable and Disable Interrupts
	Set and Clear Interrupt Pending Status
	Setting up Interrupt Priority Level

	Exception Masking Register (PRIMASK)
	Interrupt Inputs and Pending Behavior
	Simple Interrupt Process

	Interrupt Latency
	Control Registers for System Exceptions
	System Control Registers
	CPU ID Base Register
	Application Interrupt and Reset Control Register
	Configuration and Control Register

	CHAPTER 10-Operating System Support Features
	Overview of the OS Support Features
	Why Use an Embedded OS?

	The SysTick Timer
	SysTick Registers
	Setting up SysTick
	Using SysTick Timer for Timing Measurement

	Process Stack and Process Stack Pointer
	SVC
	PendSV

	CHAPTER 11-Low-Power Features
	Low-Power Embedded System Overview
	Low-Power Advantages of the Cortex-M0 Processor
	Overview of the Low-Power Features
	Sleep Modes
	Wait-for-Event (WFE) and Wait-for-Interrupt (WFI)
	Wait for Event (WFE)
	Wait for Interrupt (WFI)
	Wakeup Conditions

	Sleep-on-Exit Feature
	Wakeup Interrupt Controller

	CHAPTER 12-Fault Handling
	Fault Exception Overview
	What Can Cause a Fault?

	Analyze a Fault
	Accidental Switching to ARM State
	Error Handling in Real Applications
	Lockup
	Causes of Lockup
	What Happens during a Lockup?

	Preventing Lockup

	Chapter 13 - Debug Features
	Software Development and Debug Features
	Debug Features Overview
	Debug Interface
	Halt Mode and Debug Events
	Debug System

	CHAPTER 14-Getting Started with Keil MDK
	Introduction to Keil MDK
	First Step of Using Keil MDK
	Create the Blinky Project
	Create the Project Code
	Project Settings
	Compile and Build the Program
	Using the Debugger

	Other Project Configurations
	Target, Source Groups
	Compiler and Code-Generation Options
	Simulator
	Execution in RAM

	Customizing the Startup Code in Keil
	Using the Scatter Loading Feature in Keil

	CHAPTER 15-Simple Application Programming
	Using CMSIS
	Using the SysTick Timer as a Single Shot Timer
	UART Examples
	Simple Input/Output
	Retargeting
	Developing Your Own Input and Output Functions

	Simple Interrupt Programming
	General Overview of Interrupt Programming
	Dial Control Interface Example
	Interrupt Control Functions

	Different Versions of CMSIS

	CHAPTER 16-Assembly Projects and Mixed-Assembly and C Projects
	Project Development in Assembly
	Recommended Practice in Assembly Programming
	Structure of an Assembly Function
	Simple Assembly Project Example
	Allocating Data Space for Variables
	UART Example in Assembly
	Additional Text Output Functions
	Complex Branch Handling

	Mixed-Language Projects
	Calling a C Function from Assembly
	Calling an Assembly Function from C Code

	Embedded Assembly
	Accessing Special Instructions
	Idiom Recognitions

	CHAPTER 17-Using Low-Power Features in Programming
	Overview
	Review of Sleep Modes in the Cortex-M0 Processor
	Using WFE and WFI in Programming
	Using the Send-Event-on-Pend Feature
	Using the Sleep-on-Exit Feature
	Wakeup Interrupt Controller (WIC) Feature
	Event Communication Interface
	Developing Low-Power Applications
	Example of Using Low-Power Features on the LPC111x

	CHAPTER 18-Using SVC, PendSV, and Keil RTX Kernel
	Introduction
	Using the SVC Exception
	Using the PendSV Exception
	Using an Embedded OS
	Keil RTX Real-Time Kernel
	Features Overview

	OS Startup Sequence
	Simple OS Example
	Intertask Communications
	Event Communications
	Mutual Exclusive
	Semaphore
	Mailbox Messages
	Periodic Time interval
	Other RTX Features
	Application Example

	CHAPTER 19-Getting Started with the ARM RealView Development Suite
	Overview
	Simple Application Example
	Using the Scatter Loading File
	Example with Vector Table in C
	Using MicroLIB in RVDS
	Using Assembly for Application Development in RVDS
	Flash Programming
	Debugging Using RealView Debugger
	Using Serial Wire Debug with the RealView Debugger
	Retargeting in RVDS

	CHAPTER 20-Getting Started with the GNU C Compiler
	Overview
	Typical Development Flow
	Simple C Application Development
	CodeSourcery Common Startup Code Sequence (CS3)
	Using a User-Defined Vector Table
	Using Printf in gcc
	Inline Assembler
	SVC Example in gcc
	Hard Fault Handler Example
	Flash Programming and Debug

	CHAPTER 21-Software Porting
	Overview
	ARM Processors
	Differences between the ARM7TDMI and the Cortex-M0
	Operation Mode
	Registers
	Instruction Set
	Interrupts

	Porting Software from the ARM7TDMI to the Cortex-M0
	Startup Code and Vector Table
	Interrupt
	C Program Code
	Assembly Code
	Atomic Access
	Optimizations

	Differences between the Cortex-M1 and the Cortex-M0
	Instruction Set
	NVIC
	System-Level Features

