
 Proprietary Imagination Technologies

PowerVR Series 5 1 Revision .

PowerVR Series 5

Architecture Guide for Developers

Copyright © Imagination Technologies Ltd. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : PowerVR Series 5.Architecture Guide for Developers.1.0.8.External.doc

Version : 1.0.8 External Issue (Package: POWERVR SDK REL_3.0@2149525)

Issue Date : 30 Aug 2012

Author : Imagination Technologies Ltd

Imagination Technologies Proprietary

Revision . 2 Architecture Guide for Developers

Contents
1. Introduction4

2. What is PowerVR?5
2.1. What is Tiling? ..6
2.2. What is Deferred Rendering? ...6

3. Graphics Architecture Comparison7
3.1. Immediate Mode Rendering (IMR) ...7

3.1.1. Obscured Fragments..7
3.1.2. Expensive Read-Modify-Write Operations ...7

3.2. Tile Based Rendering (TBR) ..8
3.2.1. On-chip Buffers ..8
3.2.2. Obscured Fragments..8
3.2.3. Intermediate Buffer...8

3.3. PowerVR: Tile Based Deferred Rendering (TBDR) ...9
3.3.1. Hidden Surface Removal (HSR) ..9
3.3.2. Optimal Use of Memory Bandwidth..9

4. SGX Overview10
4.1. Universal Scalable Shader Engine (USSE)..10

4.1.1. Coarse Grain Scheduler (CGS) ...10
4.1.2. Thread scheduling..11

4.2. Parameter Buffer (PB) ..12
4.2.1. Primitive Blocks ..12
4.2.2. Display Lists ...12

4.3. Tile Accelerator (TA)...13
4.4. Image Synthesis Processor (ISP)...14
4.5. Texture and Shading Processor (TSP) ..16
4.6. SGX Micro Kernel ...17
4.7. SGX-MP..18

5. SGX Hardware Schematic19

6. Other considerations............................... ...20
6.1. Alpha Test/Fragment Discard...20
6.2. Blending..21
6.3. Parameter Buffer (PB) Management ..21

7. Notable features................................... ...22
7.1. Internal True Colour™ ..22
7.2. Full Screen MSAA ..22
7.3. PVRTC Texture Compression ..22

8. Related Materials23

9. Contact Details.................................... ..24

List of Figures
Figure 3-1 - IMR Rendering Pipeline ..7
Figure 3-2 - TBR Rendering Pipeline..8
Figure 3-3 - TBDR Rendering Pipeline ...9
Figure 4-1 - High Level Hardware Overview...10
Figure 4-2 - Dedicated Shader Modules ...10
Figure 4-3 - Universal Scalable Shader Engine..10
Figure 4-4 – Thread Scheduling ...11

 Proprietary Imagination Technologies

PowerVR Series 5 3 Revision .

Figure 4-5 – Parameter Buffer ..12
Figure 4-6 - TA ..13
Figure 4-7 - ISP...14
Figure 4-8 - Quake 3 Arena Screenshot ...15
Figure 4-9 – Quake 3 Overdraw ...15
Figure 4-10 - TSP..16
Figure 4-11 - SGX/SGX-MP Micro Kernel ..17
Figure 4-12 - SGX-MP Example Tile Distribution ...18
Figure 5-1 - SGX Hardware Schematic ..19
Figure 6-1 - Alpha Test/Discard ..20

Imagination Technologies Proprietary

Revision . 4 Architecture Guide for Developers

1. Introduction
The purpose of this document is to provide graphics programmers with an overview of the PowerVR
Series 5 (SGX & SGX-MP) graphics hardware architecture, while also highlighting why some
performance recommendations make such a significant difference to graphics rendering on PowerVR
platforms. Furthermore, the information in this document outlines the purpose of each hardware
module for which PVRTune provides performance counters.

The PowerVR Series 5 architecture is covered by a broad portfolio of patents, the result of more than
15 years research and development by Imagination Technologies. More than 500 million devices
incorporating PowerVR graphics have been shipped (as of July 2011) and hundreds of thousands of
applications are running on PowerVR graphics-powered platforms across every major operating
system and CPU architecture.

 Proprietary Imagination Technologies

PowerVR Series 5 5 Revision .

2. What is PowerVR?
PowerVR™ graphics is the brand name of the family of graphics IP cores from Imagination
Technologies that use Imagination's unique "Tile Based Deferred Rendering” (TBDR) architecture.
The core design principle behind the TBDR architecture is to reduce the system memory bandwidth
required by the GPU to a bare minimum. As transfer of data between system memory and the GPU is
one of the biggest causes of GPU power consumption, any reduction that can be made in this area
will allow the GPU to operate at a lower power. Additionally, the reduction in system memory
bandwidth use and the hardware optimizations associated with it (such as using on-chip buffers) can
boost application performance. Because of this development strategy, PowerVR graphics cores have
become the dominant series of graphics cores in the mobile and embedded devices market.

Whereas a traditional Immediate Mode Renderer (IMR) renders all objects within the screen’s
boundaries and relies on a Z-Buffer to sort the end results, the PowerVR TBDR approach determines
up-front what is and isn’t visible, allowing the hardware to only render what is necessary. Although
current day IMRs incorporate advanced techniques to reduce some of the issues that are inherent
within the architecture’s design, such as early Z testing to reduce overdraw, there are still many ways
in which the TBDR architecture provides a more efficient solution to these problems.

Understanding the differences between these architectures is crucial when optimizing applications for
PowerVR graphics hardware.

Imagination Technologies Proprietary

Revision . 6 Architecture Guide for Developers

2.1. What is Tiling?
Tiling is a technique that can be implemented in graphics hardware to process subsections of a
render at a time instead of the entire scene. The main benefit of this approach is that fast, on-chip
memory can be used during the render for colour, depth and stencil buffer operations, which allows a
significant reduction in system memory bandwidth over traditional IMR architectures.

Tiling involves two key rendering phases; geometry processing and rasterization. Once submitted
geometry has been transformed into screen space coordinates, and the hardware has determined
which geometry has fallen within the bounds of a tile, the hardware renders each tile and flushes the
resultant colour buffer out to a frame buffer in system memory until the entire scene has been
rendered.

2.2. What is Deferred Rendering?
Deferred rending splits the per-tile rendering process into two stages; Hidden Surface Removal (HSR)
and shading. Pixel-perfect, submission order independent HSR is performed within each tile so that
the only fragments processed are those that will contribute to the final rendered image. In an entirely
opaque scene, overdraw will be removed completely by the HSR of TBDR hardware.

 Proprietary Imagination Technologies

PowerVR Series 5 7 Revision .

3. Graphics Architecture Comparison

3.1. Immediate Mode Rendering (IMR)

Figure 3-1 - IMR Rendering Pipeline

A traditional Immediate Mode Rendering (IMR) architecture is given its name because each submitted
object travels through the entire pipeline immediately. Due to the brute force approach of the design,
there are a number of weaknesses that result in inefficient use of the available processing power and
memory bandwidth.

3.1.1. Obscured Fragments
As an IMR processes each object as it’s submitted, any fragment that has been written to the frame
buffer can be later overwritten by other processed objects that cover the fragment. Unnecessarily
performing texturing and shading for fragments that will not affect the render is commonly referred to
as overdraw. Overdraw can quickly cause bottlenecks in graphics applications running on IMR
hardware because a large portion of the hardware’s processing time and system memory bandwidth
(particularly for texture fetches) is wasted calculating the colour of fragments that will not affect the
rendered frame. Most modern IMR architectures utilise Early-Z techniques to perform depth tests
early in the graphics pipeline to reduce the amount of overdraw in a render (as shown in Figure 3-1 –
Early Visibility Test/Late Visibility Test), but applications can only fully benefit from this optimization if
geometry is always submitted to the hardware in front to back order (this requires per frame sorting for
scenes with moving cameras and/or geometry). Even when an application attempts to submit all
objects from front to back, it is still unlikely that overdraw will be eliminated completely.

3.1.2. Expensive Read-Modify-Write Operations
As IMRs store all colour, depth and stencil buffers in system memory, regular Read-Modify-Write
operations to these buffers can quickly induce a large system memory bandwidth overhead. As the
memory bandwidth required for these operations is directly related to the precision of these buffers,
application developers may find they have to sacrifice the accuracy of their colour, depth and stencil
operations to alleviate memory bandwidth bottlenecks. In addition to the time it takes to transfer data
over the system’s memory bus, regular Read-Modify-Write operations for these buffers will increase
the power consumption of the IMR hardware, which will in turn cause the application to have a bigger
impact on the life of battery powered devices.