	Porting Software between the Cortex-M0 and the Cortex-M1
	Differences between the Cortex-M3 and the Cortex-M0
	Programmer's Model
	NVIC and Exceptions
	Instruction Set
	System-Level Features
	Debug Features

	Porting Software between the Cortex-M0 and the Cortex-M3
	Porting Software between the Cortex-M0 and the Cortex-M4 Processor
	Porting Software from 8-Bit/16-Bit Microcontrollers to the Cortex-M0
	Common Modifications
	Memory Requirements
	Nonapplicable Optimizations for 8-Bit or 16-Bit Microcontrollers
	Example: Migrate from the 8051 to the ARM Cortex-M0
	Vector Table
	Data Type
	Interrupt
	Sleep Mode

	CHAPTER 22-Cortex-M0 Products
	Overview
	Microcontroller Products and Application-Specific Standard Products (ASSPs)
	NXP Cortex-M0 Microcontrollers
	NuMicroTM Microcontroller Family
	Mocha-1 ARM Cortex-M0 Configurable Array
	Melfas MCSTM-7000 Series Touch Screen Controllers

	Compilers and Software Development Suites
	Keil Microcontroller Development Kit (MDK)
	TASKING VX-Toolset for ARM
	IAR Embedded Workbench for ARM
	CrossWorks for ARM
	Red Suite
	Features
	Peripheral and Register Views
	Red Trace

	LabView C Code Generator

	Development Boards
	LPCXpresso
	IAR KickStart Kit for LPC1114
	LPC1114 Cortex-M0 Stamp Module
	Keil Cortex-M0 Boards

	APPENDIX A -Instruction Set Summary
	APPENDIX B-Cortex-M0 Exception Type Quick Reference
	Exception Types
	Stack Contents after Exception Stacking

	APPENDIX-C CMSIS Quick Reference
	Data Type
	Exception Enumeration
	NVIC Access Functions
	System and SysTick Access Functions
	Core Registers Access Functions
	Special Instructions Access Functions

	APPENDIX D-NVIC, SCB, and SysTick Registers Quick Reference
	NVIC Register Summary
	Interrupt Set Enable Register (NVIC - ISER)
	Interrupt Clear Enable Register (NVIC - ICER)
	Interrupt Set Pending Register (NVIC - ISPR)
	Interrupt Clear Pending Register (NVIC - ICPR)
	Interrupt Priority Registers (NVIC - IPR[0] to NVIC - IPR[7])
	SCB Register Summary
	CPU ID Base Register (SCB - CPUID)
	Interrupt Control State Register (SCB - ICSR)
	Application Interrupt and Control State Register (SCB - AIRCR)
	System Control Register (SCB - SCR)
	Configuration Control Register (SCB - CCR)
	System Handler Priority Register 2 (SCB - SHR[0])
	System Handler Priority Register 3 (SCB - SHR[1])
	System Handler Control and State Register
	SysTick Register Summary
	SysTIck Control and Status Register (SysTick - CTRL)
	SysTick Reload Value Register (SysTick - LOAD)
	SysTick Current Value Register (SysTick - VAL)
	SysTick Calibration Value Register (SysTick - CALIB)

	APPENDIX E - Debug Registers Quick Reference
	Overview
	Core Debug Registers
	Breakpoint Unit
	Data Watchpoint Unit
	ROM Table Registers

	APPENDIX F - Debug Connector Arrangement
	The 10-Pin Cortex Debug Connector
	The 10-Pin Cortex Debug Connector
	The 20-Pin Cortex Debug + ETM Connector
	The Legacy 20-Pin IDC Connector Arrangement

	APPENDIX G-Linker Script for CodeSourcery G++ Lite
	APPENDIX H-Example Code Files
	Appendix H.1 system_LPC11xx.c
	Appendix H.2 system_LPC11xx.h
	Appendix H.3 LPC11xx.hs
	Appendix H.4 uart_test.s
	Appendix H.5 RTX_config.c

	APPENDIX I-Troubleshooting
	Program Does Not Run/Start
	Vector Table Missing or in Wrong Place
	Incorrect C Startup Code Being Used
	Incorrect Value in Reset Vector
	Program Image not Programmed in Flash Correctly
	Incorrect Tool Chain Configurations
	Incorrect Stack Pointer Initialization Value
	Incorrect Endian Setting

	Program Started, but Entered a Hard Fault
	Invalid Memory Access
	Unaligned Data Access
	Bus Slave Return Error
	Stack Corruption in Exception Handler
	Program Crash at Some C Functions
	Accidentally Trying to Switch to ARM State
	SVC Executed at Incorrect Priority Level

	Sleep Problems
	Execute of WFE Does not Enter Sleep
	Sleep-on-Exit Triggers Sleep Too Early
	SEVONPEND does not Work for Interrupt that is Already in a Pending State
	Processor Cannot Wake up Because Sleep Mode Might Disable Some Clocks
	Race Condition

	Interrupt Problem
	Extra Interrupt Handler Executed
	Additional SysTick Handler Execution
	Disabling of Interrupt Within the Interrupt Handler
	Incorrect Interrupt Return Instructions
	Exception Priority Setup Values

	Other Issues
	Incorrect SVC Parameter Passing Method
	Debug Connection Affected by I/O Setting or Low-power Modes
	Debug Protocol Selection
	Using Event Output as Pulse I/O

	Index