Imagination Technologies Proprietary

Revision . 8 Architecture Guide for Developers

3.2. Tile Based Rendering (TBR)

Figure 3-2 - TBR Rendering Pipeline

In tile based rendering hardware, rasterization is performed on a per tile basis instead of rasterizing
the entire frame buffer as a traditional IMR would. To facilitate this, all submitted geometry is
transformed into screen space coordinates and stored in an intermediate buffer in system memory.
Once this has been done, the hardware generates a per-tile list of pointers to geometry that lies within
the bounds of the tile. This enables the hardware to only retrieve relevant geometry data when
rendering each tile, which keeps memory bandwidth requirements for intermediate buffer access to a
minimum. The geometry within each tile is then processed in submission order as per an IMR and the
rendered tiles are written out to the frame buffer in system memory on completion.

3.2.1. On-chip Buffers
Read-Modify-Write operations for the colour, depth and stencil buffers are performed using fast on-
chip memory instead of relying on repeated system memory access, as IMRs do. Memory bandwidth
is required to write the colour buffer into frame buffer memory, but depth and stencil buffer data only
needs to be written out if it has to be preserved for later use.

3.2.2. Obscured Fragments
Although the TBR approach improves on the traditional IMR design, it does not attempt to reduce
overdraw in the render. When rendering each tile, geometry is processed in submission order, so
obscured geometry will still be processed and texture data for invisible fragments will still be fetched.
Once again, Early-Z techniques can be used to reduce overdraw, but the full benefit of these can only
be utilised if applications sort and submit geometry from front to back.

3.2.3. Intermediate Buffer
As rendering is split into geometry processing and rasterization, the hardware requires buffer space
where intermediate data can be stored. Although this storage space is required and the hardware
must calculate which geometry is visible in each tile, the benefit of faster on-chip Read-Modify-Write
operations and reduced system memory bandwidth use outweighs the additional required workload.

 Proprietary Imagination Technologies

PowerVR Series 5 9 Revision .

3.3. PowerVR: Tile Based Deferred Rendering (TBDR)

Figure 3-3 - TBDR Rendering Pipeline

The TBDR architecture improves on the memory bandwidth reductions the TBR architecture provides
by incorporating pixel-perfect, submission order independent Hidden Surface Removal (HSR). The
efficiency of the HSR is such that overdraw can be removed entirely for completely opaque renders,
which allows the hardware to significantly reduce its system memory bandwidth requirements for
fetching fragment data (for both texture and intermediate buffer data) as well as its fragment
processing workload.

3.3.1. Hidden Surface Removal (HSR)
Although Early-Z and similar techniques have been developed to reduce the effects of overdraw in
IMR and TBR architectures, overdraw still proves to be a common cause of bottlenecks in many
graphics applications running on these architectures. One of the major objectives when developing
the TBDR architecture was to provide a sophisticated solution to this problem to remove redundant
system memory bandwidth use and fragment processing. Doing so not only improves performance,
but also allows the hardware to minimise power consumption.

As the HSR process of the TBDR hardware is performed on a per-pixel basis independently of
geometry submission order, overdraw can be removed entirely for completely opaque renders (as well
as being hugely beneficial in renders using alpha blend and discard/alpha test). In real-world use
cases, this approach is much more efficient than Early-Z techniques used in other architectures as
they can only approach the same level of efficiency as the TBDR HSR process if an application
perfectly submits all geometry from front to back. Even in these cases, intersecting objects can cause
overdraw when Early Z is used, whereas TBDR HSR will still completely remove overdraw in these
cases.

As the HSR process ensures the only fragments processed are those that will contribute to the final
render, texture memory bandwidth use is reduced to the bare minimum (only relevant texture data is
fetched). The HSR achieves this by utilising a block of memory called the Tag Buffer that tracks
visible fragments within the tile (see Section 4.4). The HSR process only fetches screen space
position data for the geometry within the tile (*1 in Figure 3-3) and all other geometry data fetch
operations are deferred until later in the pipeline (*2 in Figure 3-3). By doing so the hardware can
ensure that the only additional geometry data that is fetched (beyond screen-space position data
required by the HSR) is the data required to texture and shade visible fragments.

From an application developer’s point of view, the TBDR HSR technique has the additional benefit of
removing the need to sort geometry into front to back order on a per frame basis. This reduces CPU
workload and gives the developer more freedom to submit geometry in other ways that will benefit the
hardware (such as batching draw calls and minimizing state changes to remove redundant API calls
and process objects more efficiently).

3.3.2. Optimal Use of Memory Bandwidth
As with TBRs, TBDR hardware uses on-chip buffers for colour, depth and stencil buffer Read-Modify-
Write operations. This allows the hardware to perform these operations faster than a traditional IMR
would allow, while also significantly reducing the memory bandwidth overhead.

Imagination Technologies Proprietary

Revision . 10 Architecture Guide for Developers

4. SGX Overview
The PowerVR architecture consists of several core modules that convert application submitted 3D
data into a rendered image (as shown in Figure 4-1). These modules are the Tile Accelerator (TA),
Image Synthesis Processor (ISP) and the Texture & Shading Processor (TSP). The core modules
make use of the Universal Scalable Shader Engine (USSE) and Parameter Buffer (PB) shared
components to keep the design as flexible and scalable as possible.

Figure 4-1 - High Level Hardware Overview

4.1. Universal Scalable Shader Engine (USSE)
The USSE is a flexible, multi-threaded processor capable of executing vertex, fragment and GP-GPU
instructions. As vertex and fragment processing tasks are completely decoupled (all geometry
processing is done, then rasterization begins), the USSE’s thread scheduler can automatically load
balance a queue of tasks, which ensures idle time is kept to a minimum and latency is hidden as
much as possible.

Figure 4-2 - Dedicated Shader Modules Figure 4-3 - Universal Scalable Shader Engine

4.1.1. Coarse Grain Scheduler (CGS)
The CGS takes vertex, fragment and GP-GPU jobs as input and breaks them down into tasks (smaller
units of work) that can be submitted to available USSE execution units.

 Proprietary Imagination Technologies

PowerVR Series 5 11 Revision .

4.1.2. Thread scheduling

Each USSE execution unit in a given SGX graphics core has its own
thread scheduler. Each scheduler manages 16 threads, 4 of which can be
active at a given time (Figure 4-4). The benefit of managing this many
threads simultaneously is that when an active thread stalls, the scheduler
can suspend it and schedule in a previously suspended thread with a zero
cycle scheduling overhead. This approach keeps latency to a minimum as
threads will still be processed while a stalled thread resolves. When an
active thread completes a task, the thread scheduler will retrieve a new
task from the CGS.

This efficient, hardware based, data driven thread scheduling can benefit
applications by hiding the latency induced by any stalls, such as
dependent texture reads and branching in shaders. Applications can take
advantage of this by placing as much work as possible ahead of the point
at which the shader is likely to stall, which will increase the number of
instructions the hardware can use to mask latency induced by the stalls.

Figure 4-4 – Thread
Scheduling

Imagination Technologies Proprietary

Revision . 12 Architecture Guide for Developers

4.2. Parameter Buffer (PB)

Figure 4-5 – Parameter Buffer

The Parameter Buffer is an area of system memory that is used to store intermediate data, which
allows the geometry processing and rasterization stages of rendering to be separated. The hardware
and drivers handle this storage space entirely (applications have no control over it).

The Parameter Buffer consists of Primitive Blocks and Display Lists.

4.2.1. Primitive Blocks
A Primitive Block is a list of primitives, where each primitive consists of its indices and the screen
space x and y positions of its vertices. The data contained within a Primitive Block is used to
reference transformed geometry data that has been clipped, projected and culled by the TA and
written into Parameter Buffer memory. Display Lists are per-tile linked lists that reference the Primitive
Blocks of objects that lie within the tile’s boundaries.

4.2.2. Display Lists
To ensure that tiles minimise the amount of geometric data they have to fetch, Display Lists use
primitive and vertex masks (e.g. for a triangle strip that goes beyond the boundaries of the tile, masks
are used so the hardware will only fetch data for triangles that cover the tile).

 Proprietary Imagination Technologies

PowerVR Series 5 13 Revision .

4.3. Tile Accelerator (TA)

Figure 4-6 - TA

The TA takes geometric data that has been transformed by the USSE as input and clips, projects and
culls it. In a shader based graphics API, such as OpenGL ES 2.0, the USSE executes vertex shaders
on the geometry to transform and perform other per-vertex operations, such as lighting, before the
resultant data is given to the TA. If polygons have been deemed visible after these tests, the TA
updates all of the Display Lists of tiles that the object covers to reference it and writes out the
transformed data into a Primitive Block (Figure 4-6).

The number of tiles required to complete the render is determined to be the resolution of the render
pass divided by the tile size – where the tile size is a fixed value that is hardware specific (e.g. many
SGX cores use a 16x16 pixel tile size). Larger tile sizes do improve performance (e.g. there will be
fewer tiles to process, fewer Display Lists to update, single cycle scan-line depth tests can yield
greater benefit etc.), but they require the on-chip memory requirements of the graphics core to
increase. The tile size used in a given graphics core is a balance between required performance and
the cost of the additional resources.

Imagination Technologies Proprietary

Revision . 14 Architecture Guide for Developers

4.4. Image Synthesis Processor (ISP)

Figure 4-7 - ISP

The ISP is responsible for per-tile HSR (Hidden Surface Removal) to ensure that the only fragments
processed by the TSP (Texture and Shading Processor – see section 4.5) are those that will affect
the rendered image. To do this, the ISP processes all of the triangles referenced in the tile’s Display
List one by one, calculating the triangle equation and, if depth testing is enabled, projecting a ray at
each position in each triangle to retrieve accurate depth information for each fragment that the
primitive covers within the tile. The calculated depth information is then compared with the values in
the tile’s on-chip depth buffer to determine if the fragments are visible. The ISP uses a Tag Buffer to
track all visible fragments and the primitives that they belong to. To minimize data fetch, the ISP only
retrieves position information for geometry that is required to render the tile (vertex and primitive
masks ensure the smallest possible data set is retrieved). When all of the primitives that the tile’s
Display List references have been processed, the ISP submits fragments to the TSP in groups of
fragments that belong to the same primitive, rather than submitting visible fragments on a per scan
line basis. Doing so allows the hardware to improve the efficiency cache access and fragment
processing.

Figure 4-8 and Figure 4-9 are two screenshots from Quake 3; the first screenshot is a normal
screenshot from a scene in Quake 3 while the second renders everything translucently to get an idea
of the overdraw in the scene. Although Quake 3 uses Binary Space Partitioning (BSP) and portal
techniques to attempt to reduce overdraw, the scene complexity is such that overdraw is often quite
high. As an example we measured overdraw of the Quake 3 demo001 at 3.39 (i.e. each pixel on the
screen is drawn an average of 3.39 times). As the ISP can eliminate overdraw entirely for opaque
pixels (i.e. those without any blending or alpha test/discard), TBDR hardware can reduce overdraw
further than these BSP and portal techniques are capable of alone.
The benefit of the ISP, compared to Early-Z techniques in IMR and TBR architectures, is that
overdraw in 3D applications can be significantly reduced independently of the submission order of
draw calls, as the hardware has full visibility of the scene within the tile when tests are performed. In
entirely opaque render passes, this technique can reduce overdraw to zero, meaning the number of
fragments processed is the same as the resolution of the render’s viewport. Unlike Early Z techniques
used in other architectures, this approach does not require applications to sort and submit geometry
in front to back order to get the most out of the technique. Because of this, developers have no need
for per-frame CPU sorting algorithms to further reduce overdraw and it also gives developers the
freedom to submit their geometry in other ways that can benefit the render (such as batching draw
calls by render state).

 Proprietary Imagination Technologies

PowerVR Series 5 15 Revision .

Figure 4-8 - Quake 3 Arena Screenshot

Figure 4-9 – Quake 3 Overdraw

Imagination Technologies Proprietary

Revision . 16 Architecture Guide for Developers

4.5. Texture and Shading Processor (TSP)
Rather than texturing and shading fragments itself, the job of the TSP is to schedule fragment
processing tasks (performed by the USSE), iterations, and texture data pre-fetch (Figure 4-10). If
texture coordinates are calculated during iteration (e.g. texture coordinate varyings used in GLSL
shaders), they can be used to pre-fetch texture data, which ensures the data is available when the
USSE comes to process the fragments. Once iteration has been performed, the TSP can submit
groups of visible fragments to the USSE via the CGS to be textured and shaded (visible fragments are
grouped by the ISP during the HSR process). When using a shader based graphics API, such as
OpenGL ES 2.0, fragment shaders are executed at this stage to calculate fragment colour.

Figure 4-10 - TSP

 Proprietary Imagination Technologies

PowerVR Series 5 17 Revision .

4.6. SGX Micro Kernel
The Micro Kernel is specialised software that the hardware runs on the available USSE general
purpose execution units. Unlike many other graphics architectures, the Micro Kernel enables the GPU
to handle internal interrupt events generated by the GPU entirely on the GPU. By utilising the Micro
Kernel in this way, the graphics core has minimal impact on CPU load, performance is kept as high as
possible (increased parallelism between the CPU and GPU) and synchronisation issues between the
CPU and GPU are decreased (as highlighted in Figure 4-11).

Figure 4-11 - SGX/SGX-MP Micro Kernel

Imagination Technologies Proprietary

Revision . 18 Architecture Guide for Developers

4.7. SGX-MP
The SGX-MP architecture is designed to scale as close to linearly as possible as more graphics cores
are used. In typical real-world performance conditions (running well known game engines, graphics
applications, benchmarks etc.), each additional core runs at 95%+ the efficiency of a single core.
Additionally, adding another core to the system only increases the overall memory bandwidth for a
frame by <1%.

In SGX-MP devices, the hardware and drivers have total control over the multi-core logic. For this
reason, applications that already run on SGX devices will be able to run without modification on SGX-
MP devices.

When processing geometry, the hardware splits objects into chunks of work that can be distributed
evenly between all available graphics cores. By doing this, the hardware can ensure that idle time in
the cores is kept to a minimum.

During the rasterization, texturing and shading process, each additional graphics core allows another
tile to be processed in parallel. To enable this, the hardware manages a queue of all tiles that need to
be processed and each graphics core fetches and processes a tile from this queue. By taking this
approach, the hardware keeps idle time to a minimum and avoids creating hotspots that could occur
with static tile distribution (e.g. one core may have more work than others, which would cause the
other cores to go idle). A tile task submitted to a graphics core includes HSR, texturing and shading.

Figure 4-12 - SGX-MP Example Tile Distribution

 Proprietary Imagination Technologies

PowerVR Series 5 19 Revision .

5. SGX Hardware Schematic

Figure 5-1 - SGX Hardware Schematic

The first stage of the processing is for the driver to submit geometry data from system memory to the
graphics core’s Vertex Data Master. This module takes the stream of vertex data and submits vertex
processing jobs to the CGS, which in turn breaks down the jobs into tasks (smaller units of work) that
can be distributed to the Thread Scheduler’s of the available USSE Execution Units. The USSE
Execution Units then process the vertex tasks that have been given to it and the resultant transformed
data is given to the TA. The TA applies clipping, projection and culling to the geometric data and, if it
passes these tests, the data will be written into a Primitive Block in Parameter Buffer memory. The TA
also updates the Display Lists of all tiles the object covers to reference the object’s Primitive Block. As
the Display Lists are updated, the TA creates vertex and primitive masks to restrict the amount of
geometry data that will be fetched when per-tile operations are performed.

Once all of the scene’s geometry has been processed by the TA, per-tile rasterization, texturing and
shading can begin. A tile task is first given to the ISP, where HSR, depth and stencil tests are
performed. Once this is done, iteration is performed for visible primitives within the tile and a fragment
processing job is submitted to the CGS for each group of visible fragments (where the grouping has
been done by the ISP during the HSR process – see section 4.4 for more information). When iteration
is performed for texture coordinates, the resultant values are sent to the Texturing Co-Processor to
pre-fetch texture data.

The CGS breaks each fragment processing job into tasks that can be distributed to the Thread
Schedulers of available USSE Execution Units. When dependent texture reads are performed by the
USSE Execution Units, the thread will be suspended and a texture fetch task will be issued to the
Texturing Co-Processor. When the tile’s fragment processing is complete, the PBE (Pixel Back End)
accesses the tile’s buffers and applies final operations to the rendered image before it is flushed to
the frame buffer in system memory, e.g. applying dither patterns when required, combining MSAA
sub-sampled etc.

Imagination Technologies Proprietary

Revision . 20 Architecture Guide for Developers

6. Other considerations

6.1. Alpha Test/Fragment Discard
Performing alpha test/discard in an application removes some of the advantage of overdraw reducing
techniques such as HSR and Early Z. The reason for this is that fragment visibility is not known until
per fragment operations are performed, which means the hardware has to assume that all fragments
for that object may contribute to the frame buffer colour and process them anyway. As more objects
using discard overlap a given pixel, more overdraw will be introduced (all layers using discard have to
be processed as the hardware doesn’t know which, if any, of the fragments will contribute to the frame
buffer colour).

For an object using discard, the ISP assumes all fragments will be visible and submits them all to the
TSP. The TSP then submits all of the fragments to the USSE to be processed and, potentially,
discarded. As fragments are discarded, the USSE sends fragment visibility information back to the
ISP so that depth and stencil buffers can be updated accordingly (as highlighted in Figure 6-1). To
improve the performance of discard, the hardware utilises a number of optimizations to reduce the
workload as early as possible in the pipeline.

Applications should avoid the use of alpha test/discard where possible as objects using this feature
cannot fully benefit from the HSR process. When an application needs to use discard, all opaque
objects should be rendered before objects using discard so that obscured fragments can be removed
from the render, e.g. if a wall of a building is partially obscuring a tree object using discard, rendering
the opaque building first will ensure the hardware only has to process the area of the tree that isn’t
obscured.

Figure 6-1 - Alpha Test/Discard

 Proprietary Imagination Technologies

PowerVR Series 5 21 Revision .

6.2. Blending
To render blended objects correctly, the hardware has to process each object individually as they may
all contribute to the frame buffer’s colour. Similarly to discard operations, the hardware utilises a
number of optimizations to reduce the workload as early as possible in the pipeline.

All opaque objects should be drawn before blended objects to achieve the maximum benefit from the
HSR process. When an application needs to use discard and blending, opaque objects should be
submitted first, then discard objects, then blended objects.

As all blending operations are performed using on-chip memory, they can be executed very quickly
and, unlike many other architectures, do not waste system memory bandwidth.

6.3. Parameter Buffer (PB) Management
Although the TBDR architecture provides a very efficient solution for processing 3D graphics, where
overdraw and memory bandwidth use can be significantly reduced compared to other architectures, it
does require system memory to be reserved for intermediate data stored in the PB. As a finite amount
of memory is allocated for the PB the hardware has to cope when this memory has been filled but the
render is still incomplete. The TBDR solution to this is to flush the render when the buffer fills; this
allows the hardware to free memory in the PB associated with objects that are rendered during the
flush, the freed space can then be used to render other objects in the scene allowing the hardware to
complete the render. The downside of this is that objects rendered during the flush will not benefit
from HSR performed on objects later in the render, which means overdraw may be introduced.

 Additionally, the hardware has to flush all buffers associated with the render, which means depth and
stencil buffers will have to be flushed in addition to the colour buffer. This needs to be done so that
successive renders will execute correctly. Although there is some cost associated with this mode of
operation, the technique has been used for years in PowerVR graphics hardware and, as such, has
benefitted from much optimization that allows it to have a minimal effect on performance.

The amount of memory allocated for the PB on a given device is done in such a way that the memory
footprint is kept as low as possible, but the majority of graphics applications will never encounter this
mode of operation (only extremely complex scenes may induce it). On closed platforms using
PowerVR graphics hardware, the OEM may choose to expose the ability for an application to choose
the amount of memory that is allocated for the PB. By doing so, application developers can opt to
allocate more or less memory for the PB than the default for the device, which allows them to raise
the threshold before PB management is encountered.

Imagination Technologies Proprietary

Revision . 22 Architecture Guide for Developers

7. Notable features

7.1. Internal True Colour™
Internal True Colour is a term that refers to the hardware’s ability to perform all blending operations
at 32 bits colour precision. This is possible because a 32 bit colour buffer is always used when
processing each tile, regardless of the target frame buffer precision. In traditional IMR architectures,
image quality is directly related to the frame buffer colour depth; when a 16 bit colour buffer is used in
these architectures, multiple reads and writes of the frame buffer will result in a loss of precision, this
inaccuracy tends to create “banding” artefacts in the rendered image. While dithering is often used to
reduce the effect of banding, it can potentially create worse results again, as the dither pattern applied
to multiple blended layers accumulates and strong dither pattern artefacts are introduced (this gives
the image a “grainy” appearance. On PowerVR hardware, all blending is performed at 32 bits
precision on-chip and each pixel is only written into the frame buffer once, which results in a much
higher quality image.

7.2. Full Screen MSAA
Another benefit of the SGX and SGX-MP architecture is the ability to perform efficient 4x Multi-Sample
Anti-Aliasing (MSAA). MSAA is performed entirely on-chip, which keeps performance high without
introducing a system memory bandwidth overhead (as would be seen when performing anti-aliasing
in some other architectures). To achieve this, the tile size is effectively quartered and 4 sample
positions are taken for each fragment (e.g. if the tile size is 16x16, an 8x8 tile will be processed when
MSAA is enabled). The reduction in tile size ensures the hardware has sufficient memory to process
and store colour, depth and stencil data for all of the sample positions. When the ISP operates on
each tile, HSR and depth tests are performed for all sample positions. Additionally, the ISP uses a 1
bit flag to indicate if a fragment contains an edge. This flag is used to optimize blending operations
later in the render.

When the subsamples are submitted to the TSP, texturing and shading operations are executed on a
per-fragment basis, and the resultant colour is set for all visible subsamples. This means that the
fragment workload will only slightly increase when MSAA is enabled (there is likely to be some
increase in workload as the subsamples within a given fragment may be coloured by different
primitives when the fragment contains an edge). When performing blending, the edge flag set by the
ISP indicates if the standard blend path needs to be taken, or if the optimized path can be used. If the
destination fragment contains an edge, then the blend needs to be performed individually for each
visible subsample to give the correct resultant colour (standard blend). If the destination fragment
does not contain an edge, then the blend operation is performed once and the colour is set for all
visible subsamples (optimized blend).

Once a tile has been rendered, the Pixel Back End (PBE) combines the subsample colours for each
fragment into a single colour value that can be written to the frame buffer in system memory. As this
combination is done on the hardware before the colour data is sent, the system memory bandwidth
required for the tile flush is identical to the amount that would be required when MSAA is not enabled.

7.3. PVRTC Texture Compression
PVRTC is the PowerVR texture compression scheme. PVRTC boasts very high image quality for
competitive compression ratios: 4 bits per pixel (PVRTC 4bpp) and 2 bits per pixel (PVRTC 2bpp).
These represent savings in memory footprint of 8:1 (PVRTC 4bpp) and 16:1 (PVRTC 2bpp) compared
to 32 bit per pixel textures. By using PVRTC compressed textures, an application can significantly
reduce its system memory bandwidth overhead without drastically reducing the quality of the texture.
More information can be found in the PVRTC & Texture Compression Usage Guide.

 Proprietary Imagination Technologies

PowerVR Series 5 23 Revision .

8. Related Materials
Software

• PVRTune

Documentation

• OpenGL ES 2.0 Application Development Recommendations

• PVRTC Compression Usage Guide

• PVRTune User Manual

Imagination Technologies Proprietary

Revision . 24 Architecture Guide for Developers

9. Contact Details
For further support contact:

devtech@imgtec.com

PowerVR Developer Technology

Imagination Technologies Ltd.

Home Park Estate

Kings Langley

Herts, WD4 8LZ

United Kingdom

Tel: +44 (0) 1923 260511

Fax: +44 (0) 1923 277463

Alternatively, you can use the PowerVR Insider forums:

www.imgtec.com/forum

For more information about PowerVR or Imagination Technologies Ltd. visit our web pages at:

www.imgtec.com

 Proprietary Imagination Technologies

PowerVR Series 5 25 Revision .

Imagination Technologies, the Imagination Technologies logo, AMA, Codescape, Ensigma, IMGworks, I2P,
PowerVR, PURE, PURE Digital, MeOS, Meta, MBX, MTX, PDP, SGX, UCC, USSE, VXD and VXE are

trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products,
trademarks and registered trademarks are the property of their respective owners.

